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Abstract.        Over the past decade, artificial intelligence (AI) and machine learning (ML) 
have become the breakthrough technology most anticipated to have a transformative effect 
on pharmaceutical research and development (R&D). This is partially driven by revolu-
tionary advances in computational technology and the parallel dissipation of previous 
constraints to the collection/processing of large volumes of data. Meanwhile, the cost of 
bringing new drugs to market and to patients has become prohibitively expensive. Recog-
nizing these headwinds, AI/ML techniques are appealing to the pharmaceutical industry 
due to their automated nature, predictive capabilities, and the consequent expected increase 
in efficiency. ML approaches have been used in drug discovery over the past 15–20 years 
with increasing sophistication. The most recent aspect of drug development where positive 
disruption from AI/ML is starting to occur, is in clinical trial design, conduct, and analysis. 
The COVID-19 pandemic may further accelerate utilization of AI/ML in clinical trials due 
to an increased reliance on digital technology in clinical trial conduct. As we move towards 
a world where there is a growing integration of AI/ML into R&D, it is critical to get past 
the related buzz-words and noise. It is equally important to recognize that the scientific 
method is not obsolete when making inferences about data. Doing so will help in separat-
ing hope from hype and lead to informed decision-making on the optimal use of AI/ML in 
drug development. This manuscript aims to demystify key concepts, present use-cases and 
finally offer insights and a balanced view on the optimal use of AI/ML methods in R&D.
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Probability of success; Clinical trial design; Risk-based monitoring; Predictive modeling

INTRODUCTION

Artificial intelligence (AI) and machine learning (ML) have 
flourished in the past decade, driven by revolutionary advances 
in computational technology. This has led to transformative 
improvements in the ability to collect and process large vol-
umes of data. Meanwhile, the cost of bringing new drugs to 
market and to patients has become prohibitively expensive. In 
the remainder of this paper, we use “R&D” to generally describe 

the research, science, and processes associated with drug devel-
opment, starting with drug discovery to clinical development 
and conduct, and finally the life-cycle management stage.

Developing a new drug is a long and expensive process 
with a low success rate as evidenced by the following esti-
mates: average R&D investment is $1.3 billion per drug 
[1]; median development time for each drug ranges from 
5.9 to 7.2 years for non-oncology and 13.1 years for oncol-
ogy; and proportion of all drug-development programs that 
eventually lead to approval is 13.8% [2]. Recognizing these 
headwinds, AI/ML techniques are appealing to the drug-
development industry, due to their automated nature, pre-
dictive capabilities, and the consequent expected increase 
in efficiency. There is clearly a need, from a patient and a 
business perspective, to make drug development more effi-
cient and thereby reduce cost, shorten the development time 
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and increase the probability of success (POS). ML methods 
have been used in drug discovery for the past 15–20 years 
with increasing sophistication. The most recent aspect of 
drug development where a positive disruption from AI/ML 
is starting to occur, is in clinical trial design, operations, and 
analysis. The COVID-19 pandemic may further accelerate 
utilization of AI/ML in clinical trials due to increased reli-
ance on digital technology in patient data collection. With 
this paper, we attempt a general review of the current status 
of AI/ML in drug development and also present new areas 
where there might be potential for a significant impact. We 
hope that this paper will offer a balanced perspective, help in 
separating hope from hype, and finally inform and promote 
the optimal use of AI/ML.

We begin with an overview of the basic concepts and 
terminology related to AI/ML. We then attempt to pro-
vide insights on when, where, and how AI/ML techniques 
can be optimally used in R&D, highlighting clinical trial 
data analysis where we compare it to traditional infer-
ence-based statistical approaches. This is followed by 
a summary of the current status of AI/ML in R&D with 
use-case illustrations including ongoing efforts in clinical 
trial operations. Finally, we present future perspectives 
and challenges.

AI AND ML: KEY CONCEPTS 
AND TERMINOLOGY

In this section, we present an overview of key concepts and 
terminology related to AI and ML and their interdependency 
(see Fig. 1 and Table I). AI is a technique used to create 
systems with human-like behavior. ML is an application of 
AI, where AI is achieved by using algorithms that are trained 

with data. Deep learning (DL) is a type of ML vaguely 
inspired by the structure of the human brain, referred to as 
artificial neural networks.

Human intelligence is related to the ability of the human 
brain to observe, understand, and react to an ever-chang-
ing external environment. The field of AI not only tries to 
understand how the human brain works but also tries to 
build intelligent systems that can react to an ever-changing 
external environment in a safe and effective way (see Fig. 2 
for a brief overview of AI [3]). Researchers have pursued 
different versions of AI by focusing on either fidelity to 
human behavior or rationality (doing the right thing) in both 
thought and action. Subfields of AI can be either general 
focusing on perception, learning, reasoning, or specific such 
as playing chess. A multitude of disciplines have contrib-
uted to the creation of AI technology, including philosophy, 
mathematics, and neuroscience. ML, an application of AI, 
uses statistical methods to find patterns in data, where data 
can be text, images, or anything that is digitally stored. ML 
methods are typically classified as supervised learning, 
unsupervised learning, and reinforcement learning. (See 
Fig. 3 for a brief overview of supervised and unsupervised 
learning.)

CURRENT STATUS

AI/ML techniques have the potential to increase the likeli-
hood of success in drug development by bringing signifi-
cant improvements in multiple areas of R&D including: 
novel target identification, understanding of target-disease 
associations, drug candidate selection, protein structure 
predictions, molecular compound design and optimiza-
tion, understanding of disease mechanisms, development 

Fig. 1   Chronology of AI and 
ML
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of new prognostic and predictive biomarkers, biometrics 
data analysis from wearable devices, imaging, precision 
medicine, and more recently clinical trial design, conduct, 
and analysis. The impact of the COVID-19 pandemic on 
clinical trial execution will potentially accelerate the use 
of AI and ML in clinical trial execution due to an increased 
reliance on digital technology for data collection and site 
monitoring.

In the pre-clinical space, natural language processing 
(NLP) is used to help extract scientific insights from bio-
medical literature, unstructured electronic medical records 
(EMR) and insurance claims to ultimately help identify 
novel targets; predictive modeling is used to predict pro-
tein structures and facilitate molecular compound design 
and optimization for enabling selection of drug candi-
dates with a higher probability of success. The increasing 

Table I   below provides simple descriptors of the basic terminology related to AI, ML, and related techniques

General AI Systems that have human-like behavior in thought and action

ML The practice of using algorithms to parse data, learn from data, and then make predictions about unseen 
data without being explicitly programmed to do so

Neural Network (NN) A highly parameterized model, inspired by the biological neural networks that constitute the human brain
Deep learning (DL) A subfield of ML where a multi-layered (deep) architecture is used to map the relationships between 

inputs or observed features and outcomes
Supervised learning A subfield of ML that uses labeled datasets to train algorithms that classify data or predict outcomes 

accurately
Unsupervised learning A subfield of ML that uses unlabeled data to discover patterns that help solve clustering or association 

problems
Semi-supervised learning A subfield of ML that combines a small amount of labeled data with a large amount of unlabeled data 

during training
Reinforcement learning A subfield of ML that is concerned with taking a sequence of actions in a previously unknown environ-

ment in order to maximize some form of cumulative reward
Bayesian probabilistic programming A field in which Bayesian models are represented as programs, and inference, learning, and querying are 

operations that can be represented by programs as well
Bayesian nonparametric learning The field of models and related Bayesian inference routines where the number of parameters grows with 

the data

Fig. 2   Brief overview of AI
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volume of high-dimensional data from genomics, imag-
ing, and the use of digital wearable devices, has led to 
rapid advancements in ML methods to handle the “Large 
p, Small n” problem where the number of variables (“p”) 
is greater than the number of samples (“n”). Such methods 
also offer benefits to research in the post-marketing stage 
with the use of “big data” from real-world data sources to 
(i) enrich the understanding of a drug’s benefit-risk profile; 
(ii) better understand treatment sequence patterns; and (iii) 
identify subgroups of patients who may benefit more from 
one treatment compared with others (precision medicine).

While AI/ML have been widely used in drug discov-
ery, translational research and the pre-clinical phase 
with increasing sophistication over the past two decades, 
their utilization in clinical trial operations and data analysis 
has been slower. We use “clinical trial operations” to refer 
to the processes involved in the execution and conduct of 
the clinical trials, including site selection, patient recruit-
ment, trial monitoring, and data collection. Clinical trial 
data analysis refers to data management, statistical pro-
gramming, and statistical analysis of participant clinical 
data collected from a trial. On the trial operations end, 
patient recruitment has been particularly challenging with 
an estimated 80% of trials not meeting enrollment time-
lines and approximately 30% of phase 3 trials terminating 
early due to enrollment challenges [4]. Trial site monitor-
ing (involving in-person travel to sites) is an important 
and expensive quality control step mandated by regulators. 

Furthermore, with multi-center global trials, clinical trial 
monitoring has become labor-intensive, time-consuming, 
and costly. In addition, the duration from the “last subject 
last visit” trial milestone for the last phase 3 trial to the 
submission of the data package for regulatory approval, 
has been largely unchanged over the past two decades 
and presents a huge opportunity for positive disruption 
by AI/ML. Shortening this duration will have a dramatic 
impact on our ability to get drugs to patients faster while 
reducing cost. The steps in-between include cleaning and 
locking the trial database, generating the last phase 3 trial 
analysis results (frequently involving hundreds of sum-
mary tables, data listings, and figures), writing the clinical 
study report, completing the integrated summary of effi-
cacy and safety, and finally creation of the data submission 
package. The impact of COVID-19 may further accelerate 
the push to integrate AI/ML into clinical trial operations 
due to an increased push toward 100% or partially virtual 
(or “decentralized”) trials and the increased use of digital 
technology to collect patient data. AI/ML methods can be 
used to enhance patient recruitment and project enrollment 
and also to allow real-time automated and “smart” moni-
toring for clinical data quality and trial site performance 
monitoring. We believe AI/ML hold potential to have a 
transformative effect on clinical trial operations and clini-
cal trial data analyses particularly in the areas of trial data 
analysis, creation of clinical study reports, and regulatory 
submission data packages.

Fig. 3   Brief overview of supervised and unsupervised learning
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CASE STUDIES

Below, we offer a few use cases to illustrate how AI/ML 
methods have been used or are in the process of improving 
existing approaches in R&D.

Case Study 1 (Drug Discovery)—DL for Protein 
Structure Prediction and Drug Repurposing

A protein’s biological mechanism is determined by its 
three-dimensional (3D) structure that is encoded in its 
one-dimensional (1D) string of amino acid sequence. 
Knowledge about protein structures is applied to under-
stand their biological mechanisms and help discover new 
therapies that can inhibit or activate the proteins to treat 
target diseases. Protein misfolding has been known to be 
important in many diseases, including type II diabetes, as 
well as neurodegenerative diseases such as Alzheimer’s, 
Parkinson’s, Huntington’s, and amyotrophic lateral scle-
rosis [5]. Given the knowledge gap between a proteins’1D 
string of amino acid sequence and its 3D structure, there 
is significant value in developing methods that can accu-
rately predict 3D protein structures to assist new drug dis-
covery and an understanding of protein-folding diseases. 
AlphaFold [6, 7] developed by DeepMind (Google) is an 
AI network used to determine a protein’s 3D shape based 
on its amino acid sequence. It applied a DL approach to 
predict the structure of the protein using its sequence. The 
central component of AlphaFold is a convolutional neural 
network that was trained on the Protein Data Bank struc-
tures to predict the distances between every pair of resi-
dues in a protein sequence, giving a probabilistic estimate 
of a 64 × 64 region of the distance map. These regions 
are then tiled together to produce distance predictions for 
the entire protein for generating the protein structure that 
conforms to the distance predictions. In 2020, AlphaFold 
released the structure predictions of five understudied 
SARS-CoV-2 targets including SARS-CoV-2 membrane 
protein, Nsp2, Nsp4, Nsp6, and Papain-like proteinase (C 
terminal domain), which will hopefully deepen the under-
standing of under-studied biological systems [8].

Beck et al. [9] developed a deep learning–based drug-
target interaction prediction model, called Molecule Trans-
former-Drug Target Interaction (MT-DTI), to predict bind-
ing affinities based on chemical sequences and amino acid 
sequences of a target protein, without their structural infor-
mation, which can be used to identify potent FDA-approved 
drugs that may inhibit the functions of SARS-CoV-2’s core 
proteins. Beck et  al. computationally identified several 
known antiviral drugs, such as atazanavir, remdesivir, efa-
virenz, ritonavir, and dolutegravir, which are predicted to 
show an inhibitory potency against SARS-CoV-2 3C–like 

proteinase and can be potentially repurposed as candidate 
treatments of SARS-CoV-2 infection in clinical trials.

Case Study 2 (Translational Research/Precision 
Medicine)—Machine Learning for Developing 
Predictive Biomarkers

Several successful case studies have now been published to 
show that the biomarkers derived by the ML predictive mod-
els were used to stratify patients in clinical development. 
Predictive models were developed [10] to test whether the 
models derived from cell line screen data could be used to 
predict patient response to erlotinib (treatment for non-small 
cell lung cancer and pancreatic cancer) and sorafenib (treat-
ment for kidney, liver, and thyroid cancer), respectively. The 
predictive models have IC50 values as dependent variables 
and gene expression data from untreated cells as independ-
ent variables. The whole-cell line panel was used as the 
training dataset and the gene expression data generated from 
tumor samples of patients treated with the same drug was 
used as the testing dataset. No information from the testing 
dataset was used in training the drug sensitivity predictive 
models. The BATTLE clinical trial data was used as an inde-
pendent testing dataset to evaluate the performance of the 
drug sensitivity predictive models trained by cell line data. 
The best models were selected and used to predict IC50s that 
define the model-predicted drug-sensitive and drug-resistant 
groups.

Li et al. [10] applied the predictive model to stratify 
patients in the erlotinib arm from the BATTLE trial. The 
median progression-free survival (PFS) for the model-pre-
dicted erlotinib-sensitive patient group was 3.84 months 
while the PFS for model-predicted erlotinib-resistant 
patients was 1.84 months, which suggests that the erlotinib-
sensitive patients predicted by the model had more than 
doubled PFS benefit relative to erlotinib-resistant patients. 
Similarly, the model-predicted sorafenib-sensitive group had 
a median PFS benefit of 2.66 months over the sorafenib-
resistant group with a p-value of 0.006 and a hazard ratio of 
0.32 (95%CI, 0.15 to 0.72). The median PFS was 4.53 and 
1.87 months, for model-predicted sorafenib-sensitive and 
model-predicted sorafenib-resistant groups, respectively.

Case Study 3—Nonparametric Bayesian Learning 
for Clinical Trial Design and Analysis

Many of the existing ML methods are focused on learn-
ing a set of parameters within a class of models using the 
appropriate training data, which is often referred to as model 
selection. However, an important issue encountered in prac-
tice is the potential model over-fitting or under-fitting, as 
well as the discovery of an underlying data structure and 
related causes [11]. Examples include but are not limited 
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to the following: selecting the number of clusters in clus-
tering problem, the number of hidden states in a hidden 
Markov model, the number of latent variables in a latent 
variable model, or the complexity of features used in non-
linear regression. Thus, it is important to appropriately train 
ML methods to perform reliably under real-world conditions 
with trustworthy predictions. Cross-validation is commonly 
used as an efficient way to evaluate how well the ML meth-
ods perform in the selection of tuning parameters.

Nonparametric Bayesian learning has emerged as a pow-
erful tool in modern ML framework due to its flexibility, 
providing a Bayesian framework for model selection using a 
nonparametric approach. More specifically, a Bayesian non-
parametric model allows us to use an infinite-dimensional 
parameter space and involve only a finite subset of the avail-
able parameters on the given sample set. Among them, the 
Dirichlet process is currently a commonly used Bayesian 
nonparametric model, particularly in Dirichlet process mix-
ture models (also known as infinite mixture models). Dir-
ichlet process mixtures provide a nonparametric approach 
to model densities and identify latent clusters within the 
observed variables without pre-specification of the num-
ber of components in a mixture model. With advances in 
Markov Chain Monte Carlo (MCMC) techniques, sampling 
from infinite mixtures can be done directly or using finite 
truncations.

There are many applications of such Bayesian nonpara-
metric models in clinical trial design. For example, in oncol-
ogy dose-finding clinical trials, nonparametric Bayesian 
learning can offer efficient and effective dose selection. In 
oncology first in human trials, it is common to enroll patients 
with multiple types of cancers which causes heterogeneity. 
Such issues can be more prominent in immuno-oncology 
and cell therapies. Designs that ignore the heterogeneity of 
safety or efficacy profiles across various tumor types could 
lead to imprecise dose selection and inefficient identification 
of future target populations. Li et al. [12] proposed nonpara-
metric Bayesian learning–based designs for adaptive dose 
finding with multiple populations. These designs based on 
the Bayesian logistic regression model (BLRM) allow data-
driven borrowing of information, across multiple popula-
tions, while accounting for heterogeneity, thus improving 
the efficiency of the dose search and also the accuracy of 
estimation of the optimal dose level. Liu et al. [13] extended 
another commonly used dose-finding design, modified tox-
icity probability interval (mTPI) designs to BNP-mTPI and 
fBNP-mTPI, by utilizing Bayesian nonparametric learning 
across different indications. These designs use the Dirichlet 
process, which is more flexible in prior approximation, and 
can automatically group patients into similar clusters based 
on the learning from the emerging data.

Nonparametric Bayesian learning can also be applied in 
master protocols including basket, umbrella, and platform 

trials, which allow investigation of multiple therapies, mul-
tiple diseases, or both within a single trial [14–16]. With the 
use of nonparametric Bayesian learning, these trials have 
an enhanced potential to accelerate the generation of effi-
cacy and safety data through adaptive decision-making. This 
can affect a reduction in the drug development timeline in 
an area of significant unmet medical need. For example, in 
the evaluation of potential COVID-19 therapies, adaptive 
platform trials have quickly emerged as a critical tool, e.g., 
the clinical benefits of remdesivir and dexamethasone have 
been demonstrated using such approaches in the Adaptive 
COVID-19 Treatment Trial (ACTT) and the RECOVERY 
[17] trial.

One of the key questions in master protocols is whether 
borrowing across various treatments or indications is 
appropriate. For example, ideally, each tumor subtype in 
a basket trial should be tested separately; however, it is 
often infeasible given the rare genetic mutations. There is 
potential bias due to the small sample size and variability 
as well as the inflated type I error if there is a naïve pool-
ing of subgroup information. Different Bayesian hierar-
chical models (BHMs) have been developed to overcome 
the limitation of using either independent testing or naïve 
pooling approaches, e.g., Bayesian hierarchical mixture 
model (BHMM) and exchangeability-non-exchangeability 
(EXNEX) model. However, all these models are highly 
dependent on the pre-specified mixture parameters. When 
there is limited prior information on the heterogeneity across 
different disease subtypes, the misspecification of param-
eters can be a concern. To overcome the potential limita-
tion of existing parametric borrowing methods, Bayesian 
nonparametric learning is emerging as a powerful tool to 
allow flexible shrinkage modeling for heterogeneity between 
individual subgroups and for automatically capturing the 
additional clustering. Bunn et al. [18] show that such mod-
els require fewer assumptions than other more commonly 
used methods and allow more reliable data-driven decision-
making in basket trials. Hupf et al. [19] further extend these 
flexible Bayesian borrowing strategies to incorporate histori-
cal or real-world data.

Case Study 4—Precision Medicine with Machine 
Learning

Based on recent estimates, among phase 3 trials with novel 
therapeutics, 54% failed in clinical development, with 57% 
of those failures due to inadequate efficacy [20]. A major 
contributing factor is failure in identification of the appro-
priate target patient population with the right dose regimen 
including the right dose levels and combination partners. 
Thus, precision medicine has become a priority in pharma-
ceutical industry for drug development. One approach could 
be a systematic model utilizing ML applied to (a) build a 
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probabilistic model to predict probability of success; and (b) 
identify subgroups of patients with a higher probability of 
therapeutic benefit. This will enable the optimal match of 
patients with the right therapy and maximize the resources 
and patient benefit. The training datasets can include all 
ongoing early-phase data, published data, and real-world 
evidence but are limited to the same class of drugs.

One major challenge to establish the probabilistic model 
is defining endpoints that can best measure therapeutic 
effect. Early-phase clinical trials (particularly in oncology) 
frequently adopt different primary efficacy endpoints com-
pared with confirmatory pivotal trials due to a relatively 
shorter follow-up time and need for faster decision-mak-
ing. For example, common oncology endpoints are overall 
response rate or complete response rate in phase I/II and 
progression-free survival (PFS) and/or overall survival (both 
measure long-term benefit) in pivotal phase III trials. In 
oncology, it is also common that phase I/II trials use single-
arm settings to establish the proof of concept and generate 
the hypothesis of treatment benefit, while in pivotal trials, 
especially in randomized phase III trial with a control arm, 
the purpose is to demonstrate superior treatment benefit over 
available therapy. This change in the targeted endpoints from 
the early phase to late phase makes the prediction of POS 
in the pivotal trial, using early-phase data, quite challeng-
ing. Training datasets using previous trials for drugs with a 
similar mechanism and/or indications can help establish the 
relationship between the short-term endpoints and long-term 
endpoints, which ultimately determines the success of drug 
development.

Additionally, the clustering of patients can be done using 
unsupervised learning. For example, nonparametric Bayes-
ian hierarchical models using the Dirichlet process enables 
patient grouping (without pre-specified number of clusters) 
with key predictive or prognostic factors, to represent vari-
ous levels of treatment benefit. This DL approach will bring 
efficiency in patient selection for precision medicine clinical 
development.

Case Study 5—AI/ML‑assisted Tool for Clinical Trial 
Oversight

Monitoring of trials by a sponsor is a critical quality con-
trol measure mandated by regulators to ensure the scientific 
integrity of trials and safety of subjects. With increasing 
complexity of data collection (increased volume, variety, 
and velocity), and the use of contract research organizations 
(CROs)/vendors, sponsor oversight of trial site performance 
and trial clinical data has become challenging, time-con-
suming, and extremely expensive. Across all study phases 
(excluding estimated site overhead costs and costs for spon-
sors to monitor the study), trial site monitoring is among the 

top three cost drivers of clinical trial expenditures (9–14% 
of total cost) [21].

For monitoring of trial site performance, risk-based 
monitoring (RBM) has recently emerged as a potential 
cost-saving and efficient alternative to traditional monitoring 
(where sponsors sent study monitors to visit sites for 100% 
source-data verification (SDV) according to a pre-specified 
schedule). While RBM improves on traditional monitoring, 
inconsistent RBM approaches used by CROs and the cur-
rent prospective nature of the operational/clinical trial data 
reviews—has meant that sponsor’s ability to detect critical 
issues with site performance, may be delayed or compro-
mised (particularly in lean organizations where CRO over-
sight is challenging due to limited resources).

For monitoring of trial data quality, current commonly 
used approaches largely rely on review of traditional sub-
ject and/or aggregate data listings and summary statistics 
based on known risk factors. The lack of real-time data and 
widely available automated tools limit the sponsor’s abil-
ity for prospective risk mitigation. This delayed review can 
have a significant impact on the outcome of a trial, e.g., 
in an acute setting where the primary endpoint uses ePRO 
data—monthly transfers may be too late to prevent incom-
plete or incorrect data entry. The larger impact is a systemic 
gap in study team oversight that could result in critical data 
quality issues.

One potential solution is the use of AI/ML-assisted tools 
for monitoring trial site performance and trial data quality. 
Such a tool could offer an umbrella framework, overlaid on 
top of the CRO systems, for monitoring trial data quality and 
sites. With the assistance of AI/ML, study teams may be able 
to use an advanced form of RBM (improved prediction of 
risk and thresholds for signal detection) and real-time clini-
cal data monitoring with increased efficiency/quality and 
reduced cost in a lean resourced environment. Such a tool 
could apply ML and predictive analytics to current RBM 
and data quality monitoring—effectively moving current 
study monitoring to the next generation of RBM. The use of 
accumulating data from the ongoing trial and available data 
from similar trials, to continuously improve on the data qual-
ity and site performance checks, could have a transformative 
effect on sponsor’s ability to protect patient safety, reduce 
trial duration, and trial cost.

In terms of data quality reviews, data fields, and com-
ponents contributing to the key endpoints that impact the 
outcome of the trial would be identified by the study team. 
For trial data monitoring, an AI/ML-assisted tool can make 
use of predictive analytics and R Shiny visualization for 
cross-database checks and real-time “smart monitoring” of 
clinical data quality. By “smart monitoring,” we mean the 
use of AI/ML techniques that continuously learn from accu-
mulating trial data and improve on the data quality checks, 
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including edit checks. Similarly, for trial site performance, 
monitoring an AI/ML tool could begin with the Transceler-
ate (a non-profit cross-pharma consortium) library of key 
risk indicators (KRIs) and team-specified thresholds to iden-
tify problem sites based on operational data. In addition, the 
“smart” feature of an AI/ML tool could use accumulating 
data to continuously improve on the precision of the tar-
geted site monitoring that makes up RBM. The authors of 
this manuscript are currently collaborating with a research 
team at MIT to advance research in Bayesian probabilistic 
programming approaches that could aid the development of 
an AI/ML tool with the features described above for clinical 
trial oversight of trial data quality and trial site performance.

SUMMARY

AI/ML as a field has tremendous growth potential in R&D. 
As with most technological advances, this presents both 
challenges and hope. With modern-day data collection, 
the magnitude and dimensionality of data will continue to 
increase dramatically because of the use of digital technol-
ogy. This will increase the opportunities for AI/ML tech-
niques to deepen understanding of biological systems, 
to repurpose drugs for new indications, and also to inform 
study design and analysis of clinical trials in drug 
development.

Although the development of recent ML/AI methods 
represents major technological advances, the conclusions 
made could be misleading if we are not able to tease out 
the confounding factors, use reliable algorithms, look at the 
right data, and fully understand the clinical questions behind 
the endpoints and data collection. It is imperative to train 
ML algorithms properly to have trustworthy performance in 

practice using various data scenarios. Additionally, not every 
research question can be answered utilizing AI/ML, particu-
larly if there is high variability, limited data, poor quality of 
the data collection, under-represented patient populations, 
or flawed trial design. The issue of under-represented patient 
populations is particularly concerning as it could lead to 
a systematic bias. Furthermore, in line with the emerging 
concerns in other spaces where AI/ML have been used, care 
and caution needs to be exercised to address patient privacy 
and bioethical considerations.

It is also important to be aware when DL/AI vs. ML vs. 
traditional inference-based statistical methods are most 
effective in R&D. In Fig. 4 below, we attempt to provide a 
recommendation based on the dimensionality of the dataset. 
In Fig. 5, we attempt to provide a similar recommendation, 
this time based on different aspects of drug development. 
Although many ML algorithms are able to handle high-
dimensional data with the “Large p, Small n” problem, the 
increased number of variables/predictors, especially those 
not related to the response, continues to be a challenge. 
As the number of irrelevant variables/predictors increases, 
the volume of the noise becomes greater, resulting in the 
reduced predictive performance of most ML algorithms.

In summary, a combination of appropriate understand-
ing of both R&D and advanced ML/AI techniques can 
offer huge benefits to drug development and patients. The 
implementation and visualization of AI/ML tools can offer 
user-friendly platforms to maximize efficiency and promote 
the use of breakthrough techniques in R&D. However, a 
sound understanding of the difference between causation 
and correlation is vital, as is the recognition that the evolu-
tion of sophisticated prediction capabilities does not ren-
der the scientific method to be obsolete. Credible inference 
still requires sound statistical judgment and this is particu-
larly critical in drug development, given the direct impact 

Fig. 4   Application of ML/AI 
based on the dimensionality of 
the data
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on patient health and safety. This further underscores that 
a well-rounded understanding of ML/AI techniques along 
with adequate domain-specific knowledge in R&D is para-
mount for their optimal use in drug development.
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