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Abstract

CASP is a community experiment to advance methods of computing three-dimensional protein 

structure from amino acid sequence. Core components are rigorous blind testing of methods and 

evaluation of the results by independent assessors. In the most recent experiment (CASP14) deep 

learning methods from one research group consistently delivered computed structures rivalling 

the corresponding experimental ones in accuracy. In this sense, the results represent a solution to 

the classical protein folding problem, at least for single proteins. The models have already been 

shown to be capable of providing solutions for problematic crystal structures, and there are broad 

implications for the rest of structural biology. Other research groups also substantially improved 

performance. Here we describe these results and outline some of the many implications. Other 

related areas of CASP, including modeling of protein complexes, structure refinement, estimation 

of model accuracy, and prediction of inter-residue contacts and distances, are also described.
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INTRODUCTION

CASP (Critical Assessment of Structure Prediction) is an organization whose aim is to 

advance solutions to the problem of computing protein three-dimensional structure from 

amino acid sequence information. It’s a community experiment in which those interested 

in the ‘protein folding problem’ (as it has traditionally been known) are asked to submit 

computed structures for independent assessment of accuracy. Every two years, CASP 
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identifies a set of modeling targets - proteins for which the experimental structure is about 

to be solved or is solved but still not public - and provides the corresponding amino acid 

sequences to the modeling community. Participants are typically required to return computed 

structures within three weeks. Participating automatic servers are also sent the sequences, 

and must return models within 72 hours. Submitted structures are analyzed by a team 

of independent assessors. All models and analyses are made public. Each CASP round 

culminates with an international conference (held virtually for CASP14) and a special issue 

of PROTEINS, containing papers by the assessors, selected participants, and an overview of 

the results. This paper is the overview for the 14th CASP round.

The primary focus of CASP has always been on computing the structures of single proteins 

and domains. There are two assessments of performance in this area for CASP141,2. 

Assessing methods for modeling proteins complexes is increasingly important and is done 

in conjunction with CASPs’ sister organization CAPRI, also providing two assessments3,4. 

Other assessed categories in this CASP are the prediction of inter-residues contacts and 

distances5 refinement of initial models6, and estimation of model accuracy7. There is also an 

analysis of how useful the computed structures are for deducing aspects of function related 

to molecular recognition8. For the first time, there is a separate assessment of multi-domain 

assemblies9 with an emphasis on the accuracy of domain interactions.

In CASP14, a total of 97 research groups from 19 countries tested 215 modeling methods 

and submitted over 67,000 predictions in six prediction categories, maintaining the previous 

high level of participation in spite of the Covid-19 pandemic. Structures of 52 proteins and 

protein-protein complexes were received from the experimental community in time for the 

assessments. 42 were determined using X-ray crystallography, seven using cryo-electron 

microscopy (cryo-EM), and three by NMR. These were divided into monomeric subunits 

and, in one case, separate domains (for a large 2180-residue long RNA polymerase, T1044), 

and released for prediction as 68 tertiary structure modeling targets. For the assessment, 

the targets were split into domains based on homology and structural integrity, and then re-

organized into 96 evaluation units based on the comparison of the performance on individual 

and combined domains10. Target evaluation units are assigned to one of four classes of 

modeling difficulty, based on sequence and structure similarity to already experimentally 

determined structures: ‘TBM-Easy’ (easy template modeling) for straightforward template 

modeling targets, ‘TBM-Hard’ for more difficult homology modeling targets, ‘FM/TBM’ 

for those with only remote structural homologies and ‘FM’ (Free modeling) for the most 

difficult set with no detectable homology to known structures. As discussed later, these 

divisions are no longer very relevant.

Additionally, ten multidomain targets were assessed for accuracy of domain interactions. 

Multimolecular assemblies, including eight hetero-complexes, were released for prediction 

as 22 quaternary structure modeling targets. 12 of those were also selected for the joint 

CASP/CAPRI experiment. The quaternary structure modeling targets were divided into 

29 evaluation units (19 of which were also included in the CASP/ CAPRI experiment). 

Target details are available at https://predictioncenter.org/casp14/targetlist.cgi and are also 

discussed in papers in this issue10–12.
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Like most aspects of life in 2020, CASP was affected profoundly by the Covid-19 pandemic. 

The CASP category of data assisted modeling13–15 was not possible because most labs were 

closed and so not able to generate the necessary data. The CASP14 conference, usually a 

very intense in-person event, was held virtually. The CASP community also responded to 

the emergency by working together to compute and evaluate models for 10 of the hardest to 

model SARS-CoV-2 proteins of unknown structure (see paper in this issue16). This was the 

most extensive community modeling experiment so far in CASP, and produced interesting 

results.

Three-dimensional Protein Structure Modeling

CASP14 saw an extraordinary increase in the accuracy of the computed three-dimensional 

protein structures. One research group, AlphaFold2 from the company DeepMind, submitted 

models competitive with experimental accuracy for at least 2/3 of the targets (group 427 in 

the Results tables, available online at https://predictioncenter.org/casp14/results.cgi). Other 

groups also showed substantial improvement. Figure 1 summarizes performance in terms of 

backbone accuracy for the best models received in each CASP.

Historically, the most accurate models have been obtained using information about 

experimentally determined homologous structures (template-based modeling), and the 

Figure 1 difficulty scale17 (X axis) reflects the degree to which those methods were 

applicable. As the trend lines for earlier CASPs show, until now, accuracy on the right-hand 

‘difficult’ side of the plot was sharply lower. In CASP13 (2018)18, with the introduction 

of effective deep learning methods, the trend line rose to above 60 on the GDT_TS scale, 

even for the most difficult targets, a major advance from the previous CASP. Note that the 

fold of the protein backbone is usually correct at values above 50 on this scale, and so that 

represented a solution to the problem as classically defined, for most targets.

Astonishingly, the trend curve for CASP14 (the black straight-line) starts at a GDT_TS of 

about 95, and finishes at about 85 for difficult targets. Because of experimental errors and 

artifacts, a GDT_TS of 100 is highly unlikely, and previous CASP trend lines intercept the 

Y axis at about 90, indicating that that is approximately the limit expected. In CASP14, 

about 2/3 of the 96 targets reached GDT_TS values greater than that, and so are considered 

competitive with experiment in backbone accuracy.

Although this outstanding performance is dominated by AlphaFold2 (group 427), the dashed 

black line in Figure 1 shows that other groups also advanced substantially from CASP13. 

Also of note, performance of servers in CASP14 (dotted black line in Figure 1) is similar 

to the best performance of all groups in CASP13. This is of particular significance since 

AlphaFold2 did not submit server models. Thus, other research groups have not only 

now surpassed AlphaFold’s leading performance in CASP13, they have also made these 

improved methods available in servers, some of which are publicly accessible. Nevertheless, 

it is clear that the AlphaFold2 models are generally much more accurate, and the only ones 

to consistently approach experimental quality. For only four targets did another group obtain 

a higher GDT_TS.
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Figure 2 shows an example of a model with close agreement with experiment. Model 

and experimental backbone closely overlap almost everywhere. As discussed below, minor 

differences in loop conformations are often due to crystal packing effects. The helix loop 

helix motif in the model at the bottom right of the figure corresponds to a disordered region 

in the experimental structure (for which there is no observed structure). The set of five 

submitted models contain two different conformations for this region.

Figure 3 provides an atomic level view of part of a model of SARS CoV-2 ORF8 (from 

AlphaFold2) and the corresponding crystal structure (CASP target T1064, FM category, 

GDT_TS 87) showing impressive atomic level agreement for the main chain as well as side 

chain atoms.

Remaining sources of disagreement between calculation and experiment

In previous CASPs, with rare exceptions, it was usually safe to assume that differences 

between models and experiment were dominated by computational error. The high accuracy 

results in this round required a more careful analysis. Data are limited and some contributing 

factors are correlated, complicating interpretation. Nevertheless, as outlined below, several 

distinct influences on agreement with experiment can be identified.

Dependence on Experimental data: Figure 4A shows the relationship between average 

best GDT_TS and the quality of experimental data (three ranges of X-ray structure 

resolution and cryo-EM). The lower agreement with experiment for lower resolution X-ray 

structures and for cryo-EM structures suggests that experimental structure accuracy may be 

a factor in limiting the maximum GDT_TS obtained, particularly for values less than 90. 

There were also three NMR targets in CASP14 (data not included in the figure) two of 

which are template free (FM) targets with very low GDT_TS values (blue points in Figure 

1). Analysis by Gaetano Montelione’s group19, shows that one of these, T1027, is a dynamic 

structure and the best computed structures may correspond to a member of the ensemble. 

For the other, the best computed structures agree better with the experimental NOE data than 

does the experimental structure.

Figure 4B shows that there is a strong relationship between target difficulty categories and 

the quality of experimental data obtained. That is, proteins belonging to well-studied protein 

families tend to yield high quality X-ray data. As a consequence, some of the decrease in 

average agreement with experiment for hardest targets may be due to higher experimental 

error.

Dependence on modeling difficulty: Historically, the most accurate models have 

been obtained by leveraging information on related structures. A surprising feature of 

the CASP14 results is the small fall-off in agreement with experiment with fall-off in 

evolutionary information for related structures, especially compared to earlier CASPs. As 

noted above in Figure 1, the best model trend line starts at 95, but only falls to ~85 for 

the most difficult targets. Apparently, there is only minor benefit from homologous structure 

information - models are only marginally more accurate when it is available. Figure 5 shows 

agreement with experiment (GDT_TS) as a function of the fraction of targets reaching a 

given level of agreement for different categories of target difficulty. Performance is still 
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strongest for the category of targets with most information from homologous structures 

available (‘TBM-easy’, green), with the lowest GDT_TS of 90, and many targets with 

greater than 95. For the most difficult targets (‘FM’, black line), where no assistance 

from homologous structures is available, performance is slightly lower overall than for 

the easiest category, but still about 30% of targets achieve a GDT_TS above 90, and 

75% have a GDT_TS of 80 or greater. As noted above, two NMR targets with very low 

GDT_TS (colored blue in Figure 1) pull down the right side of this trend line and a third 

(red point), discussed below, also contributes. The strong correlations between average 

GDT_TS, traditional target difficulty, and experimental data quality discussed above (Figure 

4) make cause and effect hard to separate conclusively: It is not clear whether the remaining 

fairly small differences in performance across target categories are because the AlphaFold2 

method performs somewhat better when there is information for homologous structures 

available, or if the performance differences are just due to differences in the average 

accuracy of the corresponding experimental structures.

Inter subunit interactions in protein assemblies: One of the points with low GDT-

TS value in Figure 1 (colored red) is a subunit of a 52-mer bacterial flagellum cryo-EM 

structure (T1047s1, PDB 7bgl20). This is an unusual target in that there are very extensive 

inter-subunit interactions, including a domain swap21 in which part of the fold of one 

monomer occupies the corresponding position of a neighboring one. Thus, the monomer 

conformation is heavily influenced by its neighbors. More moderate conformational changes 

on forming a multimer are not unusual, and some investigators are developing methods 

specifically to deal with this issue (see for example22. Participants were not provided 

with specific multimer assembly information, and so all submitted models are based on 

an isolated monomer environment. In this sense, this type of difference to experiment is 

not a computational failure, although it is of course a poorer representation of the in vivo 
structure.

Crystal lattice contacts: A related reason for lower GDT_TS values is the effect of 

lattice contacts on local conformation in crystal structures. The refinement category assessor, 

Daniel Rigden, has looked at this for a subset of seven targets, with GDT-TS values ranging 

from 72 to 936. These are cases where the best models differed from experiment for small 

regions of the polypeptide chain, and refinement methods were unable to converge to the 

experimental structure. Of the 105 residues involved, he found 64 to be close to lattice 

contacts, suggesting the local conformations are determined by the crystal environment (also 

not provided to the participants). For these regions, the best calculated structures likely 

provide conformations closer to that found in vivo than those from the crystal structure.

Traditionally, CASP has used the multi-superposition, multiscale GDT-TS measure of 

agreement between models and experiment as a more robust metric than traditional RMSD 

when dealing with medium or poor-quality models23,24. In CASP 14, almost all best models 

are in close enough agreement with experiment for RMSD to be an appropriate metric, and 

we include it here for those more familiar with its properties than those of GDT_TS. Figure 

5B shows the percentage of targets modeled to a given Cα-RMSD for the different target 

categories, analogous to the GDT_TS cumulative plot in Figure 5A. Supplementary figure 
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1 shows the mapping between RMSD and GDT_TS for a larger set of CASP14 models. 

The threshold of 90 GDT_TS corresponds to approximately 1.5 Angstroms RMSD, and 80 

corresponds to about 2.5 Angstroms (all residues included, calculated with LGA 24).

Other Modeling Categories

The startling results for 3D structure tend to overshadow the other areas of CASP in this 

round, where progress was less dramatic. At the same time, several of these areas are likely 

to benefit directly from type of the deep learning approaches that have been so successful for 

single proteins.

Multimers and protein complexes: This CASP saw a very impressive solution to the 

classical protein folding problem25 - accurate modeling of single protein structures from 

their amino acid sequences. Since the formulation of that problem, science has moved on - 

most proteins are not monomers, and most biology involves interactions with other proteins, 

DNA, RNA, or small molecules. In particular, accurate modeling of protein complexes is 

now receiving increased attention as the next barrier in computational structural biology 

likely to be surmounted. In this round, CASP and CAPRI (Critical Assessment of Protein 

Interactions26) again worked together to assess the accuracy of protein complexes, with two 

corresponding assessment papers3,4. 39 groups took part in this modeling category, with 22 

targets altogether, 12 of which were also considered by CAPRI participants. Most targets 

are obligate assemblies, and in future CASP needs to include more transient complexes. 

About a third of the targets were determined by cryo-EM, and the increasing output from 

that technology is allowing larger and more complicated protein assemblies to be included in 

CASP.

Three broad types of methods were used for modeling complexes in CASP14. As the PDB 

becomes more populated with large complexes, opportunities for homology modeling have 

steadily increased, and targets where that is possible continue to provide the most accurate 

models3 Where homology modeling is not possible, many groups used classical docking 

methods in which a search is made for sterically and electrostatically complementary 

surfaces27. A number of groups have now augmented these with the prediction in interface 

residue-residue contacts, often employing deep-learning methods, for example22, producing 

some of the best results, although so far, the gains are fairly modest.

Most methods start with models of individual constituent proteins, and conformational 

changes accompanying complex formation as well as intertwining of monomers present 

major challenges. As noted earlier, intertwining was a problem for accurate modeling of 

bacterial flagellum subunit, and an analysis by the CASP assessor Ezgi Karaca3 showed 

that at least two of the other CASP14 targets undergo substantial conformational changes 

on complex formation (targets T1061 and T1070). Three other targets were classified as 

‘intertwined’ and two as coiled-coils, and these would also be difficult to predict by starting 

with monomeric structures.

Although overall progress this round from the previous CASP is small3, there is excitement 

as to what will happen next time, for several reasons. First, analysis by the function 

assessors8 shows that simply using more accurate models of the constituent proteins will 
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have a major impact on the effectiveness of classical docking methods. Second, deep 

learning methods for interface residue contact prediction are still in their infancy. Third, 

at least one group (Baker) already has a ‘fold and dock’ algorithm intended to model 

conformational change on binding22. Fourth, that group have recently reported using 

deep learning methods developed for single proteins to directly predict the structure of 

multimers28.

Refinement: The CASP refinement category was introduced in CASP8 (2008) on the 

basis that informatics methods are ultimately limited in accuracy and so physics or related 

representations of atomic interactions together with some form of local conformational 

exploration (such as those provided by conventional molecular dynamics) would be 

essential to achieving atomic accuracy. The deep learning results in this CASP suggest 

that assumption was incorrect, so that re-examination of the role of refinement is called 

for. Further, although earlier CASP rounds have seen substantial progress, in the last two, 

that has been harder to identify. In CASP14, only four methods on average improve models 

over the starting structures provided, and no method improves much more than half of the 

targets6. No refinement for any model approached the accuracy achieved by AlphaFold2 

directly.

Why have refinement methods apparently stalled? One reason, as noted after CASP1318, 

is that modeling methods increasingly incorporate a refinement component, so that 

further improvement with similar methods has become more difficult. That is, refinement 

may in fact be improving but most of what the methods can deliver is already being 

exploited in developing the pre-refinement models. A second more fundamental problem 

appears to be the rugged nature of the refinement landscape, with local energy barriers 

preventing convergence to high accuracy, at least using realizable amounts of computer 

time (identifying the global minimum with current scoring functions does not seem to be 

an issue29). There are two developments in conformational search methods that suggest 

future progress may be possible. First, the Baker group have successfully incorporated 

deep learning prediction of inter-residue distance errors into their refinement procedures22 

allowing computational effort to be focused on the parts of the structure most needing 

it. That strategy led to improved performance on bigger targets in CASP146. Second, a 

number of groups in the molecular dynamics community are applying new machine learning 

methods to allow exploration of trajectories in less frustrated latent spaces30.

Estimation of Model Accuracy (EMA): For any data, it is important to have useful 

estimates of error. Historically, that has been especially crucial for protein structure models, 

where accuracy has varied widely from protein to protein and method to method. CASP 

has a separate category to assess methods for estimation of model accuracy, both globally 

and locally in a structure. The category has two parts. First, ‘Self Assessment’ - every 

3D model that is submitted to CASP is required to have error estimates for each atom 

in the co-ordinate file, and the accuracy of those data has been considered as part of the 

overall evaluation metric used by recent assessors. Second, those interested are encouraged 

to provide accuracy estimates for all the server models submitted to CASP - that is, to 

develop general methods that can be applied to any model. This is a popular category in 
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CASP, with 70 methods used in CASP14. Methods are divided into two types - those that 

estimate accuracy based on only the model itself and those that make use of consensus 

properties across models generated by different modeling methods. Assessment metrics have 

been stable for some time. For overall accuracy estimation, the gap between the accuracy 

of the best model and the one ranked highest by an error estimation method (‘top1 loss’) is 

most useful - how close does an EMA method come to picking the best model available? For 

local accuracy, an average normalized Cα agreement score is used (‘ASE’, see the assessor’s 

paper for the full definition7). Negative control baselines are provided by a simple consensus 

method and an older single model method.

In recent CASPs there has not been substantial progress in methods performance. On the 

other hand, particularly for global estimates, the methods appear to be usefully accurate 

for selecting close to the best model available, with an average loss of about 10 GDT_TS 

units for the most effective methods, both single model and consensus based. However, a 

recent more real-life test suggests there is something misleading about the CASP evaluation 

framework. As noted earlier and reported in a paper in this issue16, the CASP community 

worked together to generate models for 10 of the SARS2 proteins that had no experimental 

structure and where homology modeling was not effective. The result was a large set of 

models for each of these ten targets. To be useful to the broader scientific community, it 

was necessary to somehow select one model for each target and to provide global and local 

accuracy estimates. A large set of accuracy estimates were also collected for the models. It 

turned out there was very little agreement as to which were the most accurate structures. 

The Venclovas group devised a consensus accuracy estimate method to address this problem 

in the short term. Subsequently, two of these structures have been solved experimentally so 

making it possible to check how well model selection worked. The SARS2 paper16 shows 

these data. By far the most accurate models are from the AlphaFold group, consistent with 

the later CASP results. But only one EMA method selected an AlphaFold model as the best, 

for only one of the targets, and generally the AlphaFold models were not highly ranked.

This failure may reflect unusual properties of the AlphaFold models. For single model 

methods this problem has been recognized before31 - it is difficult to devise a general 

method. The large gap in accuracy between the AlphaFold models and others also likely 

defeated the consensus methods - the best models were far from any consensus measure. 

Whatever the cause, it is clear that CASP should carefully reconsider how assessment is 

done for this category.

Results based on estimates of error provided by model builders themselves are much 

more encouraging. The AlphaFold2 method outputs estimated Cα errors directly from the 

structure modeling deep learning network. The average normalized accuracy in estimated 

Cα error (ASE) for their CASP14 models is 0.91 (out a maximum of possible 1.0), 

suggesting this approach to error estimation can be very effective. Some other groups are 

well placed to provide this type of estimate in future. Interestingly, some of the less accurate 

AlphaFold2 error estimates are for targets where there is doubt about the quality of the 

experimental structures, such as the NMR targets discussed earlier. That is, a low ASE for a 

model may turn out to be a useful indicator of low experimental structure reliability.
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Inter-residue Contacts and Distances: It was first proposed that evolutionary 

sequence information could be used to predict which pairs of amino acids are in three-

dimensional contact in 1994, and in 1996 CASP2 introduced a category to encourage 

development of such methods. After initial progress, for about 14 years, from 2000 to 2014 

(CASP11), the methods showed no significant improvement, in spite the huge quantities 

of relevant sequence data that became available in that period. The CASP accuracy metric 

stuck at around 20% on the most confidently predicted set of long-range contacts32. But in 

2016, the accuracy from the best groups almost doubled to just under 50%33. Apparently, 

this was a consequence of the introduction of improved classical statistical methods34. That 

level of accuracy was still too low to have a big impact on the three-dimensional structure 

accuracy though. In 2018 (CASP13), accuracy improved again, to around 70%, this time as 

the result of the use of deep learning convolutional network methods35. A number of CASP 

participants also began using these methods to predict a continuous probability function 

for inter-residue distances rather than just a binary yes/no for contacts36. Together, these 

developments did result in the CASP13 major jump in 3D accuracy seen in Figure 1.

For CASP14, we maintained the category on binary contact prediction and extended 

it to include prediction of inter-residue probability distributions5. There was no further 

improvement in the contact accuracy. That may reflect the fact that most creative energy 

went into the development of distance probability methods. This first assessment of 

probability accuracy showed a strong signal using newly developed metrics and provides a 

baseline against which to measure progress in future CASPs. The currently most successful 

deep learning methods depend on predicting these distributions.

DISCUSSION

Objective testing in CASP14 has shown that the problem of computing atomic accuracy 

protein structures from amino acid sequence is solved, at least for single, ordered, proteins. 

The improvements in model accuracy by AlphaFold2 and the other leading groups almost 

all arise from more advanced use of deep learning methods, discussed in 37. At the 

CASP14 conference, AlphaFold2 outlined four significant changes from their CASP13 

methodologies and a detailed methodology paper describing these and many specifics has 

recently been published38. The changes are: (a) An additional stage of the neural network 

architecture which produces three-dimensional coordinates rather than ending with inter-

residue probability distributions as was done in CASP13. (b) Replacement of convolutional 

operations with attention learning39. Convolutions do not appear ideal for distogram or 

contact map feature extraction, and in fact it is surprising they work as well as they do. 

Attention learning is a rapidly advancing branch of deep learning40 that in principle allows 

identification of the most important information flows in a network. (c) Some protein 

specific features, such as covalent geometry, were introduced into the network structure, 

partly tailoring the network to the specifics of the problem. (d) The network directly outputs 

confidence estimates for the position of each residue in the structure, and as noted earlier, 

these are impressively accurate.

Most (but not all) previous participants in CASP have been academic research groups. 

AlphaFold2 are from a company, and the CASP organizers recognize they operate under 
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different restraints. For conference presentations, CASP expects that methods descriptions 

equivalent to that normally found in a published paper will be available, a level that was 

not reached by AlphaFold2 at that time. However, as noted earlier, full methodology has 

now been published38, and there is a shorter CASP special issue paper discussing details of 

the CASP results41. As a practical matter, CASP is unable to insist on full code and data 

availability though it is of course encouraged. In any case, extensive AlphaFold2 code has in 

fact now been released. Nevertheless, the delay has been a source of controversy. Previous 

experience suggests it may not have been critical. AlphaFold were also the most successful 

participant in the previous CASP, and although more method information was provided 

at the conference, full details were only published many months later, and there was no 

code release. In spite of this, as Figure 1 shows, other research groups had substantially 

surpassed AlphaFold’s performance by CASP14, and most importantly, publicly available 

servers were also performing at a level similar to AlphaFold’s CASP13 level. There is 

intense activity in the modeling community now, exploring the new techniques, and the 

Baker group has already reported modeling accuracy similar to that of AlphaFold2 using 

deep learning methods28.

The success of a company in this field has lessons for the academic community. In CASP13, 

DeepMind’s methods were very clearly and directly built on ideas and methods pioneered 

in the CASP community. In CASP14 they very effectively implemented their own new 

insights. Partly, this reflects the fact that they have unparalleled expertise in deep learning. It 

has also been suggested that the computing resources used are beyond what is available to 

a normal academic group, though this is unclear. The human resources used are also larger 

than a typical academic group. On the other hand, the total human resources and computer 

power deployed by other CASP participants likely far exceeds DeepMind’s – but it was 

fragmented over multiple competitive groups. In the US in particular, the funding system 

encourages this kind of small-scale approach. What happened here should be a reason to 

carefully examine and adjust funding models.

The AlphaFold2 methodology consistently produces models competitive in accuracy with 

the best experimental results, and subatomic scale differences from experiment are the 

norm. In this sense, it is an almost complete solution to the problem of computing three-

dimensional structure from amino acid sequence. But there have been some objections 

raised to calling it a solution to the classical ‘protein folding’ problem25. To some that 

requires two further conditions to be fulfilled: there is no dependence on evolutionary 

information (a folding protein does not know the sequence of its relatives) and there is some 

explicit inclusion of the folding process. On the first of these, recent CASPs have seen a 

dramatic reduction in the dependence of model accuracy on sequence alignment depth, a 

key ingredient in the classical contact prediction methods that preceded deep learning33 and 

also a usual input into deep learning networks. Figure 6 shows this dependency over recent 

CASPs for the subset of the hardest (FM) targets.

In CASP12 (2016), where best performance was dominated by methods dependent on 

predicting three dimensional contacts between residue pairs using classical statistical 

methods, there is a pronounced fall-off in accuracy for shallower alignments. In CASP13, 

where convolutional neural networks had become the most effective methods, there is a 
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similar dependency, though with an overall increase in accuracy. Strikingly, in CASP14, 

where more sophisticated deep learning methods were most successful, there is no accuracy 

fall-off with decreasing alignment depth. In their analysis of a much larger benchmarking 

sample38 the AlphaFold2 group did find that for shallow alignments (less than 30 sequences) 

there is a remaining dependence on depth. However, the accuracy spread in that region is 

large, and there are still highly accurate models, some with only a single sequence available. 

Very few models are really low accuracy. So, especially if the less demanding criterion of 

fold rather than atomic accuracy is used, the method is effective for single sequences.

The second objection - inclusion of the folding process - is more nuanced. There are two 

factors involved. One is a belief that a protein sequence that can successfully fold must not 

only have a well-defined global free energy minimum but must also incorporate specific 

features dictating a preferred folding pathway. This concept arises from a 1968 paper42 

which argues that the conformational space of a protein is so large that there must be a very 

specific pathway by which the conformation progresses from the unfolded to folded state. 

That motivated many experimental and computational investigations of possible pathways 

in the subsequent decades. In fact, as has often been pointed out (for example43) this is a 

fallacious argument, since the free energy falls progressively as the protein folds, providing 

sufficient guidance44. Local conformational restraints also greatly reduce the size of the 

space45. More concrete evidence for this conclusion is provided by the large number of 

designed proteins that have now been made, with no explicit design of a pathway46.

The further concern is an unease that we do not know what the machine is doing, 

and therefore still do not understand key aspects of the physics of the process. This is 

probably the first solution of a serious scientific problem by artificial intelligence, and 

we will face more of these issues in future. The AlphaFold2 method is clearly not just 

using pattern recognition - at this level of accuracy there are astronomically more atomic 

configurations than are present in the PDB - in some serious sense the machine generalizes 

from the training data to an extent analogous to the way in which a physics force field 

is a generalization that is applicable to all atomic configurations. Does that mean that the 

network learns the force field? Not in the way we understand the term. For example, there 

are two free modeling targets with zinc binding sites and another target with two bound 

hemes. The parts of these structures interacting with the ligands are accurately modeled, 

even though the ligands are absent in the calculation.

A frequently asked question is if any of the new methods contribute to modeling of disorder 

and dynamics. There are limited data from CASP to fully address this, and the terms 

mean different things to different people. Some CASP targets do have local disorder and 

flexibility and it appears that AlphaFold2 sometimes produces a variety of structures for 

these regions. The difficulty here is one that affects the whole disorder field - a lack of 

experimental data with which to assess performance. There is also at least one example in 

CASP14 of flexibility between domains being reproduced (T1024)47. As discussed earlier, 

conformational flexibility associated with docking to other molecules is already being 

addressed by members of the CASP community22. As already noted, the new report from 

the Baker group uses the deep learning system developed for monomers to directly built 

multimers, in some circumstances obviating the problem48. Given adequate ligand docking 
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methods (see below), allosteric conformational changes should be addressable. Short time 

scale classical dynamics do not appear to be within the scope of the methods, so there is still 

a role there for molecular dynamics.

The level of modeling accuracy seen in this CASP has many implications for structural 

biology. We have already seen that the structures are accurate enough to help solve 

structures, both X-ray and cryo-EM12. Three difficult target structures were solved with 

molecular replacement using crystallographic data and CASP14 models. An additional 

atomic structure was derived based on a lower resolution cryo-EM density map. A post-

CASP study of the extent to which other targets could have been solved using molecular 

replacement by Randy Read and colleagues found that only two of those tested did not 

have models good enough for molecular replacement49. So it is clear that going forward, the 

solution of crystal structures in particular will very frequently be done using these models, 

often greatly speeding the process. As well as providing a powerful aid for solving structures 

the methods will create more general synergy between computation and experiment. For 

example, a sequence alignment error in one of the target experimental structures was 

corrected with the aid of a model12. The correction hinged on accurately identifying which 

of two proline residues is in the cis conformation rather than trans, a very finely balanced 

energy difference with about only one in 15 prolines in protein structures adopting the cis 

form50. All this will be aided by the availability of servers such as that already released by 

the Baker group48, and by databases of computed structures, such as the one launched by 

DeepMind and the EMBL.

As discussed earlier, there is reason to believe that the new methods will also be extended 

to protein complexes. As with protein docking, the CASP function assessors have shown 

that improved accuracy of structure models will improve the performance of current ligand 

docking methods8, with implications for screening ligand specificity across all proteins. 

Deep learning methods for small ligand docking have been developing in parallel to the 

protein structure work51 and a new community experiment (CACHE) similar to CASP is 

about to be launched to evaluate these. There are obvious implications for drug design and 

repurposing if the methods are as effective as claimed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Trend lines of backbone agreement with experiment for the best models in each of the 14 

CASP rounds. Individual target points are shown for the most recent round. The three targets 

with the lowest agreement with experiment are colored blue (T1027 and T1029, NMR) 

and red (T0147s1, a subunit of a cryo-EM-derived heteromeric structure with complex 

inter-subunit interactions). The agreement metric, GDT_TS, is a multi-scale indicator of the 

closeness of the Cα atoms in a model to those in the corresponding experimental structure. 

Target difficulty is based on sequence and structure similarity to other proteins with known 

experimental structures. Performance in CASP14 (top black line) is very impressive, with 

accuracy approaching and in some cases likely exceeding experimental accuracy for many 

targets (see later text).
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Figure 2: 
Example of a high accuracy CASP14 model - CASP target T1053, a two-domain bacterial 

kinase. Model (from AlphaFold2, GDT_TS 93) in magenta, experimental structure (PDB 

7m7a, resolution 3.2 Å) in turquoise. Both domains are difficult modeling targets (FM/TBM 

category).
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Figure 3: 
Superposition of a model (from AlphaFold2) of SARS CoV-2 ORF8 (CASP target T1064) 

and the corresponding experimental structure (PDB 7jtl, resolution 2.0 Å), illustrating the 

atomic level of agreement with experiment typically found in CASP14.
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Figure 4: 
(A) Average agreement of the best CASP14 models with experiment (GDT_TS) for different 

categories of experimental data. The first three bins show a fall-off as the resolution of X-ray 

structures decreases, suggesting lower GDT_TS values are partly due to higher experimental 

error. The effect is most pronounced for Cryo-EM experimental structures (right hand bin, 

resolution range 2.2 – 3.8 Angstroms). Two of the three NMR targets (not included here) 

have very low GDT_TS values (see text). (B) Distribution of experimental data type across 

categories of target difficulty. The large majority of targets in the most difficult category 

(FM) have low resolution X-ray, Cryo-EM (resolution range 2.2 – 3.8 Angstroms), or NMR 

data, whereas in the easiest category, 90% of targets are determined from higher resolution 

X-ray data.
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Figure 5: 
(A) Backbone agreement with experiment (GDT_TS) versus fraction of targets reaching 

a given level of agreement with experiment in different modeling difficulty categories. 

Trend lines for targets with the strongest homologous structural information available 

(‘TBM-easy’) are green, those where homology modeling is more difficult (‘TBM-Hard’) 

blue, those with only remote structural homologies (‘FM/TBM’) red, and the most difficult 

set with no detectable homology to known structures (‘FM’) black. Best models for each 

target. Targets with more information on homologous structures tend to be more accurate, 

but interpretation of that is complicated (see text). (B) Backbone agreement with experiment 

(Cα atom Root Mean Square Deviation) for different modeling difficulty categories (best 

models for each target).
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Figure 6: 
Best model backbone agreement with experiment (GDT_TS) as a function of log normalized 

sequence alignment depth (Neff/len) for targets with no detectable homology to known 

structures (‘Free Modeling’ (‘FM’)). Data for the most recent three CASPs. For this subset 

of the hardest ‘FM’ targets, dependence on alignment depth seen in earlier CASPs is not 

seen in CASP14.
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