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Abstract
The incorporation of omics approaches into symptom science research can provide researchers with information about the
molecular mechanisms that underlie symptoms. Most of the omics analyses in symptom science have used a single omics
approach. Therefore, these analyses are limited by the information contained within a specific omics domain (e.g., genomics
and inherited variations, transcriptomics and gene function). A multi-staged data-integrated multi-omics (MS-DIMO) analysis
integrates multiple types of omics data in a single study. With this integration, a MS-DIMO analysis can provide a more
comprehensive picture of the complex biological mechanisms that underlie symptoms. The results of a MS-DIMO analysis can
be used to refine mechanistic hypotheses and/or discover therapeutic targets for specific symptoms. The purposes of this paper
are to: (1) describe a MS-DIMO analysis using “Symptom X” as an example; (2) discuss a number of challenges associated with
specific omics analyses and how a MS-DIMO analysis can address them; (3) describe the various orders of omics data that can be
used in a MS-DIMO analysis; (4) describe omics analysis tools; and (5) review case exemplars of MS-DIMO analyses in symptom
science. This paper provides information on how a MS-DIMO analysis can strengthen symptom science research through the
prioritization of functional genes and biological processes associated with a specific symptom.
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Symptom science research is focused on the discovery of the

underlying mechanisms for symptoms and the development of

interventions targeting these mechanisms (National Institute of

Nursing Research, 2016). However, the most common symp-

toms reported by patients with chronic conditions (e.g., fatigue,

pain, depression, sleep disturbance; Miaskowski et al., 2017)

occur as a result of complex interactions among a patient’s

demographic and molecular characteristics, environmental

influences, and disease and treatment states. Because of the

complex and multifactorial nature of most symptoms, the

mechanisms that underlie them remain poorly understood.

Given this complexity, the use of a variety of omics

approaches (e.g., genomics, epigenomics, transcriptomics, pro-

teomics, metabolomics) is needed to increase our understand-

ing of the molecular mechanisms that underlie these symptoms

(Tully & Grady, 2015). To date, most of the studies of associa-

tions between symptoms and molecular mechanisms have used

a single type of omics data in their analysis. For example, one

study (Koleck et al., 2017) evaluated for associations between

cognitive dysfunction and breast cancer-related candidate

genes in survivors of breast cancer. In another study (Dorsey

et al., 2019), an evaluation was done of differentially expressed

genes (DEGs) and pathways in patients with acute low back

pain. Other studies have focused on associations between

symptoms and changes in proteomic (Goo et al., 2012) and

metabolomic (Chou et al., 2020) profiles.

While the use of a single type of omics analysis provides some

information on mechanisms, several limitations warrant consid-

eration. A single omics analysis is limited to a specific biologic

domain. For example, while a genetic association study discovers

gene variants associated with a symptom, this type of analysis

does not provide information on gene expression (i.e., gene func-

tion). Given that symptoms occur as a result of interactions among

multiple levels of biology, the use of a single omics analysis does

not allow for an examination of these complex processes.

A multi-omics analysis can address some of these limitations.

Systems biology (i.e., the study of complex biological systems) is
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an analytical framework that can be used to integrate omics data

with symptom data (S. Founds, 2018). Systems biology is an

interdisciplinary science that uses knowledge from biology,

bioinformatics, computer science, mathematics, medicine, and

nursing to study each level of human biology, their interactions,

and the system’s responses to genetic and environmental changes

(S. A. Founds, 2009; Kirschner, 2005; Weston & Hood, 2004).

While many types of systems biology analyses exist, an inte-

grated omics analysis offers numerous advantages for symptom

science research. A symptom is a complex phenotype, that is the

result of individual, environmental, and genetic factors. Com-

pared to an analysis that uses only a single source of omics data,

an integrated omics analysis combines data from multiple levels

of biology and provides an improved identification and interpre-

tation of the omics-phenotype relationship (Hasin et al., 2017;

Misra et al., 2018; Sun & Hu, 2016). A data-integrated omics

analysis can be classified as either meta-dimensional or multi-

staged (Ritchie et al., 2015). A meta-dimensional analysis is one

in which all sources of data are combined simultaneously. In

contrast, a multi-staged analysis follows a “stepwise” approach

(Ritchie et al., 2015, p. 86). The purposes of this paper are to:

1) describe a multi-staged data-integrated multi-omics

(MS-DIMO) analysis using a transcriptome analysis first design;

2) discuss challenges with specific omics analyses and how a

MS-DIMO analysis can address them; 3) describe other orders of

omics data that can be used in a MS-DIMO analysis; 4) describe

omics analysis tools; and 5) provide case exemplars of

MS-DIMO analyses in symptom science.

A MS-DIMO Analysis Starting
With Functional Gene Products

A MS-DIMO analysis is divided into multiple stages using a

hierarchical approach. Namely, at each stage of the process a

new type of data is analyzed (Ritchie et al., 2015). For example,

transcriptomic (e.g., gene expression) data can be analyzed in

Stage 1 and genomic (e.g., genetic association) data can be

analyzed in Stage 2. Loci (e.g., genes) that have significant

associations with a characteristic of interest (e.g., symptom)

are advanced for subsequent analysis. With these steps, the

identification of a causal molecular signal is strengthened.

Through the ordering of the stages of a MS-DIMO analysis,

genes and biological processes associated with a symptom are

prioritized. A major strength of a MS-DIMO analysis is its

ability to filter and refine data guided by biological information

to obtain more meaningful and biologically relevant results.

These results can be used to refine mechanistic hypotheses

and/or discover potential therapeutic targets.

While the stages of a MS-DIMO analysis can be ordered in

numerous ways, the first stage is important because it has a

direct impact on the type of omics data that will be used in

subsequent stages. In this paper, we describe a MS-DIMO

analysis that uses transcriptomic data in Stage 1 and highlight

the strengths of this approach. Alternative approaches to order-

ing omics data are discussed in subsequent sections of this

manuscript.

A transcriptomic analysis provides valuable insights into

gene function. Stage 1 of a MS-DIMO analysis can take advan-

tage of this type of measurement to evaluate the relationship

between a symptom and a functional gene product. The evalua-

tion of genes using gene expression data in Stage 1 of a

MS-DIMO analysis reduces the genome “search space” from

millions or billions (e.g., genetic or methylation data) to hun-

dreds or thousands of loci. This reduction in the number of

statistical tests increases the power to detect significant asso-

ciations between genes and a symptom of interest. The follow-

ing section describes and Figure 1 illustrates an example of

using this approach with “Symptom X.”

A MS-DIMO analysis is designed to discover molecular

mechanisms underlying “Symptom X” in patients with an acute

or chronic condition. In this study, 400 patients completed a

valid and reliable instrument to assess “Symptom X.” Of the

400 patients, the extreme phenotypes for “Symptom X” are

identified (i.e., 200 with low, 200 with high symptom severity

scores). In Stage 1 of the MS-DIMO analysis, DEGs between the

Low and High “Symptom X” groups are identified (Figure 1A).

These DEGs are used as candidates in the next two stages of the

MS-DIMO analysis (Figure 1B). In Stage 2, single nucleotide

polymorphisms (SNPs) in these genes are selected using specific

criteria (e.g., genomic location, functional evidence) and are

evaluated for associations with membership in the Low versus

the High “Symptom X” groups (Figure 1B). For Stage 3, the

DEGs are used to evaluate for differential methylation between

the Low and High “Symptom X” groups. This MS-DIMO anal-

ysis results in a list of candidate genes (Figure 1C) that were

found to have significant associations in Stages 2 and/or 3. These

candidate genes can be validated in subsequent samples and/or

be evaluated in intervention studies that target the underlying

mechanism(s) of “Symptom X.” Alternatively, these genes are

good candidates to evaluate their functional relationship to each

other (e.g., expression quantitative trait loci (eQTLs; e.g. genetic

variants associated with levels of gene expression (Kukurba &

Montgomery, 2015)), methylation quantitative trait loci

(meQTL; e.g. genetic variants associated with levels of DNA

methylation (Ritchie et al., 2015))).

Challenges and Benefits
of a MS-DIMO Analysis

While this exemplar appears straightforward, omics data are

inherently complex and large in scale (Dreisbach & Koleck,

2020). This complexity and magnitude present multiple

problems that need to be considered when ordering omics anal-

yses, as well as when collecting, analyzing, and integrating

these data (Jagadish et al., 2014). The following sections

describe common challenges with various types of omics data

and methods that can be used to address these challenges.

Functional Information

Next-generation sequencing technologies have made the col-

lection and evaluation of large amounts of omics data cost
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effective and time efficient. While the number of studies that

have examined associations between symptoms and omics data

have increased (Cashion et al., 2016; Fu et al., 2020), the inter-

pretation of the results of molecular association studies are

limited by a lack of functional information. When genetic or

epigenetic associations are identified, their functional impact is

difficult to interpret because linked variants are identified

rather than a putative causal variant. By testing only those loci

that had evidence of functional effects (i.e., gene expression) in

Stage 1 of the MS-DIMO analysis, a clearer picture of the

mechanism(s) that underlie a symptom begins to emerge in

subsequent stages. These subsequent evaluations of additional

omics data (e.g., genetic, epigenetic) are guided by specific

hypotheses (e.g., inherited variation, genetic regulation).

Multiple Hypothesis Testing Burden

The multiple hypothesis testing burden is another challenge

associated with high throughput omics data because millions

of independent tests are run simultaneously (e.g., a

genome-wide association study with 1 million SNPs). When

a large number of tests are evaluated with an uncorrected alpha

of 0.05, many of the positive results must be attributed to

chance. To uncover true positive associations, the Type

I error rate needs to be controlled.

Two approaches can be used to control the Type I error rate,

namely: the family-wise error rate (FWER) and the false

discovery rate (FDR). The FWER is the probability of making

at least one Type I error. Two methods to control the FWER are

the Bonferroni correction (Bonferroni, 1936) and Šidák’s pro-

cedure (Šidák, 1967). The FDR is the proportion of results that

are incorrectly rejected. Procedures to control the FDR include

the Benjamini-Hochberg step-up procedure (Benjamini &

Hochberg, 1995) and Storey’s q-value approach (Storey, 2002).

The procedures that are used to control the FWER are

extremely strict because they control for the probability of any

Type I error. This conservative adjustment severely reduces the

power to detect true positives by falsely rejecting a proportion of

true positives (Shaffer, 1995). In contrast, the FDR has increased

power to detect true positive associations while maintaining the

number of Type I errors at a pre-specified alpha (Benjamini &

Hochberg, 1995). For more details on various FDR procedures

see the report by Korthauer and colleagues (2019).

Another approach to decrease the multiple hypothesis testing

burden is to simply reduce the total number of tests. Evaluation

of larger omics datasets (e.g., genetic, methylation) are often

limited by the large number of statistical tests (e.g., one million

loci) and small sample sizes (e.g., <1,000). A MS-DIMO anal-

ysis, with gene expression data in Stage 1, allows for the analysis

of omics data with the fewest number of tests. This approach

reduces the absolute number of tests performed and significantly

reduces the multiple hypothesis testing burden. In addition, in

gene expression analyses, each individual test may have

increased power to identify differences because the effect sizes

(i.e., log fold change; Harrison et al., 2019; McCarthy & Smyth,

2009) are expected to be larger. Because of this increased power

and reduced number of tests, smaller samples can be evaluated.

More detailed descriptions of power and sample size estimation

are beyond the scope of this manuscript. Studies discussing

power calculation with genetic (Skol et al., 2006), gene expres-

sion (Hart et al., 2013), and methylation (Tsai & Bell, 2015) data

are described elsewhere.

Figure 1. Multi-staged data-integrated multi-omics analysis: Symptom
X exemplar. Patients with a chronic condition are recruited to
participate in a study that is evaluating for associations between mul-
tiple levels of omics data and Symptom X. Patients are divided into
groups based on their report of the severity of Symptom X. (A) In
Stage 1, candidate genes are identified that are differentially expressed
between patients in the Low and High Symptom X groups. (B) In Stage
2, these candidate genes are evaluated for genetic associations
between the Low and High Symptom X groups. In Stage 3, the candi-
date genes are evaluated for differential methylation state between the
Low and High Symptom X groups. (C) A list of multi-omic candidate
genes are identified.
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Signal-to-Noise Ratio

Another statistical consideration associated with the analysis of

large amounts of multi-omics data is the ability to detect a true

biological signal. Assessment of the signal-to-noise ratio pro-

vides information on the accuracy of an analysis in identifying

a true biological signal that is associated with a symptom ver-

sus noise (i.e., non-contributory biological data; Ideker et al.,

2011). Methods that can be used to improve the signal-to-noise

ratio include the addition of filters and/or integrators into the

analysis (Ideker et al., 2011). In addition, the MS-DIMO anal-

ysis assists in filtering out unrelated biological data by reducing

the number of tests conducted in subsequent stages of analysis.

Filters reduce noise by removing unrelated biological data

(e.g., elimination of variants in distant regions of the suspected

genes; Ideker et al., 2011). One type of filter uses previously

published information to reduce the number of loci within the

analysis. For example, in a study designed to evaluate for asso-

ciations between pain and a regulatory mechanism, one can

limit this evaluation to sites within the promoter region of

“pain” genes. By focusing on loci in putative regulatory

regions, a regulatory hypothesis is evaluated and the number

of loci that warrant evaluation is reduced.

Integrators are methods that piece together individual units of

data or different types of data to increase an effect size (e.g.,

identifying genes within shared biological pathways; Ideker

et al., 2011). One example would be to select specific genes based

on higher orders of biological knowledge. A number of integra-

tors are available that contain a variety of molecular data orga-

nized by higher orders of biology (e.g., Reactome (Joshi-Tope

et al., 2005), Kyoto Encyclopedia of Genes and Genomes

(KEGG) (Aoki-Kinoshita & Kanehisa, 2007), WikiPathways

(Pico et al., 2008)) that provide a priori hypotheses for testing.

Higher orders of biology are structured into biological pathways

that represent relationships between genes, proteins, molecules,

cells, other organisms, and the environment. As genes do not

function in isolation, the selection of genes within biological path-

ways that have known associations with a symptom of interest for

a MS-DIMO analysis provides a context for the interpretation of a

potential mechanism for that symptom. While information within

these databases can help to reduce the number of loci in a biolo-

gically meaningful way, they are limited by the data that are

available. For example, novel gene-gene interactions that are not

defined in these databases will be missed.

An example of an investigator-generated integrator that can

be used to identify biological interactions is co-expression net-

work analysis. Through an evaluation of gene co-expression

patterns, unique networks of genes (i.e., modules) are identified

(van Dam et al., 2018). Genes within these networks tend to be

functionally related and co-regulated (Singer et al., 2005; van

Dam et al., 2018). For example, a weighted gene co-expression

network constructs networks using gene expression data and

assigns weighted values to the strength of the co-expression

between each gene (Zhang & Horvath, 2005). Using these

co-expressed genes in a MS-DIMO analysis can improve the

signal-to-noise ratio by focusing on genes that have the poten-

tial to function in shared biological processes.

Validation of Multi-Omics Results

While the integration of some or all of the methods described

above can improve the signal-to-noise ratio in omics analyses,

the risk of detecting noise rather than a true biological signal

remains high. Therefore, the validation of results is critical for

all omics studies (Ioannidis & Khoury, 2011). A MS-DIMO

analysis is a type of biological validation (i.e., conceptual repli-

cation; Picho et al., 2016) because the findings from the Stage 1

analysis may be validated in Stage 2 (Ideker et al., 2011).

While validation in an independent sample is ideal (Loscalzo,

2012), it may not be an option because of limitations in available

data and costs. In this situation, internal validation procedures

are an acceptable alternative. While a number of internal valida-

tion procedures can be used (Perng & Aslibekyan, 2020; Sung

et al., 2012), the most common methods, described below, are:

cross-validation, meta-analysis, and bootstrap. The selection of

the most appropriate validation procedure should be guided by a

power analysis within each stage of the MS-DIMO analysis.

Internal twofold cross-validation. Cross-validation procedures

involve dividing the sample into two or more subsets; conduct-

ing independent omics analyses on each subset; and conducting

reciprocal analyses on all of the subsets to determine if the

findings are validated in the independent subsets (Sung et al.,

2012). As illustrated in Figure 2, with an internal twofold

cross-validation study, the sample is split into two subsets. At

each stage of this MS-DIMO analysis, the findings are vali-

dated across the two subsets (Figure 2A). For the first fold,

Subset A is used to identify candidates (e.g., DEGs), that will

be tested in Subset B for other associations (e.g., differential

methylation or genetic association). For the second fold, the

reciprocal analysis is performed (e.g., differential expression

using Subset B, followed by differential methylation or genetic

association in Subset A). Then, the overall significance of the

loci discovered from each fold of the analysis are evaluated by

combining the p-values of each independent test utilizing a

meta-analytic approach (see below) using Fisher’s combined

probability test (Figure 2B; Fisher, 1925, 1948).

Cross-validation procedures are particularly useful when the

relationships between various types of biological data are not

clear and potentially confounded (e.g., gene expression is

regulated by DNA methylation), because each type of data is

used as a candidate for the other data type. In addition,

cross-validation procedures may offer a solution for issues

associated with sample batch effects (e.g., sample processing

on different days or at different sites) or for situations where

sample characteristics exhibit more variation between than

within groups (e.g., merging sample data from different study

sites). A major limitation of cross-validation in a single sample

is the large variability in the data that are generated because

the sample is divided into smaller groups. In addition, as the

number of subsets or folds in the cross-validation increases,
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the analyses become more computationally challenging.

Another limitation of cross-validation procedures is that the

sample size relative to power will decrease when the sample

is divided into smaller groups.

Meta-analytic approach to combine omics results. Meta-analysis

procedures integrate omics data from two or more analyses to

increase the ability to identify a true biological signal and to

validate findings (Gao, 2016; Tseng et al., 2012). In a

MS-DIMO analysis, this procedure can be used to determine

the candidates that progress to the next stage of the analysis

(Figure 3). As with cross-validation, the sample is split into two

or more smaller samples. In Stage 1, a single omics analysis

(e.g., gene expression) is completed separately for each group.

Using a meta-analysis procedure (e.g., Fisher’s combined prob-

ability test; Fisher, 1925, 1948), the results of each independent

analysis (e.g., DEGs) from Stage 1 are combined to produce an

overall p-value. Then, based on the results of the combined

tests, candidates are selected for Stage 2. This procedure is

repeated in Stage 2 with a different type of omics data (e.g.,

genetic association). Similar to the cross-validation procedure,

meta-analytic methods may not be appropriate for small

samples because splitting the sample into smaller subsets will

result in insufficient power.

Cross-validation approach for small sample sizes. In situations

where sample sizes prohibit the use of the twofold cross-

validation design (Fu et al., 2005) or meta-analytic methods,

differential gene expression, methylation, and genetic associa-

tion analyses can be cross-validated using a bootstrap proce-

dure. Bootstrap procedures utilize a resampling technique

whereby a subset of patients from the larger sample are selected

and evaluated followed by the selection and evaluation of

another subset. This procedure is repeated n times (Efron,

1979). One limitation is the large amount of computation time

required to perform the procedure (Braga-Neto & Dougherty,

2004). Efron’s enhanced bootstrap procedure (Braga-Neto &

Dougherty, 2004; Fu et al., 2005) as described by Harrell can

be used to perform this analysis (Harrel, 2015).

Other Options for Ordering Omics
Data in a MS-DIMO Analysis

Depending on the research question or hypothesis, other

molecular starting points warrant consideration when ordering

Figure 2. Internal twofold cross-validation design. (A) For the first fold (F1), a differential gene expression analysis will be conducted on Subset
A. The differentially expressed genes (DEGs) identified in Step 1 will be tested in Subset B as candidate genes for genetic association (GA) and
differential methylation (DM). For the second fold (F2), a reciprocal analysis will be conducted: a differential gene expression analysis will be
conducted on Subset B with the resulting DEGs used as candidates for the GA and DM analyses in Step 2 for Subset A. (B) The overall
significance of the loci from each fold are evaluated with Fisher’s combined probability test.
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the omics data for a MS-DIMO analysis (Buescher & Driggers,

2016). For example, the central dogma of molecular biology

(Crick, 1970) can be used to determine the order of the mole-

cular data based on the flow of genetic information. Alterna-

tively, the order can be based on the results of previous

research. For example, previously identified biological path-

ways (e.g., mitophagy, oxidative stress) can provide the initial

starting point to select candidate genes for Stage 1.

Researchers must weigh the costs associated with sample

collection, processing, and storage against available resources

(e.g., patient participation, funding) when designing the stages

of a MS-DIMO analysis. While resource limitations may

impact the types of omics data that are selected for the various

stages of the analysis, a MS-DIMO analysis provides some

economic efficiency. A MS-DIMO analysis can reduce the

overall number of analyses and produce results that have

increased power to detect true biological signals. Other

common molecular starting points are discussed below.

Omics analysis guided by inherited variation. The use of genetic

data in Stage 1 is one of the most common starting points. For

example, the triangle method (Holzinger & Ritchie, 2012) or a

three-staged approach uses genetic data in Stage 1. The goal of

this analysis is to discover functional SNPs. In Stage 1, SNPs

are evaluated for their associations with a symptom either

using an exploratory approach (i.e., genome-wide) or with

pre-specified candidate genes. SNPs that meet a pre-specified

level of significance are advanced to the next stage of the

analysis.

Figure 3. Internal validation with meta-analysis. A sample of 400 patients is evaluated for a symptom of interest. This sample is split into two
smaller groups of equal size (n¼ 200). In Stage 1, independent differential gene expression analyses are performed on both Group 1 and Group
2. The differentially expressed genes (DEGs) from both Groups in Stage 1 are combined using uncorrected p-values with Fisher’s combined
probability test. DEGs that were present in both samples are advanced as candidate genes in the independent genetic association (GA) analyses
in Stage 2 for Groups 1 and 2. Genes with genetic variants that are significantly associated with the symptom of interest from both groups are
combined using Fisher’s combined probability test.
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In Stage 2, these SNPs are used to test for associations with

another type of omics data (e.g., gene expression, methylation,

proteins; Ritchie et al., 2015). The SNPs that are associated with

levels of gene expression are termed eQTLs (Kukurba & Mon-

tgomery, 2015). These eQTLs provide valuable information on

the associations between gene variants and a symptom (Nica &

Dermitzakis, 2013). Stage 3 of the triangle method involves an

evaluation of the correlations between remaining genes and the

symptom. A strength of evaluating for genetic variation in Stage

1 is that genetic data are easily accessible and more affordable to

collect, process, and store than other types of omics data.

One limitation of this approach is that SNPs with large

effects drive the subsequent associations between gene expres-

sion and the symptom (Holzinger & Ritchie, 2012). For exam-

ple, while SNPs with small effects may contribute to the

development of a symptom through their interaction with other

SNPs, they would not be identified in this approach (Holzinger

& Ritchie, 2012). Another limitation is the multiple hypothesis

testing burden that results from the large number of association

tests that are done. For example, in genome-wide association

studies, significance of the identified SNPs are evaluated based

on a genome-wide significance threshold (i.e., p < 5 � 10�8;

Pe’er et al., 2008). For many symptom studies, this extremely

small significance threshold cannot be met because of small

sample sizes. However, this limitation can be overcome in a

MS-DIMO analysis because, in Stage 1, the significance

threshold for genomic variation can be relaxed to an explora-

tory threshold (e.g., p < 0.10). Then, the identified genes are

evaluated in subsequent stages of the analysis using a stricter

significance threshold (i.e., p < 0.05). Alternatively, the num-

ber of tests can be decreased by reducing the genome search

space to only genes that were associated with the symptom.

Omics analysis guided by an epigenetic signal (microRNA,
methylation). The use of epigenetic data in Stage 1 of a

MS-DIMO analysis prioritizes the identification of mechan-

isms involved in gene regulation. For example, research ques-

tions that are designed to explore the effects of a treatment

(e.g., chemotherapy) or environmental stimuli (e.g., stress) on

gene regulation and symptom severity may benefit from the use

of epigenetic data in Stage 1. As with a genome-wide analysis

of genetic variation, one limitation for starting with an epigen-

ome analysis is the multiple hypothesis testing burden that

results from the large number of association tests that are run.

To address this limitation, a filter can be used to reduce the total

number of tests. For example, meQTL that were previously

identified can be used as candidates in Stage 1. Alternatively,

CpG sites that have methylation levels that are associated with

expression changes (i.e., expression-associated CpGs (eCpG))

can be evaluated in Stage 1 (Kennedy et al., 2018).

The use of epigenetic data in Stage 1 can be guided by

information in the Encyclopedia of DNA Elements

(ENCODE), a growing catalogue of functional DNA elements

within the human genome. The purpose of this database is to

improve our understanding of how gene expression is regulated

by determining the locations and functions of regulatory

elements (e.g., promoters, transcriptional regulatory elements,

histone modifications; Luo et al., 2020). ENCODE employs

multiple data-processing pipelines, including chromatin immu-

noprecipitation next-generation sequencing (ChIP-seq) tech-

nologies and whole-genome bisulfite sequencing, to discover

functional elements. These technologies aid in the discovery of

new regulatory regions; increase our knowledge of how inter-

actions between proteins and DNA influence gene expression;

and are valuable resources for MS-DIMO analyses (Encode

Project Consortium, 2012).

Omics analysis guided by metabolites. Metabolites are derived

from a variety of sources (e.g., host, microorganisms, diet).

An evaluation of metabolomic data in Stage 1 of a MS-DIMO

analysis can be used to identify biomarkers and system-level

effects of metabolites (Johnson et al., 2016). Given that

metabolomic panels are smaller in scale than genomic or

epigenomic data, one advantage of using metabolomic data in

Stage 1 is that it greatly reduces the scope of biological data that

is explored. In contrast, this approach may be limited by the

evaluation of a predefined set of metabolites (e.g., targeted

metabolomics) or by what is known in metabolite databases

(e.g., untargeted metabolomics; Johnson et al., 2016). These

limitations may reduce the ability to detect important mechan-

istic factors (e.g., changes in regulation, transport) and limit the

interpretation of the study findings (Pinu et al., 2019).

Omics Analysis Tools

The expertise of the research team and access to the necessary

analytic tools need to be considered when designing a MS-DIMO

analysis. For example, omics data are usually analyzed using

complex computational methods with software packages like

Bioconductor for R (Sepulveda, 2020). These software programs

require basic levels of programing and genomics knowledge to

use. However, researchers may lack this level of expertise or not

have access to bioinformaticians. Therefore, programs that facil-

itate data analysis and interpretation are needed.

Numerous online resources are available to assist research-

ers to interpret omics analyses through visual exploration of the

data (e.g., University of California Santa Cruz Genome

Browser (Kent et al., 2002), Ensembl (Yates et al., 2020),

Broad Integrative Genomics Viewer (Thorvaldsdottir et al.,

2013)). These user friendly genomic resources are excellent

sources for annotation information. For example, they

provide updated information on gene and mRNA alignment,

expression, and function, as well as information on gene and

disease association study results.

In addition, user-friendly resources are available to analyze

multiple types of omics data individually (e.g., shinyGAStool for

genetic data (Hoffmann & Kober, 2020), MetaboAnalyst

(Chong et al., 2018) for metabolomics, OpenMS (Rost et al.,

2016) for metabolomics or proteomics) or collectively (e.g.,

Galaxy (Jalili et al., 2020)). A non-exhaustive list of publicly

available software packages for different omics analyses

are listed in Supplemental Table 1 (https://doi.org/10.5281/
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zenodo.4558052). Additional resources are provided in two

reviews (Misra et al., 2018; Spicer et al., 2017). For more cus-

tomized analyses, multiple software tools and resources are

available (e.g., Bioconductor in R (Sepulveda, 2020), packages

in Python like Biopython (Cock et al., 2009), Genome Analysis

Toolkit (GATK) (McKenna et al., 2010)). Because these

resources are open-source and maintained by individuals or

small research teams, they vary in terms of online support and

program maintenance.

Case Exemplars of MS-DIMO Analyses
in Symptom Science

Work has already begun in symptoms science research to

utilize a MS-DIMO analysis. In Box 1, we present three case

exemplars that used a MS-DIMO analysis and discuss how this

approach strengthened the study findings (Hong et al., 2018;

Kober et al., 2020; Saligan et al., 2018).

Box 1. Case Exemplars of MS-DIMO Analyses in
Symptom Science.

Exemplar 1—Our research team conducted a MS-DIMO
analysis that built on a previous study that found that the
hypoxia inducible factor 1 signaling pathway (HIF-1 SP) was
perturbed in breast cancer survivors with and without
paclitaxel-induced peripheral neuropathy (PIPN) (Kober
et al., 2018). For this analysis (Kober et al., 2020), we
investigated genes within the HIF-1 SP that were both
differentially methylated and expressed between the two
survivor groups (n ¼ 50). In Stage 1, we evaluated for
differential methylation in the promoter regions of the
genes within the HIF-1 SP. In Stage 2, we evaluated for
differential ribonucleic acid (RNA) expression of these
genes between the two survivor groups. Twelve loci
across eight genes were both differentially methylated and
expressed between survivors with and without PIPN. In
Stage 3, we evaluated the functional role of these genes
using protein-protein interaction (PPI) network connec-
tivity and functional enrichment tests. All eight genes were
significantly enriched for PPIs. In addition, seven Kyoto
Encyclopedia of Genes and Genomes (KEGG) and three
Reactome pathways were enriched for these eight differ-
entially methylated and expressed genes. Then, these eight
candidate genes were evaluated in animal models of neu-
ropathic pain. The mitogen-activated protein kinase 1
interacting serine/threonine kinase 1 (MKNK1) gene had
RNA expression and methylation differences associated
with neuropathic pain in both breast cancer survivors and
animal models. The strength of these findings supports the
need for validation of these genes as potential targets for
therapeutic intervention.

(Continued)

Box 1. (Continued)

These findings were strengthened by multiple design
decisions that reduced our search space of relevant genes
associated with PIPN. By utilizing our previous research
findings and domain specific information from the KEGG
database, we were able to reduce our initial search space in
Stage 1 to 100 genes within a biologically relevant pathway.
Furthermore, the evaluation of only the promoter regions
of these genes reduced the search space to functional gene
regulatory regions. These steps, coupled with the integra-
tion of multiple levels of omics data, strengthened our anal-
yses by reducing the number of statistical tests and directing
our evaluation of more biologically relevant mechanisms.

Exemplar 2—Saligan and colleagues (2018) used a MS-
DIMO analysis to explore the relationships between fati-
gue severity and gene expression (RNA and proteins)
associated with T lymphocyte proliferation in men (n ¼
30) receiving radiation therapy for prostate cancer. In
Stage 1, RNA levels of 327 genes were found to be differ-
entially expressed between the initiation and middle of
radiation therapy. Of these genes, arginase type 1 (ARG1)
was significantly upregulated between the initiation and
middle of radiation therapy and was found to be negatively
correlated with the change in absolute lymphocyte count
in patients with high fatigue. In Stage 2, differences in pro-
tein levels of ARG1 and arginine in plasma were evaluated.
While differences in protein levels did not meet statistical
significance, a trend in the levels of ARG1 and arginine was
observed for patients with high fatigue. While limited,
these findings support the role of ARG1 and arginine in
T lymphocyte suppression and the development of fatigue
in men with prostate cancer and warrant further study.

Exemplar 3—Hong and colleagues (2018) conducted a MS-
DIMO analysis using epigenetic and genetic data to evalu-
ate the occurrence of pre-term spontaneous birth in Black
mothers (n ¼ 300). In Stage 1, differentially methylated
sites were compared between mothers with spontaneous
pre-term birth and mothers with full-term births. In sub-
sequent stages, genome-wide data from regions near these
differentially methylated sites were evaluated. Two sites
on the cytohesin 1 interacting protein (CYTIP) and long
intergenic non-protein coding RNA 114 (LINC00114)
genes were found to be associated with spontaneous
pre-term birth. Of note, the differentially methylated sites
were not associated with between group differences in
genetic variation. These results suggest that epigenetic
changes associated with spontaneous pre-term birth may
not be driven by genetic variations and future research
should evaluate for functional changes in CYTIP and
LINC00114. The authors suggest that these genes may
be used as early predictive markers of pre-term birth and
may serve as targets for prevention or drug development.

(Continued)
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Conclusion

The use of a MS-DIMO analysis in symptom science research

has the potential to increase our understanding of molecular

mechanisms that underly acute and chronic symptoms. The sta-

ging, filter, and refinement of multiple types of omics data that

occur with an MS-DIMO analysis strengthens the causal mole-

cular signal, accumulates biological evidence (Picho et al.,

2016), and provides a biologically guided integration of multiple

sources of data. In addition, a MS-DIMO analysis facilitates

exploratory analyses (Kimmelman et al., 2014). Furthermore,

the integration of multiple types of omics data into an analysis

assists with the prioritization of functional or predictive genes

and biological processes associated with a specific symptom.

These results can be used to explore additional mechanisms that

underlie symptom occurrence, severity, and distress.
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