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Categorical perception refers to the enhancement of 
perceptual sensitivity near category boundaries 
( Harnad, 1987). After learning to classify stimuli into 
discrete classes, subjects’ ability to make fine discrimi-
nations along perceptual dimensions that are informa-
tive about the categories can measurably improve. 
Categorical perception and associated changes in per-
ceptual discrimination were first observed in phono-
logical perception (Liberman et al., 1957) but have since 
been observed among a number of visual features, 
including orientation (Rosielle & Cooper, 2001), facial 
features (Rotshtein et al., 2005; Viviani et al., 2014), and 
shape (Folstein et al., 2014; Gauthier et al., 2003). For 
example, in one influential study (Goldstone, 1994), 
subjects trained to classify objects into two categories 
of objects distinguishable by their size became more 
sensitive to size differences (improved discrimination, 
d′) but not as much to brightness differences. Such 
findings are remarkable because they reflect a profound 
interaction between cognitive and perceptual mecha-
nisms: a change to basic perceptual processes attribut-
able to the acquisition of a new concept by an adult 
organism (Schyns et al., 1998).

In modern terminology, the term categorical percep-
tion is sometimes reserved for changes to categoriza-
tion performance (referring to the tendency for subjects’ 
category judgments to change abruptly near the  
category boundary). Concomitant changes to discrimi-
nation performance are referred to as acquired distinc-
tiveness (for improvements in discrimination between 
categories) or acquired equivalence (for degradation 
of discrimination within categories, which has been 
observed in some though not all studies; Folstein et al., 
2010, 2013, 2014; Goldstone, 1994; Goldstone et  al., 
2001; Livingston et al., 1998; Notman et al., 2005). The 
neural basis of acquired distinctiveness and acquired 
equivalence is thought to involve modification of 
receptive field structure (Folstein et  al., 2015; Kang 
et al., 2004; Li et al., 2007; Sigala & Logothetis, 2002). 
Although several neural-network models of categorical 
perception have been proposed (Casey & Sowden, 
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2012; Damper & Harnad, 2000), the computational 
mechanisms underlying these effects are still poorly 
understood.

Some researchers (e.g., Goldstone & Steyvers, 2001) 
have concluded that improvement in perceptual dis-
crimination (acquired distinctiveness) tends to occur in 
proportion to each feature’s informativeness (or rele-
vance or diagnosticity) about the categories to be 
learned. But it is not clear which perceptual features 
the system treats as informative and why. In many stud-
ies, categories are distinguished by a clear, deterministic 
boundary separating one class from another—often a 
linear boundary separating a 2D perceptual space into 
two clear-cut halves. In such a space, a perceptual 
feature that crosses the category boundary is perfectly 
predictive of category membership, making it informa-
tive by any reasonable metric, whereas any feature 
that does not cross the boundary is completely unin-
formative. But hard classification boundaries are not 
characteristic of natural categories, which have been 
understood for decades to have typicality gradients and 
correspondingly soft classification boundaries (Posner 
& Keele, 1968; Rosch, 1973). When categories are 
defined more naturalistically via statistical distributions 
(Huttenlocher et al., 2000), no dimension is perfectly 
predictive, and a variety of definitions of informative-
ness are possible. For example, some researchers have 
defined categories as bivariate Gaussian (normal) dis-
tributions in a 2D space (e.g., Lake et al., 2009; Maye 
et al., 2002). In this case, Lake et al. (2009) found that 
a particular measure of informativeness, the L2 norm 
between the posterior distributions, predicted improve-
ments in perceptual discrimination, but this measure 
was not compared with alternatives.

However, classical information theory provides a 
more natural and well-motivated measure of informa-
tiveness: mutual information, which quantifies how 
much of the variation in one variable is predicted by 
another (Cover & Thomas, 1991). Mutual information 
is widely used in neuroscience (Piasini & Panzeri, 
2019), animal learning (Balsam et  al., 2006), and 
machine learning (Battiti, 1994) to quantify informa-
tional relationships among variables. The mutual infor-
mation MI between a category variable C and a feature 
f is defined as

MI( , ) ( ) ( | ),C f H C H C f= −

where H(C) is the prior Shannon uncertainty about the 
category and H(C|f ) is the conditional uncertainty 
about the category once the feature is known, both 
measured in bits if logs are taken in base 2. The mutual 
information represents the degree to which learning 

the value of the feature reduces the observer’s uncer-
tainty about which category the stimulus belongs to 
and thus constitutes a natural measure of the informa-
tiveness of the feature. Indeed, recently Bates et al. 
(2019) showed that features that provide mutual infor-
mation about a category variable undergo more 
improvement in discrimination than those that do not, 
and Bates and Jacobs (2020) provided a comprehensive 
theoretical argument that the quantity of conveyed 
information is capped at the mutual information.

However, the manner in which the system quantifies 
informativeness cannot be determined using a hard cat-
egory boundary, as has been used in virtually all studies 
(including those of Bates et  al., 2019). With such a 
boundary, all of the information (however defined) is 
concentrated at the boundary, and features that do not 
cross the category boundary convey no information 
whatsoever about the category variable. This makes it 
impossible to test intermediate values of informativeness 
(again, however defined), and moreover completely 
confounds all reasonable measures of informativeness, 
because all of them are maximal at the boundary and 
minimal everywhere else in the feature space. The 
experiment below solves some of these problems by 
using probabilistically defined categories separated by 
a soft boundary in a novel 2D feature space. This allows 
for the evaluation of “diagonal” features through the 

Statement of Relevance 

When people classify objects into different cate-
gories, they focus on some features more than 
others. For example, people might classify fruits 
by their color but trees by the shape of their 
leaves. When people learn new categories, they 
tend to become attuned to the features that dis-
tinguish those particular categories—actually 
improving at discriminating small differences 
among those features—but it has never been clear 
exactly which features tend to improve and why. 
In the studies reported here, adult subjects learned 
novel categories that were differentiated by very 
subtle shape features. The results show that after 
category training, subjects became better at dis-
criminating each feature in proportion to how 
objectively informative it was about the category 
to be learned. The results suggest that human 
perceptual systems tend to use perceptual features 
that are maximally informative about the statistical 
structure of the categories in the world around 
them.
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space, in addition to the category-relevant and category-
irrelevant axes to which previous studies have been 
restricted. The resulting experiment includes a whole 
range of levels of informativeness (rather than just rel-
evant and irrelevant) and also deconfounds various 
potential measures of informativeness.

Moreover, most studies of categorical perception use 
features such as color or facial features with which the 
visual system has enormous prior experience and that 
also may have some degree of innate categorical struc-
ture (Folstein et al., 2015), making it difficult both to 
induce changes to perceptual sensitivity and to attribute 
them directly to training. To more carefully isolate the 
effect of learning, one should use a feature space that 
is as unbiased and unfamiliar to subjects as possible.

The experiments below used a space of randomized, 
subjectively novel perceptual features with which sub-
jects can be assumed to have little or no prior experi-
ence (Fig. 1). Stimuli are drawn from a high-dimensional 
space of blob shapes created by modulating radial Fou-
rier components (Dickinson et al., 2013; Op de Beeck 
et al., 2003) defining shape contours (Fig. 1a). Shape 
is very high-dimensional space in which most dimen-
sions involve subtle combinations of contour geometry 
that are novel and difficult to verbalize (Destler et al., 
2019). From the initial high-dimensional space, a 2D 
feature space is randomly selected by choosing three 
random points in the space, which define a random 
plane, and then randomly choosing an origin and two 
orthogonal-basis vectors in this plane (via the Gram-
Schmidt process), which together define a coordinate 
frame (Fig. 1b). This results in a 2D manifold of shapes 
from which stimuli are chosen, any subspace of which 
defines a potential feature (Fig. 1c). Note that unlike in 
many previous studies (e.g., Dieciuc et  al., 2017; 
 Folstein et al., 2012, 2013; Viviani et al., 2014; Wallraven 
et al., 2014), this feature space is not a morph space 
constructed by weighted combinations of fixed stimuli 
at the poles. Rather, it is a completely novel space 
newly novelized (randomized) for each subject. Unlike 
a morph space, this feature space has no familiar or 
consistent stimulus shape at the poles, and indeed there 
are no poles, which reduces the possibility of a pre-
existing categorical bias present in most previous 
experiments.

Within the feature space, two categories are defined 
by circular bivariate Gaussian distributions (Fig. 1d), 
which define a soft linear optimal classification bound-
ary (shown as a dotted line in Fig. 1e). The overlap 
between the two Gaussian distributions can be modu-
lated by changing their common standard deviation (σ), 
which determines the maximum possible proportion 
correct (ideal performance level, or IPL, equal to 1 minus 
the Bayes error). IPL was set to 95% in Experiments 1, 

2, and 3 (σ = .150), 90% in Experiment 4 (σ = .188), 
and 99% in Experiment 5 (σ = .105).

Critically, this procedure defines a feature space that 
is fully rotatable (with a euclidean L2 norm), meaning 
that any direction through this space defines a poten-
tial shape feature—including some that might be some-
what verbalizable but many others that are not 
(Hockema et al., 2005; Op de Beeck et al., 2003). In 
contrast, feature spaces in most studies (if 2D at all) 
consist of two separable features (e.g., size and bright-
ness) with only the two cardinal axes as potential fea-
tures, implying an L1 (city block) norm. It is well 
established that diagonal dimensions that combine 
cardinal axes are more difficult to learn than axis-
aligned features (Ashby & Maddox, 2011). But in the 
spaces used here, no direction is any more cardinal 
than any other (and thus no space is any more diagonal 
than any other), and moreover, the orientation of the 
subspace is randomized for each subject. Hence, in the 
experiments below, exactly which features are informa-
tive depends only on the category structure chosen. 
This procedure makes it possible to cleanly assess the 
informativeness of shape dimensions purely as a func-
tion of the category learned, without confounding from 
the subjects’ prior experience.

Method

Subjects

Subjects were adult members of the undergraduate 
community (Ns = 20, 22, 21, 21, and 21 in Experiments 
1–5, respectively), recruited from introductory psychol-
ogy classes and naive to the goals of the experiment.

Discrimination task

Perceptual discrimination was assessed at selected fea-
tures of interest (FOIs) before and after the categoriza-
tion task. Each FOI is defined as a point x = (x, y) and 
direction v = (u, v) in the shape space; five or six such 
features were evaluated in each experiment (for details, 
see Fig. 2 and also Table S1 in the Supplemental Mate-
rial available online). Discrimination was measured by 
presenting pairs of shapes (size = ~4° of visual angle; 
white on a dark background) one at a time for 0.25 s 
each, separated by an interstimulus interval of 0.5 s and 
spatially offset by about 10° of visual angle. Subjects 
were asked to indicate whether the shapes were the 
same or different. Each pair of shapes was located at 
the desired location in feature space plus or minus a 
variable discrepancy in the given vector direction, 
x v± λ / 2. The featural difference λ  was then adaptively 
reduced on successive trials by the psi method ( Kingdom 
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& Prins, 2010) until the shapes could no longer be dis-
tinguished, resulting in an estimate of the threshold of 
distinguishability at each FOI. Staircases were randomly 
interleaved. Threshold estimates stabilized in about 15 
min (about 50–100 trials per feature). Subjects per-
formed the discrimination task before and after the cat-
egorization task, providing pretraining and posttraining 
estimates of discrimination threshold at each FOI. The 

main dependent measure is the difference in thresholds 
(pretraining – posttraining) at each FOI, Δthreshold.

Categorization task

Stimulus shapes (size = ~4° of visual angle) were drawn 
randomly with equal probability from either the A cat-
egory (a circular bivariate Gaussian centered at x = .25, 
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Fig. 1. Procedure for creating a novel, randomized perceptual space in which categorization occurs. Shapes are defined (a) by four radial 
Fourier components (only three are depicted). Next, a random plane (b) through this four-dimensional space is chosen. In this plane, a 
random origin and two orthogonal-basis vectors are chosen (c), resulting in a 2D shape space through which any direction is a potential 
shape feature. In this space, A and B categories (d) are each circular bivariate Gaussian distributions, respectively centered at (.25, .5) and 
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y = .5 of the unit square; see Fig. 2) or the B category 
(also a circular bivariate Gaussian, centered at x = .75, 
y = .5). The two-Gaussian category structure defines a 
maximally informative dimension, depicted as horizon-
tal in figures. Stimulus shapes moved downward from 

the top of the screen at about 8° of visual angle per 
second over a starry field and were visible for maximum 
of 2.5 s or until response. (The motion was intended to 
draw subjects’ attention to the stimulus; Franconeri & 
Simons, 2003.) The instructions framed the task as a 
space-based video game (see sample screen in Fig. 1f) 
in which subjects had to use keyboard buttons to fire at 
hostile ships (category A) or to welcome friendly ships 
(category B); they received feedback after each response 
in the form of a happy face (correct classification) or 
frown (incorrect classification). Each subject completed 
300 trials, a number that a pilot study suggested would 
be sufficient to induce measurable categorical- perception 
effects. The categorization task took about 20 min.

Design

Experiments 1, 2, and 3 all used the same two-Gaussian 
category structure (95% IPL), differing only in the 
choice of FOIs (Fig. 2). FOIs were chosen so as to 
broadly survey the space, including a broad range of 
mutual-information levels (see below), and also to tar-
get several specific comparisons. Experiment 1 (Fig. 2a) 
tested six FOIs, including three at the intercategory 
midpoint (αs = 0°, 45°, and 90° relative to the maximally 
informative dimension) and three at the center of cat-
egory A (at the same three orientations). This compari-
son is potentially interesting because some researchers 
(e.g., Folstein et  al., 2010) have suggested that mere 
exposure to stimuli rather than category training per se 
is sufficient to induce categorical perception; stimuli 
near a category center are more frequent but less diag-
nostic than those between categories. Experiment 2 
(Fig. 2b) also used six FOIs, three at the midpoint (αs = 
0°, 45°, and 90°) and three at a point elsewhere on the 
optimal classification bound (αs = 0°, 45°, and 90°). 
Comparing features on and off the main axis is interest-
ing because most studies use a one-dimensional space, 
so all comparisons are necessarily on axis. Experiments 
3, 4, and 5 investigated the effect of α more finely, using 
five features at the intercategory midpoint ranging from 
maximally to minimally informative in equal angular 
steps (αs = 0°, 22.5°, 45°, 67.5°, and 90°). Experiment 
3 used the same category structure as Experiments 1 
and 2 (95% IPL), whereas Experiment 4 used a softer 
category boundary (IPL = 90%) and Experiment 5 a 
sharper one (IPL = 99%). The manipulation of IPL does 
not change the optimal classification boundary, but (as 
discussed below) it does change the quantity of infor-
mation available at the FOIs, allowing a more fine-
grained evaluation of categorical perception as 
informativeness is varied. Table S1 provides a complete 
list of the FOIs used in all five experiments.
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Fig. 2. Category structure and features of interest (FOIs) at which 
discrimination was evaluated in (a) Experiment 1, (b) Experiment 2, 
and (c) Experiments 3, 4, and 5. Green and red circles indicate A and 
B categories, respectively (each is a bivariate Gaussian distribution 
indicated by a circle of radius σ). Each FOI is a point and direction 
in the 2D perceptual space.
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Results

Categorization task

Performance on the categorization task was highly vari-
able, and average performance was far below the theo-
retical limit (IPL), presumably reflecting the extremely 
unfamiliar and nonverbalizable shape features over 
which categories were defined. Mean performance in 
Experiments 1 through 5 was, respectively, 85% (SD = 
6%), 83% (SD = 6%), 80% (SD = 5%), 83% (SD = 7%), 
and 86% (SD = 7%). Results reported below include 
only subjects with overall performance over 70% (i.e., 
80 of 105 subjects [76%]). Setting the criterion to 50% 
includes 97 of 105 subjects (92%), which adds noise to 
the results but does not affect the main conclusions.

Notwithstanding the subjects’ uneven performance, 
their responses showed clear evidence of the sharpen-
ing of the category boundary over the course of learn-
ing associated with categorical perception. To quantify 
this, I fitted subjects’ responses in the categorization 
task to a one-dimensional Gaussian classifier of the form 
p A x N x N x N xA A B( | ) ( ; , ) / [ ( ; , ) ( ; , )]= +µ σ µ σ µ σ2 2 2 —that 

is, an ideal-observer classifier—with the single free 
parameter σ fitted by least squares to the data in each 
block of 50 trials for each subject. In this model, the 
parameter σ modulates the sharpness of the classifica-
tion boundary, with high values of σ indicating broad 
category distributions and a more gradual transition 
between categories and low values indicating nar-
rower category distributions and a more abrupt transi-
tion. Figure 3 shows plots of the progression of 
subjects’ mean estimated σs over the course of training 
in each experiment. In all of the plots, σs start high 
and progressively decrease (sharpen), gradually 
approaching their respective target values (i.e., those 
from which the stimuli were actually generated). The 
change from broader to narrower σs from the first 
block of the experiment to the last was statistically 
substantial (Bayes factor [BF] > 3) in all five experi-
ments. In these plots, the classification curve is 
approximately linear in the first block—meaning that 
the classification probability changes in approximately 
equal increments with each step through the feature 
space, that is, completely noncategorically. By the last 
block, the fitted values of σ are such that the classifi-
cation is a relatively sharp step near the boundary, in 
the classical pattern associated with categorical per-
ception. Note, though, that as σs seem to be reaching 
asymptote near their “true” values (i.e., the values used 
to generate the stimuli), this increasingly categorical per-
formance simply seems to reflect approximately optimal 
category learning.

Discrimination task

Discrimination improved substantially (BF10 > 3) from 
before to after training in all 20 of the FOIs at which α 
was less than 90° (and thus the feature was not diag-
nostic at all) but not in the other seven FOIs (BF10 < 
3). That is, subjects became more sensitive to those 
features—and only those features—that were predictive 
of category membership. The subjects demonstrated 
acquired distinctiveness after only about 20 min of cat-
egory training, in contrast to thousands of trials of train-
ing in many studies. This unusually rapid induction of 
acquired distinctiveness presumably reflects the novel 
feature space, whose unusual initial difficulty allowed 
subjects to improve rapidly with training. The finding 
of acquired distinctiveness with integral shape dimen-
sions contrasts with the findings of Op de Beeck et 
al. (2003; though see Hockema et al., 2005). Overall 
thresholds decreased from a mean of 0.35 (SD = 
0.007) to 0.26 (SD = 0.009) after training (recall that 
the category means were separated by 0.5 of the unit 
square). The magnitude of discrimination improvement 
(Δthreshold) was not correlated with performance on 
the categorization task (R2 = .00084, BF10 = 0.09). The 
manipulated position factors had relatively small effects 
in individual experiments (Fig. 4). However, a clear 
pattern emerges when the results of all five experiments 
are combined, as follows.

The main analysis is the magnitude of improvement 
in discrimination (Δthreshold) as a function of the 
mutual information MI(C, f ) = H(C) – H(C|f ) between 
the category variable C (A or B) and a given FOI f. 
H C p A p A p B p B( ) ( ) ( ) ( ) ( )= − −log log2 2  is the prior 
uncertainty about the category, which in the experi-
ments is always 1 bit because the two categories are 
equally likely. H(C|f ) = -p(f )log2(A|f ) - p(f )log2(B|f ) -  
p f A f p f B f( ) ( | ) ( ) ( | )¬ ¬ − ¬ ¬log log2 2  is the conditional 
uncertainty about the category once the feature is 
known. Intuitively, each feature f can be thought of as 
a binary division of the perceptual space into two 
halves (Fig. 5a); MI(C, f ) measures how much informa-
tion an observer gains about C (i.e., which category a 
given stimulus belongs to) from learning which half of 
f it falls in.

In this sense, mutual information quantifies the diag-
nosticity of a given stimulus property with respect to 
the shape’s category membership. Mutual information 
is maximal for horizontal (α = 0°) features lying on the 
classification boundary, but its value there is affected 
by the sharpness of the boundary, modulated in the 
experiments by the IPL. For example, the mutual infor-
mation for such features in Experiments 1, 2, and 3 
(95% IPL) is .71 bits, in Experiment 4 (90% IPL) .53 bits, 



1304 Feldman

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Target σ 

Es
tim

at
ed

 σ

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

Exp. 4, IPL = 90%

0.25 0.75 10.50

0.25 0.75 10.50

0.25 0.75 10.50

0.25 0.75 10.50

0.25 0.75 10.50

0.25 0.75 10.50

0.25 0.75 10.50

0.25 0.75 10.50

0.25 0.75 10.50

0.25 0.75 10.50

0.25 0.75 10.50

0.25 0.75 10.50

0.25 0.75 10.50

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Target σ
Exp. 1
Exp. 2
Exp. 3

Trial Number (Blocks of 50)

Trial Number (Blocks of 50)

Es
tim

at
ed

 σ

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

Exps. 1−3, IPL = 95%
a

b

1−50 51−100 101−150 251−300201−250151−200

1−50 51−100 101−150 251−300201−250151−200

0.25 0.75 10.50

Fig. 3. (continued on next page)



Mutual Information and Categorical Perception 1305

and in Experiment 5 (99% IPL) .92 bits. Features per-
pendicular to the classification boundary (α = 90°) have 
a mutual-information value of 0; they are completely 
uninformative. Between these extremes, mutual infor-
mation depends in a more complex way on both the 
feature’s position and orientation.

Figure 6 shows Δthreshold as a function of mutual 
information for all 27 FOIs aggregated across Experi-
ments 1 through 5 (with different colors and symbols 
for each experiment). The plot shows a clear linear 
relationship: The magnitude of acquired distinctiveness 
(Δthreshold) rises with mutual information (R2 = .5663, 
BF10 = 3,697). The linear relationship between mutual 
information and Δthreshold in Experiments 1 through 
5 was, respectively, R2s = .48, .71, .89, .006, and .94, 
suggesting that the effect is robust and replicable. As 
discussed above, previous studies have found that 
acquired distinctiveness is larger in category-relevant 
features than in category-irrelevant ones. The current 
results show that, as Bates and Jacobs (2020) suggested, 

the degree of acquired distinctiveness of each feature 
is proportional to its informativeness, as measured by 
the magnitude of mutual information it shares with the 
category variable.

The changes to discrimination performance observed 
were all positive, indicating acquired distinctiveness 
rather than acquired equivalence. The regression inter-
cept of 0.0550 gives the magnitude of acquired distinc-
tiveness at a mutual-information value of 0—that is, an 
overall practice effect. On the basis of information-
theoretic constraints, Bates et al. (Bates et  al., 2019; 
Bates & Jacobs, 2020) have argued that if channel 
capacity is fixed, then improvements to representational 
precision in some dimensions need to be offset by 
degradations in others. No such effect is apparent in 
the current data, as all discrimination changes were in 
the same direction. It is possible that such trade-offs 
may have been swamped by an overall practice effect, 
meaning that the total channel capacity allocated to 
featural representation may have increased over the 
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course of training. Unfortunately, the current data do 
not allow this issue to be addressed more decisively.

Given the particular categories and features used in 
these experiments, most of the variation in mutual 
information (about 85%) is due to α, whereas the rest 
is due to feature position and IPL. Hence, it is fair to 

wonder whether the effect of mutual information on 
acquired distinctiveness might in fact be entirely due to 
α rather than to mutual information per se. However, a 
regression of Δthreshold onto α alone is less predictive 
than mutual information (R2 = .4257 vs. R2 = .5663 for 
mutual information); the difference in fits is statistically 
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substantial (BF10 = 44.4). Moreover, a Bayesian analysis 
of variance on the entire data set favors (maximum 
posterior) the additive model that includes all three 
factors (α, feature position, and IPL) over any subset 

model (BF10 = 11.820). Thus, the effect of mutual infor-
mation appears to depend on all three component fac-
tors and in particular is not attributable to α alone, 
although the contribution of feature position and IPL 
is relatively subtle and should be more comprehen-
sively explored in future experiments.

As mentioned, several other definitions of informa-
tiveness have been proposed, including the L2 norm 
between the posterior distributions (Lake et al., 2009) 
and the (squared) derivative of the posterior, which 
reflects the sharpness of the category boundary ( Clayards 
et al., 2008). The squared posterior derivative is related 
to the mutual information and Fisher information and 
plays an important role in the theoretical literature on 
neural population coding (Bonnasse-Gahot & Nadal, 
2008; Pouget & Zemel, 2007). However, in the current 
data, the L2 norm predicts Δthreshold less well than 
does mutual information (R2 = .45, worse than the fit 
for mutual information by BF10 = 24.3), as does the 
squared posterior derivative (R2 = .25, worse than the 
fit for mutual information by BF10 = 1,626). Hence, in 
addition to mutual information’s more natural axiomatic 
derivation as a measure of the information conveyed 
by one variable about another, mutual information gives 
a better fit to the human data.

Discussion

Several studies have found that feature discrimination 
tends to improve more for features that are informative 
about learned categories than for those that are not (e.g., 
Bates et al., 2019; Folstein et al., 2013, 2014; Goldstone 
& Steyvers, 2001). The results of Experiments 1 through 
5 show that informativeness can be quantified by mutual 
information: The more information a feature conveys 
about the category, in a classical Shannon sense, the 
more subjects (on average) tend to gain in sensitivity for 
that feature. This improvement in discrimination 
(acquired distinctiveness) is directly attributable to cat-
egory training and is associated with the progressive 
development of sharper category boundaries over the 
course of training (categorical perception). The effect is 
better predicted by mutual information than it is by other 
measures of informativeness, such as the posterior slope, 
the posterior L2 norm, or the orientation of the feature 
with respect to the maximally informative dimension. 
Overall, these results corroborate the role of information 
theory in quantifying how the brain allocates represen-
tational resources (Balsam et  al., 2006; Nelson et  al., 
2010; Sims, 2018), and they suggest that such allocation 
is rationally tuned to the category structure of the world 
(Bates & Jacobs, 2020; Feldman et al., 2009; Lake et al., 
2009; Maye et al., 2002; Soto & Ashby, 2015).

Feature f 
True

False

a

b

Fig. 5. Calculation of mutual information. As shown in (a), the 
mutual information MI(C, f ) is the reduction in uncertainty about C 
conveyed by the binary feature f (which side of the dotted boundary 
does the stimulus fall on?—indicated by green shading) about the 
category C (which category does it belong to?). Panel (b) shows a 
map of MI as induced by the category structure used in Experiments 
1 to 3, indicating the magnitude and direction of maximum MI at each 
point in the space. As in prior figures, each category is depicted by 
a dot at its mean and a circle of radius σ.
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One notable consequence of these results is to deem-
phasize the division between features that cross cate-
gory boundaries and those that do not, which is often 
highlighted in definitions of categorical perception. In 
the mutual-information account, features that cross the 
category boundary are the most informative but are not 
qualitatively different from other features in the space 
that convey information about the category, albeit to 
lesser degrees. This observation helps explain a variety 
of previous results, such as those of Goldstone (1994), 
who found that discrimination improvement was not 
limited to the category boundary but was distributed 
throughout the space in a somewhat complex pattern. 
Note that this pattern is not consistent with traditional 
attention-weighting models (e.g., Kruschke, 1992) that 
elevate or attenuate entire perceptual dimensions rather 
than specific feature values. As mentioned, this pattern 
cannot be clearly established using a hard category 
boundary, where boundary-crossing features are the 
only informative ones, nor in a one-dimensional per-
ceptual space, where all features lie along the (sole) 
informative dimension. The clear relationship between 
mutual information and acquired distinctiveness 
becomes apparent only with statistically defined cate-
gory structure over at least two dimensions.

Dieciuc et al. (2017) have suggested that some fea-
ture learning can be explained by relatively short-term 
reallocation of attention. The current experiments can-
not address the time course of the observed changes 
to perceptual discrimination, because discrimination 

was tested only in the immediate aftermath of category 
training. Note, however, that allocation of spatial atten-
tion cannot explain these results, because the shape 
features tested were all global aspects of each stimulus 
shape and could not be localized to any one location 
within it. The results might, however, reflect the real-
location of feature-based attention (Maunsell & Treue, 
2006). But note that these shape features represented 
novel, complex combinations of shape contour features 
and thus could not be evaluated simply by reallocating 
resources within an existing feature space. Hence, 
although these data do not directly address the role of 
attention, it seems difficult to explain the observed 
improvements in discrimination by reallocation of 
feature- based attention alone. Future experiments eval-
uating the durability of these discrimination changes 
would be very valuable.

Conclusion

The results reported here suggest that feature learning 
is rationally tuned to the statistical structure of the 
environment (Bates & Jacobs, 2020; Feldman et  al., 
2009; Lake et al., 2009; Maye et al., 2002; Soto & Ashby, 
2015) and support a principled information-theoretic 
quantification of the way representational resources are 
allocated. More specifically, the new finding supports 
previous arguments (Harnad, 1993; Schyns et al., 1998) 
that categorical perception reflects the process by 
which the brain constructs a vocabulary of features 
suitable for representing the world.

Important questions for future studies include how 
to apply the mutual-information measure to unsuper-
vised categorization, in which the category variable C 
is not directly available to the subject. In unsupervised 
learning, which is ubiquitous in everyday cognition, 
mutual information might be computed between fea-
tures and an estimated latent category variable (Lake 
et al., 2015). Another important question is whether the 
relationship between acquired distinctiveness and 
mutual information extends to more complex concep-
tual structures, such as multimodal categories (Briscoe 
& Feldman, 2011), in which the mutual-information 
map can become much more complex.
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