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Women and men differ, on average, in many ways. 
Obvious physical differences in measures such as height 
and strength are generally accepted to have a biological 
and evolutionary basis. But the basis of average differ-
ences in male and female behavior—for example, spe-
cific cognitive abilities (Gur & Gur, 2016) and personality 
traits (Archer, 2019)—is not well understood and is sub-
ject to controversy. On one hand, there is little doubt 
that historically and culturally ingrained social expecta-
tions and gender roles contribute to observed sex dif-
ferences in behavior. On the other hand, there is strong 
resistance in some quarters to the idea that evolved 

predispositions—stemming from different selection 
pressures on our female and male ancestors—may also 
contribute to the observed behavioral sex differences 
(Eagly & Wood, 2013). Indeed, because many behavioral 
sex differences appear to fit with predictions from both 
evolutionary biology and social role theory, it is difficult 
to determine whether behavioral sex differences reflect 
evolved dispositions at all.
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Abstract
On average, men and women differ in brain structure and behavior, raising the possibility of a link between sex 
differences in brain and behavior. But women and men are also subject to different societal and cultural norms. We 
navigated this challenge by investigating variability of sex-differentiated brain structure within each sex. Using data 
from the Queensland Twin IMaging study (n = 1,040) and Human Connectome Project (n = 1,113), we obtained data-
driven measures of individual differences along a male–female dimension for brain and behavior based on average 
sex differences in brain structure and behavior, respectively. We found a weak association between these brain and 
behavioral differences, driven by brain size. These brain and behavioral differences were moderately heritable. Our 
findings suggest that behavioral sex differences are, to some extent, related to sex differences in brain structure but 
that this is mainly driven by differences in brain size, and causality should be interpreted cautiously.
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One clue is the observation of structural differences, 
on average, between female and male brains. In adult-
hood, male brains are, on average, 10% to 15% larger 
than female brains (Ruigrok et al., 2014) and remain 
larger even after body height is adjusted for (Ritchie 
et  al., 2018). Also, several regional sex differences 
remain after adjusting for overall brain size: For 
instance, the largest single-sample study to date (N = 
5,216; Ritchie et al., 2018) showed that after brain size 
was adjusted for, female UK Biobank participants had 
smaller volumes than male participants in the amygdala, 
pallidum, and putamen, whereas male participants had 
smaller volumes in the nucleus accumbens. A recent 
large voxel-wise study (N = 2,838; Lotze et al., 2019) 
also found sex differences in subcortical and cortical 
gray matter in adults. Other studies (Bruner et al., 2012; 
Kim et al., 2012) have reported sex differences in the 
shape of regional brain structures. Moreover, several 
studies have succeeded in predicting an individual’s 
biological sex on the basis of brain structure differ-
ences, showing an accuracy between 69% and 93% 
(Anderson et  al., 2019; Chekroud et  al., 2016;  
Del Giudice et al., 2016; Joel et al., 2018; Tunç et al., 2016; 
Xin et  al., 2019), even after correction for height  
(Chekroud et al., 2016) or brain size (gray-matter volume; 
Anderson et al., 2019)—despite the substantial overlap 
on brain-structure measures between men and women 
(Ritchie et al., 2018). However, although these studies 
adjusted for global brain size, the findings may still be 
driven by differences in brain size because brain regions 
scale differently with brain size (de Jong et al., 2017).

Importantly, the well-established existence of sex 
differences in brain structure does not necessarily mean 
that these differences relate to behavioral sex differ-
ences. Indeed, some researchers have proposed that 
sex differences in brain structure may instead promote 
similarity in women’s and men’s behavior by compen-
sating for scaling differences due to the sex difference 
in body and brain size (De Vries, 2004). A key obstacle 
to examining the association between sex differences 
in brain structure and behavior is that men and women, 
as well as having brains that differ on average, are also, 
on average, subject to different societal and cultural 
norms and expectations that might lead to behavioral 
sex differences. One way to eliminate sex-differentiated 
socialization as a confound is to examine brain differ-
ences among individuals of the same sex. Individuals 
vary in genetic predispositions as well as exposure and 
sensitivity to gonadal hormones: Some men will develop 
a more female-like brain, whereas other men an exag-
geratedly male-like brain (and conversely, for women).

Such an approach has recently been applied suc-
cessfully by predicting sex on the basis of differences 
in the structural connectome, that is, how the brain is 

wired. Using a large imaging data set of the Philadel-
phia Neurodevelopmental Cohort (N = 900), Tunç et al. 
(2016) found a weak but significant association between 
sex predictor scores based on the structural connec-
tome and those based on motor and cognitive test per-
formance. Using the same data set, Phillips et al. (2019) 
constructed a sex-differentiation score from several 
other brain-structure measures—surface area, volume, 
thickness, and diffusion—that correlated in the expected 
direction with externalizing symptoms within males but 
not within females; predicted correlations with internal-
izing symptoms were not significant in either sex.  
However, the question remains whether such an asso-
ciation between brain and behavioral sex predictor 
scores exists after we control for brain size on a regional 
level—that is, to take into account that different brain 
regions scale differently with brain size.

In this study, we obtained a measure of brain dif-
ferences along a male–female dimension based on 
sex differences in brain shape and structure while 
adjusting for brain size on a regional level. Next, we 
derived a composite measure of behavioral differ-
ences along a male–female dimension from sex dif-
ferences in behavior and tested whether individual 
differences along a male–female dimension for brain 
and behavior were correlated (within sex). Lastly, we 
used the classical twin design to estimate the extent 
to which these individual differences in brain and 
behavior can be explained by genetic and environ-
mental influences.

Statement of Relevance 

Women and men differ, on average, in brain struc-
ture and in behavior. A long-standing question is 
the extent to which these sex differences are 
related. The question is difficult to address because 
men and women are subject to different societal 
and cultural norms. We navigated this challenge 
in the present research by examining individual 
differences in brain structure along the male–
female dimension separately for each gender 
group. We then determined whether the differ-
ences were associated with physical and behav-
ioral measures such as endurance, body mass 
index, cognition, and personality traits. We found 
that brain differences on the male–female dimen-
sion were weakly associated with behavior, but 
this association was driven by differences in brain 
size. Importantly, the associations were small, sug-
gesting that brain structure is only one of many 
factors explaining behavioral sex differences.



Are Brain Sex Differences Linked to Behavior?	 1185

Method

Participants

We analyzed two large independent imaging data sets 
to obtain a measure of brain differences along a male–
female dimension and to test the relationship between 
individual differences along a male–female dimension 
for brain and behavior. Both data sets were drawn from 
the general population. The first consisted of 1,040 
individuals from 616 families as part of the Queensland 
Twin IMaging (QTIM) study (64.81% female; age: M = 
22.42 years, SD = 3.33, range = 15–30 years), including 
157 identical (monozygotic [MZ]) twin pairs, 261 non-
identical (dizygotic [DZ]) twin pairs, and their siblings. 
Behavioral measures were collected as part of the 
Brisbane Longitudinal Twin Study (Gillespie et  al., 
2013), also known as the Brisbane Adolescent Twin 
Study (Wright & Martin, 2004). In addition, a subsample 
of 40 individuals (55% female; age: M = 23.36 years, 
SD = 2.27) was scanned a second time within 3 months. 
Diffusion-tensor imaging scans were available for 460 
individuals (63.10% female; age: M = 22.20 years, SD = 
2.71, range = 16.85–29.16 years) after we excluded 36 
individuals, including 26 because of incidental find-
ings of potential clinical relevance and 10 because of 
poor scan quality. Individuals with developmental, 
neurological, or psychiatric disorders; impaired intel-
lectual functioning; or head trauma were excluded. 
Only right-handed twins were recruited in the study. 
All individuals gave written informed consent. Ethics 
approval for the study was given by the Human 
Research Ethics Committees of the QIMR Berghofer 
Medical Research Institute, University of Queensland, 
and UnitingCare Health.

The second data set was provided as part of the 
Human Connectome Project (HCP; Van Essen et  al., 
2012) and comprised 1,113 (left- and right-handed) 
individuals (54.40% female; age: M = 28.80 years, SD = 
3.70, range = 22–37 years) from 428 families, including 
129 MZ twin pairs, 72 DZ twin pairs, and their siblings. 
In addition, 46 individuals were scanned a second time 
(68.89% female; age: M = 30.29 years, SD = 3.34). Dif-
fusion-tensor imaging scans were available for 972 
individuals (53.60% female; age: M = 28.73 years, SD = 
3.70, range = 22–37 years). Test-retest diffusion scans 
were available for 41 individuals (70.73% female; age: 
M = 30.46 years, SD = 3.15). Individuals with severe 
neurodevelopmental disorders, documented neuropsy-
chiatric disorders, neurologic disorders, diabetes, or 
high blood pressure or those born prematurely were 
excluded. All individuals gave written informed con-
sent. Ethics approval was given by the institutional 
review board.

Image acquisition

For the QTIM data set, structural MRI scans were 
obtained on a 4-tesla scanner (Siemens Bruker) that 
acquired a 3D structural T1-weighted image (longitudi-
nal relaxation time [T1] = 700 ms, repetition time [TR] = 
1,500 ms, echo time [TE] = 3.35 ms, flip angle = 8°, voxel 
size = 0.9375 × 0.9375 × 0.9 mm3); 81% had a coronal 
acquisition, and 19% had a sagittal acquisition. The test-
retest sample included only participants scanned with 
a coronal acquisition on both occasions. Diffusion-
weighted images were also collected (TR = 6,090 ms, 
TE = 91.7 ms, number of slices = 55, voxel size = 1.79 ×  
1.79 × 2 mm3, 94 directions with b = 1,159 s/mm2 and 
11 b = 0 images).

For the HCP data set, structural MRI scans were 
obtained on a 3-tesla scanner (Siemens Connectome 
Skyra) that acquiring a 3D structural T1-weighted image 
(T1 = 1,000 ms, TR = 2,400 ms, TE = 2.14 ms, flip angle = 
8°, slice thickness = 0.7 mm, voxel size = 0.70 × 0.70 × 
0.70 mm3). Diffusion-weighted images were also col-
lected (TR = 5,520 ms, TE = 89.5 ms, number of slices = 
111, voxel size = 1.25 × 1.25 × 1.25 mm3, 90 directions 
with b = 1,000/2,000/3,000 s/mm2 and six b = 0 images).

Image preprocessing

All structural scans were preprocessed to remove signal 
inhomogeneity using the Statistical Parametric Mapping 
software package (Version 12; Friston et al., 1995) in 
MATLAB (Version R2018a; The MathWorks, Natick, MA). 
Scans were not registered to common template space 
to avoid distortions in the shape of the brain structures. 
Using the FMRIB Software Library (FSL; Jenkinson et al., 
2012), we corrected diffusion-weighted images for eddy 
current distortions, applied a brain mask, and registered 
the images to the structural scan. For more details, see 
Jahanshad et al. (2011) for the QTIM data set and 
Glasser et al. (2013) for the HCP data set.

Obtaining a measure of brain 
differences along a male–female 
dimension

Using two different approaches, we obtained a measure 
of individual differences along a male–female dimen-
sion based on sex differences in brain shape (using the 
landmark approach) and structure (using the vertex-
wise approach).

The landmark approach: a measure derived from 
brain shape.  For the landmark approach, we developed 
and placed subcortical landmarks and placed existing cor-
tical landmarks (called dense individualized and common 
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connectivity-based cortical landmarks [DICCCOLs]; Zhu 
et al., 2013; Fig. 1). The initial landmark approach included 
landmarks placed in both subcortical and cortical regions 
using the T1-weighted scan only. Landmarks were placed 
on a mask on the standard template (MNI152 1 mm) in 
FSL’s FSLVIEW (Jenkinson et  al., 2012) to serve as an 
example for automatic placement. Automatic placement to 
each individual scan was done using SPM’s “normalize” 
function. While visually inspecting the landmarks, we 
found that the placement of landmarks in cortical regions 
showed too much error using the method described above, 
so all cortical landmarks were excluded.

This process resulted in 467 subcortical landmarks 
per hemisphere (934 in total) placed in seven subcorti-
cal regions: amygdala, caudate nucleus, hippocampus, 
lateral ventricle, pallidum, putamen, and thalamus (see 
Fig. S1 in the Supplemental Material available online). 
We visually inspected the placement of the 934 land-
marks for 10 individuals each to confirm the accuracy 
of the placement method. Next, the 3D coordinates of 
the landmarks were extracted for each landmark. On a 
rare occasion, landmarks were not transformed to 
native space, which led to missing data. Missing data 
(0.035% of the data points) were imputed with the 
estimate-missing function (thin-plate spline setting) in 
the statistics package geomorph (Version 3; Adams & 
Otarola-Castillo, 2013) run in the R programming envi-
ronment (Version 3.4.4; R Core Team, 2018).

In addition, we included 358 existing cortical land-
marks (DICCCOLs) based on diffusion-weighted images 
(Zhu et al., 2013). These data-driven cortical landmarks 
are placed by using consistent white-matter fiber-
connection patterns derived from diffusion-tensor imag-
ing data. Fibers were extracted using the software 
package medINRIA (Version 1.9.0; Toussaint et al., 2007) 
for the QTIM data set (Zhu et al. 2015) and MRtrix (Ver-
sion 3; Tournier et al., 2019) for the HCP data set, using 
a fractional anisotropy (FA) threshold of 0.2 and a mini-
mum length of 20. We then placed the cortical landmarks 
by using the DICCCOL toolbox (Version 0.1; Zhu et al., 
2013; see https://www.nitrc.org/projects/dicccol_0_1), and 
we extracted the 3D coordinates for each landmark.

Then, we brought the landmark coordinates from 
each individual into standard space by applying a gen-
eralized Procrustes analysis, which removes variation 
in size, position, orientation, and rotation of the brains 
(see Fig. S2 in the Supplemental Material). During this 
process, a principal component analysis was also per-
formed (Fig. 1), rotating the data into uncorrelated com-
ponents, using the R statistics package shapes (Version 
1.2.3; Dryden, 2016). We ran this analysis separately for 
the cortical and subcortical landmarks because the cor-
tical landmarks were extracted from diffusion space, 
whereas the subcortical landmarks were extracted in 
native (individual) T1 space. These analyses were 

performed while scaling for brain size in the Procrustes 
analysis to obtain a measure of brain shape indepen-
dent of brain size.

Next, the first 52 principal components with an eigen-
value larger than or equal to one from both Procrustes 
analyses were used as predictors for the variable sex. 
We used the MASS package (Version 7.3; Venables & 
Ripley, 2002) in the R programming environment (Ver-
sion 3.4.4; R Core Team, 2018) to perform a linear dis-
criminant analysis (LDA; Fig. 1), which gives a linear 
combination of the shape variables that best discrimi-
nates men from women and assigns each individual a 
score reflecting the position of their brain shape along 
this male–female dimension.

The vertex-wise approach: a measure derived from 
brain structure.  For the QTIM data set, the program 
FreeSurfer (Version 5.3; Fischl, 2012) was used to seg-
ment the brain from the structural T1-weighted scan and 
to extract the vertex-wise measures for thickness and sur-
face area (Fig. 1). For the HCP data set, the processed 
images were downloaded. This segmentation also yielded 
a measure of brain size (i.e., brain-segmentation volume 
[BSV]), which includes gray and white matter and cere-
brospinal fluid (see https://surfer.nmr.mgh.harvard.edu/
fswiki/MorphometryStats). For processing in FreeSurfer, 
all individuals’ brain images were transformed to the 
FreeSurfer template. Then, the ENIGMA Shape pipeline 
(for details, see http://enigma.ini.usc.edu/ongoing/enigma- 
shape-analysis/) was run to extract vertex-wise measures 
for deep gray-matter volume as well (Fig. 1). For both 
the FreeSurfer and shape segmentation, we performed  
a detailed postprocessing quality check in line with pro-
cedures used by the ENIGMA consortium (see http://
enigma.ini.usc.edu/protocols/imaging-protocols/). Next, 
FreeSurfer’s cortical and subcortical vertex-wise mea-
sures were included to predict sex to obtain a measure of 
brain differences along a male–female dimension derived 
from brain structure (Fig. 1).

Using the software package OSCA (a tool for omic-
data-based complex trait analysis; Zhang et al., 2019; 
see http://cnsgenomics.com/software/osca/#Overview), 
we predicted the participants’ sex using best linear unbi-
ased prediction (BLUP) scores, which allow handling 
the large number of vertex-wise measurements. BLUP 
scores are powerful and efficient predictors that do not 
require hyperparameter estimation (Robinson, 1991), 
unlike other machine-learning algorithms (e.g., support 
vector machine or penalized regression). In practice, 
BLUP scores constrain the weights given to the vertices 
to follow a normal distribution (Robinson, 1991). To 
improve prediction accuracy, we trained our BLUP 
scores on the first 9,888 participants of the UK Biobank 
who underwent MRI (Miller et al., 2016) and had usable 
cortical and subcortical data from processed T1-weighted 

https://www.nitrc.org/projects/dicccol_0_1
https://surfer.nmr.mgh.harvard.edu/fswiki/MorphometryStats
https://surfer.nmr.mgh.harvard.edu/fswiki/MorphometryStats
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and T2-FLAIR MRI images (Couvy-Duchesne et  al., 
2020). The UK Biobank participants were between the 
ages of 44.6 and 79.6 years (age: M = 62.60 years, SD = 
7.5), and 52.40% of the sample was female (Couvy-
Duchesne et al., 2020).

For the vertex-wise measure, we included three dif-
ferent approaches to obtain a measure of brain differ-
ences along a male–female dimension. Most importantly, 
because brain regions scale differently with brain size, 
we used an allometric scaling approach, adjusting the 
vertex-wise measures for brain size on a regional (ver-
tex-by-vertex) level. For this, we applied a log-log 
regression—regressing out brain size (BSV) for each 
vertex by using the logs for brain size and the respec-
tive vertex and using the residuals of the vertices in the 
next analyses. For comparison, we regressed out brain 
size from the uncorrected prediction scores (instead of 
for each vertex as in the allometric approach). As 
another alternative, we regressed out only brain-size 
differences associated with sex from the vertex-wise 
measures before predicting sex to ensure that sex dif-
ferences in brain size were not driving prediction 
accuracy.

Obtaining a measure of behavioral 
differences along a male–female 
dimension

Using a process similar to the one employed to derive 
our brain measures, we derived a measure of individual 
differences in behavior along a male–female dimension 
by using the behavioral variables to predict sex in an 
LDA. Behavioral data comprised a variety of measures 
including physical measures (e.g., body mass index, 
blood pressure), measures of intelligence (e.g., total, 
verbal, and performance intelligence), neurocognitive 
subtests (e.g., vocabulary, working memory, and visuo-
spatial skills), and other measures (e.g., personality 
traits, anxiety, and depression symptoms).

Unlike the brain-imaging data, the behavioral vari-
ables were different in the QTIM and HCP samples (see 
Table S4 in the Supplemental Material); therefore, we 
divided each sample and trained the prediction in one 
half before predicting in the other half. For this, we 
used the MASS package in R (Version 3.4.4; R Core 
Team, 2018). Note that this approach excluded data for 
several behavioral measures and individuals to deal 
with missing values: We removed behavioral variables 
with scores for less than 75% of the individuals, result-
ing in 12 of 27 variables for QTIM and 26 of 26 mea-
sures for HCP retained in the prediction. Participants 
with missing values on one of the behavioral variables 
could not receive a prediction score (QTIM = 324, 
HCP = 69), resulting in the inclusion of 1,760 of the 
2,153 individuals in the analyses.

Genetic analyses

For our genetic analysis, up to two siblings per family 
were included, and half siblings were excluded. We 
used a saturated univariate ACE model in the R package 
OpenMx (Boker et al., 2011) to examine how much of 
the variation in brain size, as well as the individual 
differences along a male–female dimension for brain 
and behavior, could be explained by genetic effects 
(A), common environmental effects (C), and residual 
effects including idiosyncratic environmental factors 
and measurement error (E), adjusting for sex and age. 
This model relies on the principle that MZ twins are 
genetically identical, whereas DZ twins share on aver-
age half of their segregating genes. Nontwin siblings 
were added to the classical twin design to improve 
statistical power.

We also tested the assumptions for twin modeling. 
These include (a) testing a mean and variance differ-
ence between the first twin and second twin, (b) testing 
a mean and variance difference between MZ and DZ 
(same-sex) twin pairs within women and within men, 

Fig. 1.  The different stages of obtaining a measure of brain differences along a male–female dimension, derived from the 
landmark and vertex-wise approaches. Brain size was used as a crude proxy for comparison. The landmark approach included 
landmarks placed in subcortical regions and dense individualized and common connectivity-based landmarks (DICCCOLs; see 
Ou et al., 2015) placed in cortical regions. Landmark coordinates from each individual were brought into standard space by 
applying a generalized Procrustes analysis, which removes variation in position, orientation, rotation, and brain size. During 
this process, a principal component (PC) analysis was also performed, which yields uncorrelated brain-shape variables. The 
vertex-wise approach included cortical and subcortical vertex-wise measures, derived from FreeSurfer (Fischl, 2012) and the 
ENIGMA Shape pipeline (see http://enigma.ini.usc.edu/ongoing/enigma-shape-analysis/), respectively. For each approach, the 
corresponding measures (landmarks/vertex-wise measures) were used in the model to predict an individual’s biological sex, 
using either a linear discriminant analysis or a best linear unbiased prediction, respectively, resulting in a linear combination of 
shape (or vertex-wise) variables that best discriminates males from females in the training sample. The same linear combina-
tion (i.e., algorithm) was then applied to predict sex in an independent sample, which assigned each individual a prediction 
score reflecting the position of their brain shape along this male–female dimension. As well as training the algorithm on the 
Queensland Twin IMaging (QTIM) sample and then applying this algorithm to predict sex in the Human Connectome Project 
(HCP) sample, and vice versa, for the vertex-wise measures, we also trained the algorithm on the UK Biobank (UKB) sample and 
then applied this algorithm to predict sex in both the QTIM and HCP samples. The scatterplot shows the association between 
these prediction scores and brain-segmentation volume (i.e., brain size), separately for men and women. The ovals display the 
95% confidence ellipses for the corresponding means. CSF = cerebrospinal fluid.
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(c) testing a mean and variance difference between 
male MZ and DZ groups and female MZ and DZ groups, 
and (d) testing a mean and variance difference between 
women and men. We also examined whether we could 
identify sex limitation (which would indicate that the 
magnitude of the genetic effect differs between the 
sexes or that different genes in men and women affect 
the expression of the phenotype), while including sex 
and age as covariates in the model. All twin-modeling 
assumptions were met, and no significant sex limitation 
(i.e., different influences on men and women) was 
found (except for brain size, for which variances were 
greater in men than women). Therefore, only one mean 
and one variance were estimated in the ACE model (and 
two variances were estimated for brain size) as well as 
two covariances (MZ twins vs. DZ twins), whereas a 
sex effect was modeled to account for differences in 
means. We performed the above analyses for all mea-
sures of brain differences along a male–female dimen-
sion, as well as brain size and the measure of behavioral 
differences along a male–female dimension.

Next, using a bivariate Cholesky decomposition model 
(including sex and age as covariates), we examined the 
influence of genetic and environmental influences on 
the covariance between individual differences along a 
male–female dimension for brain and behavior as well 
as brain size and behavioral differences along a male–
female dimension. Because we found robust associations 
between brain differences along a male–female dimen-
sion with both brain size and height, we also examined 
these variables for a common genetic and environmental 
factor. Because of the excellent prediction of sex when 
using the vertex-wise measure, the moderate-to-strong 
correlation between the brain measures with one another, 
and the similar heritability results for the different brain 
measures, the brain measure derived from only the ver-
tex-wise approach (trained on the UK Biobank data set) 
was used for this analysis.

Results

Obtaining a measure of brain 
differences along a male–female 
dimension

Using data from either the landmark or the vertex-wise 
approach, we trained the algorithm to predict sex on the 
basis of brain shape or structure, and predicted sex in an 
independent imaging sample, to derive a score for each 
individual reflecting the position of their brain shape or 
structure along a male–female dimension (Fig. 1). Both 
the landmark and vertex-wise approaches yielded scores 
that differed substantially (although with considerable 
overlap) between the sexes, as expected (see Figs. S3b–
S3h in the Supplemental Material). Brain size also showed 

a comparable difference in female and male distributions 
(see Fig. S3a in the Supplemental Material). Although the 
landmark approach already scaled the brains to the same 
size, it is possible that brain shape covaries with brain 
size. If this is the case, then the brain measures based 
only on shape (i.e., brain size controlled) may still con-
tain brain-size information. To derive a brain measure 
that is independent of brain size, we also used an allo-
metric scaling approach to adjust for brain size (BSV) on 
a regional (vertex-wise) level. Specifically, we regressed 
out brain size for each vertex and used the residuals of 
the vertices in the prediction. This adjustment for brain 
size yielded a brain measure that showed more overlap 
between men and women than the vertex-wise measure 
in which only brain-size differences associated with sex 
were removed (see Fig. S3h), but the measure could still 
accurately discriminate between the sexes (d = 1.01, 95% 
confidence interval [CI] = [0.88, 1.14]; red lines in Fig. 2). 
We found similar results when regressing out brain size 
from the uncorrected prediction scores (orange lines in 
Fig. 2; see Fig. S3g).

Validity and reliability of the brain 
measures

Brain measures based on both approaches showed 
good to excellent test-retest reliability (see Table S1 in 
the Supplemental Material), defined as the correlation 
between the brain scores from the two time points. The 
validity (i.e., to what extent the measure could predict 
sex in an independent sample) was measured with the 
area under the curve (AUC)—defined by the true- 
positive rate against the false-positive rate—using the 
pROC package (Version 1.11 and above; Robin et al., 
2011). The AUC is, unlike accuracy, insensitive to class 
imbalance. Both approaches predicted sex well (Fig. 2; 
see Table S1)—as reflected in the good to excellent 
AUC—and the prediction was often better when brain 
size was not filtered out (see Table S1).

Comparing the two approaches, we found that the 
landmark approach (including the subcortical landmark 
or both subcortical and cortical landmarks) resulted in 
a more accurate prediction than the vertex-wise 
approach after controlling for brain size (cf. rows B2 
and B4 with row B5 in Table S1). However, when we 
trained the vertex-wise model on the large UK Biobank 
data set (N = 9,888), the prediction improved markedly 
(green lines in Fig. 2; see row A2 in Table S1). However, 
in both data sets, after we applied an allometric scaling 
approach to adjust for brain size (red lines in Fig. 2; 
see row A3 in Table S1), the prediction worsened and 
was no longer better than when using the landmark 
approach—results were similar when we regressed out 
brain size from the uncorrected vertex-wise scores 
(orange lines in Fig. 2).
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Further, the prediction based only on cortical land-
marks was not significantly better than chance when we 
predicted from the QTIM (n = 1,040) to the HCP (n = 
1,113) data set and vice versa (Fig. 2; see row B3 in Table 
S1) or when we divided the QTIM data set in two halves 
(see row C3 in Table S1). In contrast, when we divided 
the HCP data set in two halves, the cortical landmarks 
were predictive of sex (see row D3 in Table S1). Because 
of the poor predictive power of the QTIM cortical land-
marks in comparison with the HCP cortical landmarks, 
the prediction scores derived from the cortical landmarks 
for the QTIM data set were excluded from further analy-
sis. The poor performance of the prediction based on 
the QTIM cortical landmarks may be explained by the 
poorer resolution and lower signal-to-noise ratio of the 
diffusion scans of the QTIM data set compared with the 
HCP data set, which may have led to more error in land-
mark placement. For all further analyses, outliers (z ± 
3.29) were winsorized within each sex.

Correlations among brain measures

Brain measures derived from the landmark and vertex-
wise approaches were associated with one another 
(Table 1) after we adjusted for sex, age, and scanning 

acquisition in the total sample. The vertex-wise scores 
for which brain size was regressed out of the uncor-
rected prediction scores showed high overlap with the 
allometric scores (r = .999, p < .001) and were therefore 
excluded from further analyses. As expected, brain 
measures were associated with brain size across sam-
ples (ps ≤ .001; Table 1), even after we adjusted the brain 
measures for brain size (by scaling brains to the same 
size or by regressing out BSV). This association raised 
the question of whether sex differences in brain size 
may still have been confounding the brain measures 
(i.e., the prediction of sex). To further examine this 
possibility, we used two subsamples in which female 
and male brains were matched for brain size (maximum 
of 10-ml difference in BSV; QTIM: n = 262; HCP: n = 
372; for more details, see van Eijk et  al., 2020). The 
association between brain measures and brain size 
remained in both subsamples in which men and women 
were matched for brain size (see Table S2 in the Supple-
mental Material). This finding shows that our prediction 
of sex (and resulting brain measures) was not driven 
by potential confounding sex differences in brain size 
and provides additional evidence for the scaling rela-
tionship between brain differences along a male–female 
dimension and brain size.
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Fig. 2.  Receiver operating characteristic (ROC) curve (the true-positive rate as a function of the false-
positive rate) predicting biological sex from the brain data in the Queensland Twin IMaging (QTIM) 
and Human Connectome Project (HCP) data sets. Results are shown for each of the two approaches 
(landmark and vertex-wise), as well as for brain size as a crude proxy for comparison. The landmark 
approach included the subcortical, cortical, and combined subcortical and cortical landmarks. The 
vertex-wise approach included scores controlled for brain size (brain-segmentation volume [BSV]) by 
regressing out brain-size differences associated with sex, applying allometric scaling, and regressing 
out brain size from the uncorrected scores. Predictions of sex in the QTIM data set are displayed with 
a dashed line, and predictions of sex in the HCP data set are displayed with a solid line.
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Association between sex differences in 
brain and behavior

We tested for a link between sex differences in brain 
and behavior by computing a composite score of brain 
differences along a male–female dimension and testing 
its association with a score of behavioral differences 
along a male–female dimension. This followed a similar 
approach to that of Tunç et al. (2016). Further, we 
examined the associations between the brain scores 
with specific behavioral measures.

Association between brain and behavioral scores.  
Prediction of individuals’ sex on the basis of behavioral 
measures (see Table S3 in the Supplemental Material) 
yielded a good AUC (74.94%–78.89%). After we com-
bined both samples and adjusted for sex, age, and a 
dummy variable for study (QTIM/HCP), the resulting 
behavioral score correlated significantly with the brain 
scores derived from the landmark and vertex-wise 
approaches (with the exception of the measure based 
only on cortical landmarks; Table 2). We also tested the 
same correlations within each sex—these tests have 
lower power (because of the split sample) but would 
reveal whether the brain–behavior association was mark-
edly different in each sex (Table 2). Statistical significance 
was inconsistent across methods, but the point estimates 
were small and positive. For the vertex-wise measure, we 
found a significant correlation within both sexes: Effect 
sizes were similar to those found by Tunç et al. (2016; 
within women: r = .129, 95% CI = [.068, .188], p < .001; 
within men: r = .137, 95% CI = [.065, .207], p < .001). Note 
that brain size itself showed a stronger association with 
the behavioral score than any of the shape-based brain 
scores (r = .162, 95% CI = [.116, .207], p < .001). After we 
controlled for brain size, the association between brain 
and behavioral scores was no longer significant (Table 2), 

whereas when we adjusted for body size (height) instead 
of brain size, the association remained significant in the 
total sample and within men (although the effect became 
smaller; r = .066, 95% CI = [.018, .114], p = .007; women:  
r = .034, 95% CI = [−.029, .096], p = .294; men: r = .105, 
95% CI = [.031, .178], p = .006).

Associations of brain scores with physical and 
behavioral measures.  Next, we aimed to gain more 
insight into whether and how the brain scores were asso-
ciated with specific physical and behavioral measures. 
We also examined associations within each sex, under 
the hypothesis that we would find a similar correlation 
within each sex. Because we found an association 
between the brain scores and brain size (Table 1), brain 
size may possibly confound the correlations between the 
brain scores and behavioral traits, which is why we 
adjusted correlations for brain size as well as sex and age.

The brain scores showed only very weak associa-
tions with physical and behavioral measures regardless 
of the approach used (see Tables S6–S14 in the Supple-
mental Material) and not always in the direction of the 
sex effect found for these measures (see Table S5 in 
the Supplemental Material). One association that 
remained across samples and across the different brain 
measures (except the allometric approach) was the 
association between the brain scores and height (r = 
.064–.203; see Tables S6–S14). However, no association 
showed a trend (p ≤ .05) in both the total sample and 
within-sex analyses and was consistent across the dif-
ferent brain measures (see Tables S6–S14). As a com-
parison, brain size showed more and stronger 
associations with behavioral measures (rs = .059–.243, 
ps ≤ .05; see Tables S17 and S18 in the Supplemental 
Material) than did any of the brain scores (rs = .059 to 
−.207, ps ≤ .05; see Tables S6–S14). After we adjusted 
the brain scores for body size (height) instead of brain 

Table 1.  Correlation Matrix for the Measures of Brain Differences Along a Male–Female Dimension (BMF) Controlled for 
Covariates (Sex, Age, and Scan Acquisition), Displaying Correlations for the QTIM Data Set (Below the Diagonal) and for 
the HCP Data Set (Above the Diagonal)

Measure 1 2 3 4 5 6

1. BMF (subcortical landmarks) — .242** .686** .227** .116** .110**
2. BMF (cortical landmarks) .114* — .278** .208** −.097* .322**
3. BMF (subcortical + cortical landmarks) .535** .271** — .210** .045 .178**
4. BMF (vertex-wise score controlled for sex differences in BSV) .222** .041 .084 — .531** .491**
5. BMF (vertex-wise allometric score) .072* −.062 .039 .664** — −.452**
6. Brain size .173** .149** .065 .370** −.389** —

Note: Measures were derived from the landmark approach (subcortical, cortical, and both landmarks) and vertex-wise approach (a correction 
adjusting for sex differences in brain size and an allometric brain-size correction) as well as from brain size as a crude proxy for comparison. 
Brain-segmentation volume was used as a measure of brain size. Because the prediction of sex using brain measures derived from cortical 
landmarks in the Queensland Twin IMaging (QTIM) data set was no better than chance, these prediction scores were excluded from further 
analysis. HCP = Human Connectome Project.
*p ≤ .05. **p ≤ .001.
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size (see Tables S12 and S13), several associations 
remained for the brain measures with physical and 
behavioral measures (see Tables S15 and S16 in the 
Supplemental Material)—suggesting that the associa-
tions were driven by brain size more so than body size.

Genetic analyses

In both data sets and all brain measures, intraclass cor-
relation in MZ twin pairs was greater than in DZ twin 
pairs or nontwin siblings, which suggests the influence 
of genetic effects (see Tables S19–S21 in the Supple-
mental Material). Consistent with previous work 
(Rentería et al., 2014), results showed that brain size 
was highly heritable (see Table S22 in the Supplemental 
Material): 86% to 92% of the variation in brain size 
could be explained by genetic influences (A), 0% to 7% 
by shared environmental influences (C), and 7% to 8% 
by residual effects (E), which include idiosyncratic envi-
ronmental factors and measurement error. In contrast, 
the other brain measures showed more modest herita-
bility: Depending on the measure used, 33% to 50% of 
the variance could be explained by genetic influences, 
0% to 10% by shared environmental influences, and 
40% to 67% by residual effects (see Table S22). The 
behavioral measure was also moderately heritable: 32% 
to 51% of the variation in the behavioral measure could 
be explained by genetic influences, 0% to 6% by shared 
environmental influences, and 43% to 68% by residual 
effects (see Table S22). Results were similar when we 
excluded opposite-sex twin or sibling pairs (see Table 
S23 in the Supplemental Material).

Next, we examined the extent to which common 
genetic, shared environmental, or residual factors 
underlie the association of brain and behavioral dif-
ferences along a male–female dimension, of brain dif-
ferences along a male–female dimension with brain size 
and height, and of brain size with height. Because there 
was no evidence for shared environmental influence, 
we used a bivariate model with an AE model. To 
improve the power of our analyses, we combined the 
two samples. Our analyses showed a genetic correlation 
(rg) between brain and behavioral measures (combined 
rg = .296; within women: rg = .220; within men: rg = 
.409) when we derived the brain measure from the 
vertex-wise scores (for which brain-size differences 
associated with sex were removed). However, this cor-
relation was no longer significant when we used the 
vertex-wise allometric scores, suggesting that brain size 
may be driving this correlation. In line with this pos-
sibility, we found a similar genetic correlation between 
brain size and the behavioral measure (combined rg = 
.261; within women: rg = .208; within men: rg = .333), 
and we found a genetic correlation between brain size 
and the brain measure (combined rg = .566; within 

women: rg = .526; within men: rg = .602) when we 
derived the brain score from the vertex-wise scores (for 
which brain-size differences associated with sex were 
removed) and also when we used the allometric 
approach (removing all brain-size differences), although 
the association became negative (combined rg = −.571; 
within women: rg = −.640; within men: rg = −.455).

Further, we found a genetic correlation between the 
brain measures and height (combined rg = .162; within 
women: rg = .128; within men: rg = .145) but only for 
the vertex-wise scores (from which brain-size differ-
ences associated with sex were removed) and not  
for the vertex-wise allometric scores. In comparison, 
brain size showed a similar genetic correlation with 
height (combined rg = .195; within women: rg = .147; 
within men: rg = .205), as found for the other brain 
measures.

Discussion

We investigated whether sex differences in brain struc-
ture are associated with sex differences in behavior 
within sex, thereby circumventing the confound of dif-
ferent socialization of women and men. We obtained a 
data-driven measure of brain differences along a male–
female dimension (derived from sex differences in brain 
shape and structure) and behavioral differences along 
a male–female dimension (derived from sex differences 
in behavior) while adjusting brain measures for brain 
size using an allometric scaling approach. Our key find-
ing is that there is a small positive association between 
sex differences in brain and behavior, but that associa-
tion disappears when we take into account differences 
in brain size.

Previous research (Phillips et al., 2019; Tunç et al., 
2016) showed some (mixed) evidence of an association 
between brain and behavioral differences along a male–
female dimension. However, our research used two 
independent samples (total sample size more than 
double that in the studies by Tunç et  al., 2016, and 
Phillips et  al., 2019) and two different methods for 
deriving the brain measures, and we carefully consid-
ered whether brain size may drive the brain–behavior 
association. It is possible that brain size could drive the 
association between brain and behavior found previ-
ously because the previous studies either did not adjust 
for brain size (Tunç et al., 2016) or adjusted only some 
brain measures for brain size (Phillips et al, 2019), and 
neither applied an allometric approach to consider that 
different brain regions scale differently from brain size. 
As a consequence, their brain data could still contain 
shape differences that are associated with the original 
size differences, and their score reflecting brain differ-
ences along a male–female dimension could be driven 
by these size differences.
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Our findings are consistent with this possibility. First, 
we showed that the brain measures were substantially 
correlated with brain size in the total sample and within 
each sex, even though all brains were scaled to the 
same size from the start. This is consistent with the 
concept of allometry, that is, that a structure’s shape is 
not independent of its size. Larger brains tend to have 
a different shape from those of smaller brains, for exam-
ple, showing more folding on average. Second, we 
found an association between individual differences in 
brain and behavior similar to that previously reported 
by Tunç et al. (2016), but after we applied an allometric 
approach, adjusting for brain size on a regional (vertex-
by-vertex) level, the correlation between brain and 
behavior disappeared. Our results suggest that any pre-
vious findings of a relationship between sex differences 
in brain structure and behavior may have been driven 
by brain size.

The brain measures were associated with both physi-
cal and behavioral variables (although possibly driven 
by brain-size differences), which implies that brain and 
behavioral sex differences may be subject to the same 
underlying processes of masculinization without being 
directly causally related. This possibility is strengthened 
by the correlation of the brain measures with height 
because there is no obvious reason to suspect that brain 
differences along a male–female dimension and height 
are causally related. Further, although it is well estab-
lished that brain size is functionally relevant—for exam-
ple, it is correlated at around .24 to .33 with IQ after 
adjustment for differences in body size (Goriounova & 
Mansvelder, 2019)—its relation to the nexus of brain 
and behavioral sex differences is less clear. In the HPC 
sample (which also formed part of our sample), van 
der Linden et al. (2017) found that brain size partially 
mediated the small sex difference in IQ—but many 
studies have found a negligible sex difference in IQ—
and when van der Linden et al. (2017) used male and 
female samples matched on IQ, men still had larger 
brains. This finding raises the possibility that there are 
sex differences in brain structure that compensate for 
size differences between the sexes. On the one hand, 
it could be that some sex differences in brain structure 
are compensatory and make female and male behavior 
more similar despite different average brain sizes. On 
the other hand, other sex differences in brain structure 
may result in adaptive behavioral sex differences and, 
because of joint hormonal mediation, also covary with 
brain size. We are not able to resolve these complexities 
here. Also, the weakness of the associations suggests 
that sex differences in brain structure are among many 
other factors related to sex differences in behavior.

We also estimated the heritability of brain and behav-
ioral differences along a male–female dimension. Using 

twin modeling, we estimated that variance in the brain 
and behavioral measures can be attributed in roughly 
similar proportions to genetic (32%–50%) and unshared 
environmental (40%–68%) influences. Phillips et al. 
(2019) estimated the heritability of sex-differentiated 
brain structure at 0% to 1.5% using single-nucleotide 
polymorphism (SNP) data. SNP heritability estimates 
are extremely imprecise in samples of that size (N = 
900), and in any case, SNPs typically do not capture 
most of the total heritability of complex traits 
(Wainschtein et al., 2021). Twin studies such as ours 
estimate a trait’s total heritability. As for behavior, our 
heritability estimates were in line with those of a previ-
ous twin study using a different method with different 
data (Verweij et al., 2016).

This project has some limitations. Most importantly, 
our research does not imply that no association could 
exist between behavior and sex differences in regional 
(as opposed to global) brain structure, microstructure, 
or brain function, all of which our study is silent on. 
Second, the range of sexually dimorphic behaviors that 
we analyzed was limited by the measures that hap-
pened to have been collected in the QTIM and HCP 
studies, and they may not be the most sensitive to 
detect sex differences in behavior compared with more 
sexually differentiated behavioral traits. However, our 
prediction performance was similar to that previously 
reported by Tunç et al. (2016). In addition, several 
behavioral measures in the QTIM data set were obtained 
at a different time from when the imaging scans were 
acquired. Further, it is unclear to what degree the sex 
differences from which our measures are derived are 
influenced by genetic factors (e.g., number of X chro-
mosomes, the presence of a Y chromosome, and mito-
chondrial DNA inheritance; Pearse & Young-Pearse, 
2019) as well as sex hormone levels. In addition, despite 
our efforts to remove the confound of socialization 
between women and men by looking at within-sex dif-
ferences, our measures may capture environmental dif-
ferences among women and among men beyond those 
based on biology.

Future research with even larger samples and richer 
brain and behavioral measures, as well as a longitudinal 
study design, will further elucidate the biological and 
social influences on brain and behavioral sex differ-
ences. Such an approach will help to answer questions 
such as at what stage (or stages) across the life span 
sex hormones play the most prominent role in influenc-
ing brain and behavior and whether specific sex hor-
mones have distinct influences on brain and behavior. 
It will also provide insights into the directionality of 
the association between sex differences in brain and 
behavior and shed light on the distinction between 
biological sex and gender differences.
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