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Abstract
Hepatocellular carcinoma (HCC) is among the leading causes of cancer incidence 
and death. Despite decades of research and development of new treatment 
options, the overall outcomes of patients with HCC continue to remain poor. 
There are areas of unmet need in risk prediction, early diagnosis, accurate pro-
gnostication, and individualized treatments for patients with HCC. Recent years 
have seen an explosive growth in the application of artificial intelligence (AI) 
technology in medical research, with the field of HCC being no exception. Among 
the various AI-based machine learning algorithms, deep learning algorithms are 
considered state-of-the-art techniques for handling and processing complex 
multimodal data ranging from routine clinical variables to high-resolution 
medical images. This article will provide a comprehensive review of the recently 
published studies that have applied deep learning for risk prediction, diagnosis, 
prognostication, and treatment planning for patients with HCC.
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Core Tip: There are emerging roles for deep learning technology in the field of hepato-
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cellular carcinoma (HCC) including HCC risk prediction, as well as diagnosis, 
prognostication, and treatment planning leveraging readily available data from 
radiologic and histopathologic medical images. This article will provide a compre-
hensive review of the recently published studies that have applied deep learning for 
risk prediction, diagnosis, prognostication, and treatment planning for patients with 
HCC.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is an aggressive primary liver cancer that develops in 
the setting of chronic parenchymal liver diseases, and is among the top causes of 
cancer incidence and mortality worldwide[1,2]. While the burden of HCC has been 
declining with effective antiviral therapy against hepatitis B virus (HBV) and hepatitis 
C virus (HCV), HCC incidence related to metabolic syndrome will likely continue to 
rise due to the dramatic increase in the prevalence of non-alcoholic fatty liver disease 
(NAFLD) in the general population[3]. Decades of HCC research led to the deve-
lopment of a screening protocol, non-invasive diagnostic modalities based on imaging, 
and various treatment modalities including surgical, locoregional and systemic 
therapies[4,5]. However, the overall outcomes of patients with HCC continue to 
remain poor and there are areas of significant unmet need in risk prediction, early 
detection, accurate prognostication, and individualized treatments for patients with 
HCC.

Patients with HCC generate enormous amounts of health data. While promising for 
researchers, ensuring that such high volumes of data are turned into actionable 
knowledge can be a significant challenge. Artificial intelligence (AI) is thought to be 
capable of synthesizing and analyzing multimodal data with superhuman degrees of 
accuracy or reliability, and recent years have seen a rapid growth in the application of 
AI to many fields of medicine including hepatology[6]. This “AI revolution” over the 
past decade has been possible due to the advent of deep learning technology. Deep 
learning algorithms can process a broad spectrum of medical data from structured 
numeric data such as vital signs and laboratory values, high dimensional data from 
multi-omics studies, as well as digitized high-resolution images from various 
radiologic and histopathologic studies. This review aims to provide an overview as 
well as highlight examples of the many potential applications of deep learning to 
improve the care of patients with HCC.

AI, MACHINE LEARNING, AND DEEP LEARNING
AI-based approaches provide a variety of methods for a range of tasks and clinical 
application including image classification, organ and lesion segmentation, accurate 
extraction of key imaging features and measurements, tumor detection, stratification 
of high-risk subjects, prediction of disease and treatment outcome (Figure 1). Advan-
cements in AI in recent years, particularly in the realm of medical image processing 
and analysis, offer an enormous range of automated tools for extracting precise 
measurements of biomarkers, revealing complex features, quantifying tissue character-
istics and performing radiomics for deep analysis of raw imaging data.

The term “artificial intelligence” encompasses a broad range of technology that 
enables machines to perform tasks typically thought to require human reasoning and 
problem-solving skills[7]. “Machine learning” is a branch of AI in which computer 
algorithms train on sample data to build a mathematical model that makes predictions 
or decisions without being explicitly programmed to do so[8]. Machine learning 
algorithms can be broadly divided into supervised and unsupervised learning. 
Supervised learning algorithms train on sample data with labeled outcome data, and 
their goal is to learn the relationship between the input data and the outcomes to make 
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Figure 1 Schematic representation of the relationships between the terms artificial intelligence, machine learning, and deep learning, and 
how deep learning can utilize multimodal data to improve care for patients with hepatocellular carcinoma.

accurate predictions about the outcome when provided with a new set of input data
[9]. Examples of supervised learning algorithms include traditional techniques such as 
linear regression and logistic regression, as well as more sophisticated techniques 
including support vector machines, random forest and gradient boosting. On the other 
hand, unsupervised learning algorithms train on unlabeled sample data and analyze 
the underlying structure or distribution within the data to discover new clusters or 
patterns[10]. Examples of unsupervised learning algorithms include K-means and 
principle component analysis among many others.

Among the various AI-based machine learning algorithms, artificial neural 
networks (ANNs) consist of layers of interconnected mathematical formulas that 
enable them to analyze complex non-linear relationships[11]. “Deep learning (DL)” 
refers to highly complex AI models utilizing multiple layers of ANNs and has recently 
emerged as a state-of-the-art AI technique for analyzing complex, high-dimensional 
healthcare data. Some of the commonly used DL techniques include convolutional 
neural networks (CNNs) and recurrent neural networks (RNNs)[12]. CNNs have 
connective patterns resembling those of an animal visual cortex and can detect 
inherent spatial features of high dimensional images. RNNs have connections forming 
a directed graph along a temporal sequence, and therefore can be highly useful in time 
series prediction.

It is crucial to recognize that any AI-based machine learning algorithms require 
external validation in an independent dataset as models could be overfitted and end 
up overestimating the performance. In this review article, the performance character-
istics of the various DL models are from the validation cohorts, and not the original 
derivation cohorts used to train the algorithms.

HCC CLINICAL DATA
Despite multiple available risk prediction tools for HCC, none have been rigorously 
validated or endorsed by major liver societies. Currently, HCC surveillance is recom-
mended for patients with cirrhosis and high risk patients with chronic HBV infection
[13]. Accurate prediction models utilizing more specific risk factors for HCC 
development at individual levels would allow health systems to implement targeted 
screening strategies. Ioannou et al[14] trained a RNN to predict HCC development 
within 3 years using 4 baseline variables and 27 longitudinal variables from 48151 
patients with HCV-related cirrhosis in the national Veterans Health Administration. 
The RNN model significantly outperformed logistic regression and exhibited an area 
under the curve (AUC) of 0.759 among all samples and an AUC of 0.806 among 
patients with sustained virologic response. Phan et al[15] surveyed 1 million random 
samples from Taiwan’s National Health Insurance Research Database between 2002 to 
2010 to predict liver cancer among patients with viral hepatitis. The disease history of 
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each patient was transformed into a 108 × 998 matrix and applied to a CNN, which 
predicted liver cancer with an AUC of 0.886 and an accuracy of 0.980. Another study 
by Nam et al[16] constructed a deep neural network to predict 3-year and 5-year 
incidence of HCC in 424 patients with HBV-related cirrhosis on entecavir therapy. 
When applied to an external validation cohort of 316 patients, the DL model achieved 
a Harrell’s C-index of 0.782 and significantly outperformed 6 previously reported 
models based on traditional modeling. The same group also developed another DL 
model called the AI-based Model of Recurrence after Liver Transplantation (MoRAL-
AI) to predict HCC recurrence after liver transplantation using variables such as tumor 
diameter, age, alpha-fetoprotein (AFP), and prothrombin time[17]. The MoRAL-AI 
showed significantly better predictive performance compared to conventional models 
such as the Milan, UCSF, up-to-seven, and Kyoto criteria (C-index = 0.75 vs 0.64, 0.62, 
0.50, 0.50, respectively; P < 0.001).

HCC MULTI-OMICS
Serum AFP has been widely used as a predictive and prognostic biomarker for HCC
[18], but AFP has limited sensitivity for detecting early-stage HCC and its levels do not 
reliably correlate with disease progression[19]. Recent advances in multi-omics related 
to HCC are expected to address this unmet need for novel biomarkers. Multi-omics 
refers to an approach to biological analysis which utilizes data sets from multiple 
"omics", such as the genome, epigenome, transcriptome, proteome, metabolome and 
microbiome. Multi-omics experiments generate an enormous amount of information, 
and various machine learning techniques including DL that can help with the 
computational challenges of processing and analyzing such high dimensional data. Xie 
et al[20] used gene expression profiling of peripheral blood to build an ANN model 
that classifies HCC patients from a control group. Using a nine-gene expression 
system, the ANN was able to distinguish HCC patients from controls with an AUC of 
0.943, 98% sensitivity, and 85% specificity, although it should be noted that the control 
group was healthy individuals rather than patients with cirrhosis, which could have 
overestimated the performance of the model. Choi et al[21] proposed a novel network-
based DL method to identify prognostic gene signatures via G2Vec, a modified 
Word2Vec model originally used for natural language processing (NLP). When 
applied to gene expression data for HCC from the Cancer Genome Atlas (TCGA), 
G2Vec showed superior prediction accuracy for patient outcomes compared to 
existing gene selection methods and was able to identify two distinct gene modules 
significantly associated with HCC prognosis. Chaudhary et al[22] used RNA 
se×quencing, miRNA, and methylation data of 360 HCC patients from TCGA to build 
an autoencoder, which is an unsupervised feed-forward neural network. Using this 
DL model, they were able to distinguish patients with survival differences and identify 
specific mutations and pathways as predictors of aggressive tumor behavior.

RADIOLOGY
HCC diagnosis and segmentation 
In recent years, there have been remarkable advances in the application of AI for the 
interpretation of medical imaging, primarily due to the use of DL algorithms using 
CNN[23]. CNN algorithms trained on ultrasound, computed tomography (CT), or 
magnetic resonance imaging (MRI) images have shown excellent performances in 
detection of lesions, classification of lesions, segmentation of organs or anatomic 
structures, and imaging reconstruction[24].

In 2012, Streba et al[25] prospectively studied contrast-enhanced ultrasound images 
of 112 patients to train an ANN that classified five different types of liver tumors. The 
ANN showed promising performances with accuracies of 94.5% in the training set and 
87.1% in the testing set. In 2017, Hassan et al[26] reported using the stacked sparse 
auto-encoder, an unsupervised DL technique, to segment and classify liver lesions on 
ultrasound images with a classification accuracy of 97.2%. Additionally, Bharti et al[27] 
built a CNN using echotexture and roughness of liver surface on 754 segmented 
ultrasound images, which differentiated between normal liver, chronic liver disease, 
cirrhosis, and HCC with a classification accuracy of 96.6%. Schmauch et al[28] also 
created a CNN which detects and characterizes benign and malignant focal liver 
lesions on 2-D ultrasound images from 367 patients from various institutions. When 
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applied to a new dataset of 177 patients, the model achieved a weighted mean AUC of 
0.891. Recently, Brehar et al[29] conducted a study comparing CNN’s performance for 
HCC detection on ultrasound images against conventional machine learning alg-
orithms including multi-layer perceptron, support vector machines, random forest and 
AdaBoost. The CNN achieved an AUC of 0.95% with 91.0% accuracy, 94.4% 
sensitivity, and 88.4% specificity and significantly outperformed the conventional 
machine learning algorithms. Beyond detecting the actual presence of HCC on 
ultrasound images, studies have also attempted to predict the risk of future HCC 
development based on analyzing the ultrasound images of liver parenchyma in 
patients without HCC. For example, Jin et al[30] performed a DL radiomics analysis on 
2-D shear wave elastography and corresponding B-mode ultrasound images of 434 
chronic HBV patients, which predicted 5-year HCC development with AUC of 0.900 in 
the test cohort.

In addition to ultrasound images, cross-sectional imaging from CT or MRI studies 
serve as an extremely abundant and promising source of data for DL. In 2018, Yasaka 
et al[31] used CT image sets of liver masses from 460 patients to train a CNN that can 
classify liver lesions into five categories of: (1) HCC; (2) Other malignant tumors; (3) 
Indeterminate masses; (4) Hemangiomas; and (5) Cysts with a median AUC of 0.92. 
Shi et al[32] showed that incorporation of a CNN enabled identification of HCC using 
a three-phase CT imaging protocol with a diagnostic accuracy similar to that of a four-
phase protocol, which would allow patients to receive lower doses of radiation. 
Segmentation of HCC, liver parenchyma, and other organs on CT scan is very 
important for determination of tumor extent and treatment planning, but manual 
contouring of the images is highly time-consuming and subject to inter-observer 
variability. The 2017 International Conference On Medical Image Computing 
Computer Assisted Intervention called for a Liver Tumor Segmentation Benchmark 
(LITS) challenge, encouraging researchers to develop automatic segmentation 
algorithms to segment liver lesions using 200 CT scans (training: 130; testing: 70) 
provided by clinical sites around the world. Several teams participating in the 
challenge have developed DL algorithms with promising performances for HCC 
segmentation using CT images[33-37]. Beyond the LITS challenge, there are ongoing 
research efforts to improve segmentation using different architectures of DL networks
[38-42].

Hamm et al[43] used MRI images from 494 patients to train a CNN which can 
classify hepatic lesions into six different categories. When applied to random cases in 
the test set, the CNN outperformed expert radiologists (90% sensitivity and 98% 
specificity vs 82.5% sensitivity and 96.5% specificity) and especially for HCC detection 
(90% sensitivity vs 60%-70% sensitivity). The same group conducted additional studies 
to make their CNN interpretable by generating highlighted feature maps corres-
ponding to liver lesions[44]. Wu et al[45] built a CNN using multiphase MRI images 
and achieved an AUC of 0.95 for distinguishing Liver Imaging Reporting and Data 
System (LI-RADS) grade 3 from LI-RADS 4 and 5 lesions for HCC diagnosis. Zhen et al
[46] also trained a CNN model combining unenhanced MRI images and clinical 
variables from 1210 patients with liver tumors, which demonstrated diagnostic 
performances on par with three experienced radiologists using enhanced MRI images.

HCC prognostication, treatment planning, and response to treatment 
In addition to serving as accurate and efficient tools for diagnosis of HCC, DL models 
utilizing radiology data can also be used for prognostication, treatment planning, and 
assessing tumor response to therapy. Vascular invasion is a key prognostic element in 
patients with HCC. Recent studies developed CNN models with promising ability to 
detect microvascular invasion on MRI images of HCC patients undergoing surgical 
resection[47-49]. An et al[50] used an unsupervised CNN-based deformable image 
registration technique to assess the relationship between ablative margins and local 
tumor progression in 141 patients with single HCC who underwent microwave 
ablation, and demonstrated that patients with ablative margins < 5 mm were at 
significantly higher risk of local tumor progression. Liu et al[51] developed a DL 
radiomics model to predict responses to trans-arterial chemoembolization (TACE) 
using ultrasound images of 130 HCC patients, which accurately predicted TACE 
response with an AUC of 0.93. The same group also assessed their ultrasound-based 
DL radiomics model to predict 2-year progression-free survival among 419 HCC 
patients and facilitate optimized treatment selection. Peng et al[52] trained a residual 
CNN model to predict response to TACE using CT images from 562 patients with 
intermediate-stage HCC undergoing TACE, which showed accuracies of 85.1% and 
82.8% in two external validation cohorts. Another study developed a DL score for 
disease-specific survival by using CT images in a cohort of 243 patients with HCC 
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treated with TACE, with a higher score predicting poor prognosis [hazard ratio (HR): 
3.01; 95% cumulative incidence (CI): 2.02-4.50][53]. Finally, Zhang et al[54] built a DL-
based model predicting overall survival using CT images from 201 patients with 
unresectable HCC treated with TACE and sorafenib, which achieved superior 
predictive performance compared to the clinical nomogram (C-index of 0.730 vs 0.679, 
P = 0.023).

HCC PATHOLOGY
Automated interpretation of histopathologic images from liver biopsy is another major 
area of medical imaging in patients with HCC where DL can be utilized. In addition to 
effectively replicating the human pathologists’ jobs of diagnosing and grading HCC, 
DL models can help identify and analyze additional complex imaging features and 
patterns which are related to specific mutations and disease prognosis. Lin et al[55] 
used images from multiphoton microscopy of 113 HCC patients to train a CNN with 
over 90% accuracy for determining HCC differentiation. Kiani et al[56] developed a 
CNN-based “Liver Cancer Assistant” which accurately differentiated hematoxylin and 
eosin (H&E) images of HCC and cholangiocarcinoma and helped improve the 
diagnostic performance of nine pathologists. Liao et al[57] used TCGA dataset for 
training a CNN that distinguished HCC from adjacent normal tissues with perfect 
performance (AUC: 1.00) and predicted the presence of specific somatic mutations 
with AUCs over 0.70. Wang et al[58] trained a CNN for automated segmentation and 
classification of individual nuclei at single-cell levels on H&E-stained tissue sections of 
HCC tumors from TCGA, and performed feature extraction to identify 246 quan-
titative image features. Then, a clustering analysis by an unsupervised learning 
approach identified three distinct histologic subtypes which were independent of 
previously established genomic clusters and had different prognosis. Chen et al[59] 
trained a CNN for automatic grading of HCC tumors on histopathological H&E 
images, which showed 96% accuracy for benign and malignant classification and 
89.6% accuracy for the degree of tumor differentiation, and predicted the presence of 
specific genetic mutations.

Lu et al[60] applied three pre-trained CNN models to extract imaging features from 
HCC histopathology and performed Cox proportional hazards analysis to predict 
overall survival and disease-free survival, and observed significant correlations 
between the imaging features and established biological pathways. Saillard et al[61] 
used two DL algorithms based on whole-side digitized histological slides from 194 
patients with HCC to predict the survival of patients treated by surgical resection. 
When tested on an independent validation set from TCGA, both DL models had a 
higher discriminatory power than a score combining all baseline variables associated 
with survival. Shi et al[62] built an interpretable DL framework using pathologic 
images from 1445 patients with HCC and developed a “tumor risk score” which 
showed prognostic performances independent of and superior to clinical staging 
systems and stratified patients into five groups of different prognosis. A recent study 
by Yamashita et al[63] developed a histopathology-based DL based system which 
stratified patients with risk scores for postsurgical recurrence of HCC.

FUTURE DIRECTION
There are several key issues to address before DL-based AI models can be universally 
implemented in real world clinical practice settings. Due to their complexity, DL 
models are traditionally considered to be “black-box” models, meaning humans 
cannot understand how the DL models make their predictions. Interpretability of the 
DL models are crucial for physicians to accept and trust them in everyday clinical 
practice, and for troubleshooting and improving the models for rare cases. This is 
being addressed by recent developments in various “explainable AI” techniques but 
currently there is no clear consensus on the best methodology. Another potential 
limitation is the generalizability of the individual DL algorithms. Concerns have been 
raised that AI algorithms developed at highly specialized academic medical centers 
using their own patients’ data may over-represent certain groups of patients and not 
accurately reflect the real-world population of patients seen at local community 
hospitals. Finally, AI models, like other prediction models, are often not publicly 
available, limiting external validation. Independent validation of the proposed model 
and comparison to old models are as important as deriving new models. Large-scale, 
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Table 1 Studies applying deep learning for hepatocellular carcinoma

Study Cohort Data source Deep learning Input Output Main findings

Predicting HCC risk using clinical variables

Ioannou et al[14] 
2020

48151 HCV 
cirrhosis (T: 90%, 
V: 10%)

VHA database RNN Clinical variables Risk of HCC 
development

RNN predicted HCC 
development with AUC of 0.759, 
and AUC of 0.806 among those 
who achieved SVR

Phan et al[15] 
2020

6052 HBV and 
HCV (T: 70%, V: 
30%)

Taiwanese 
NHIRD

CNN Disease history 
data

Risk of HCC 
development

CNN achieved an accuracy of 
0.980 and AUC of 0.886 for 
predicting HCC development 
among viral hepatitis patients

Nam et al[16] 
2020

T: 424 HBV 
cirrhosis; V: 316 
HBV cirrhosis

2 Korean centers ResNet Clinical variables Risk of HCC 
development

DL model achieved an accuracy 
of 0.763 and AUC of 0.782 in the 
validation cohort and 
outperformed previous models

Nam et al[17] 
2020

T: 349 LT 
recipients; V: 214 
LT recipients

3 Korean LT 
centers

ResNet Clinical variables Recurrent HCC after 
LT

DL model significantly 
outperformed conventional 
models in prediction of post-T 
HCC recurrence with AUC of 
0.75

Multi-omics-based HCC diagnosis and prognostication

Xie et al[20] 2018 T: 133 HCC/54 
HV; V: 52 
HCC/34 HV

1 center in China ANN Gene expression HCC detection ANN using nine genes had an 
AUC of 0.943, 98% sensitivity, 
and 85% specificity for 
classifying HCC

Choi et al[21] 
2018

135 HCC (10-fold 
CV)

TCGA G2Vec Gene expression HCC prognosis G2Vec showed significantly 
higher prediction accuracy for 
patient outcomes compared to 
existing gene selection tools

Chaudhary et al
[22] 2018

T: 360 HCC; V: 
220, 221, 166, 40, 
27 HCC

TCGA; 5 external 
datasets

Auto-encoder RNA-seq, miRNA-
seq, methylation

HCC prognosis DL model distinguished groups 
with survival differences and 
identified mutations and 
pathways predicting aggressive 
tumor behavior

Radiology-based HCC diagnosis/prediction

Streba et al[25] 
2012

112 FLL (10-fold 
CV)

1 center in 
Romania

ANN US images FLL type ANN had 87.12% testing 
accuracy, 93.2% sensitivity, and 
89.7% specificity for classifying 5 
classes of liver lesions 

Hassan et al[26] 
2017

110 FLL (10-fold 
CV)

1 center in Egypt Auto-encoder US images FLL type The proposed system had 97.2% 
accuracy, 98% sensitivity, and 
95.70% specificity for classifying 
liver lesions

Bharti et al[27] 
2018

24 normal, 25 
CLD, 25 cirrhosis, 
20 HCC

1 center in India CNN US images Liver stages CNN achieved 96.6% 
classification accuracy for 
differentiating normal liver, 
CLD, cirrhosis, and HCC 

Schmauch et al
[28] 2019

T: 367 FLL; V: 177 
FLL

Centers in France ResNet US images FLL type DL model reached mean AUC of 
0.935 for focal liver lesion 
detection and 0.916 for focal 
liver lesion characterization 

Brehar et al[29] 
2020

T: 200 HCC; V: 68 
HCC

1 center in 
Romania

CNN US images HCC detection CNN achieved AUC of 0.95, 
accuracy of 0.91, 94.4% 
sensitivity and 88.4% specificity 
for HCC detection

Jin et al[30] 2021 434 HBV (3:1:1 
split)

1 center in China DL radiomics US images Risk of HCC 
development

DL radiomics model predicted 
5-yr HCC development risk 
with AUC of 0.900 in the test set 

Yasaka et al[31] 
2018

T: 460 liver 
masses; V: 100 
liver masses

1 center in Japan CNN CT images Liver mass type CNN classified liver lesions into 
five categories with a median 
AUC of 0.92 

CNN applied to three-phase CT 
protocol images achieved AUC 
of 0.925 for differentiating HCC 

Shi et al[32] 2020 449 FLL; (T: 80%, 
V: 20%)

1 center in China CNN CT images FLL type
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from other FLLs

Hamm et al[43] 
2019

T: 434 FLL; V: 60 
FLL

1 center in 
United States

CNN MRI images FLL type CNN achieved 90% sensitivity 
and 98% specificity for 
classifying FLLs and AUC of 
0.992 for HCC classification

Wang et al[44] 
2019

T: 434 FLL; V: 60 
FLL

1 center in 
United States

CNN MRI images FLL type Interpretable DL system 
achieved 76.5% PPV and 82.9% 
sensitivity for identifying correct 
radiological features

Wu et al[45] 2020 89 liver tumors; 
(60: 20: 20)

1 center in 
United States

CNN MRI images LI-RADS grading CNN achieved AUC of 0.95, 90% 
accuracy, 100% sensitivity and 
83.5% PPV for LI-RADS grading 
of liver tumors

Zhen et al[46] 
2020

T: 1210 liver 
tumors; V: 201 
liver tumors

1 center in China CNN MRI images Liver tumor type CNN combined with clinical 
data showed AUC of 0.985 for 
classifying HCC with 91.9% 
agreement with pathology

Radiology-based HCC prognostication, treatment planning, and response to treatment

Zhang et al[47] 
2021

T: 158 HCC; V: 79 
HCC

1 center in China CNN MRI images MVI in HCC CNN achieved AUC of 0.72, 55% 
sensitivity, and 81% specificity 
for preoperative MVI in HCC 
patients 

Wang et al[48] 
2020

T: 60 HCC; V: 40 
HCC

1 center in China CNN MRI images MVI in HCC Fusion of deep features from 
MRI images yielded AUC of 0.79 
for MVI prediction in HCC 
patients

Jiang et al[49] 
2021

405 HCC; (T: 80%, 
V: 20%)

1 center in China CNN CT images MVI in HCC CNN achieved AUC of 0.906 for 
prediction of MVI. Mean 
survival was significantly better 
in the group without MVI

An et al[50] 2020 141 single HCC 
resect MWA

1 center in China CNN MRI images Ablative margin Deep learning model accurately 
estimated ablative margins and 
risk of local tumor progression

Liu et al[51] 2020 T: 89 HCC resect 
TACE; V: 41 HCC 
rec. TACE

1 center in China CNN Ultrasound images Response to TACE Deep learning radiomics model 
predicted tumor response to 
TACE with AUC of 0.93

Peng et al[52] 
2020

T: 562 HCC resect 
TACE; V:227 
HCC rec. TACE

3 centers in 
China

CNN CT images Response to TACE Deep learning model had 
accuracies of 85.1% and 82.8% 
for predicting TACE response in 
2 validation cohorts

Liu et al[53] 2020 243 HCC resect 
TACE (6:1:3 split)

1 center in China CNN CT images Post-TACE survival Higher DL score was an 
independent prognostic factor 
and predicted overall survival 
with AUCs of 0.85-0.90

Zhang et al[54] 
2020

201 HCC resect 
TACE + sorafenib 
(T: 120, V: 81)

3 centers in 
China

CNN CT images OS on TACE + 
sorafenib

Deep learning signature 
achieved C-index of 0.714 for 
predicting OS in HCC patients 
receiving TACE + sorafenib

Histopathology-based HCC diagnosis, subtyping, and outcome predictions

Lin et al[55]2019 113 HCC 1 center in China CNN Histopath images HCC differentiation CNN achieved an accuracy of 
0.941 for determining HCC 
differentiation on multiphoton 
microscopy

Kiani et al[56] 
2020

70 WSI (35 HCC, 
35 CC)

TCGA CNN Histopath images HCC vs CC CNN-based “Liver Cancer 
Assistant” accurately 
differentiated HCC vs 
cholangiocarcinoma

Liao et al[57] 2020 T: 491 HCC; V: 
455 HCC

TCGA; 1 center 
in China

CNN Histopath images HCC detection, 
mutations

CNN distinguished HCC from 
adjacent tissues with AUC of 
1.00 and predicted specific 
mutations with AUC over 0.70

Unsupervised clustering 
identified 3 histological 
subtypes complementing 
molecular pathways and 

Wang et al[58] 
2020

T: 99 HCC; V: 205 
HCC

TCGA CNN Histopath images Histological HCC 
subtype
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prognostic value

Chen et al[59] 
2020

T: 402 HCC/89 
normal; V: 67 
HCC/34 normal

GDC portal; 1 
center in China

CNN Histopath images HCC grade 
mutations

CNN achieved 89.6% accuracy 
for tumor differentiation stage 
and predicted presence of 
specific gene mutations

Lu et al[60] 2020 421 HCC/105 
normal (6-fold 
CV)

GDC portal CNN Histopath images HCC prognosis Pre-trained CNN predicted OS 
using pathology images and 
identified HCC subgroups with 
different prognosis

Saillard et al[61] 
2020

T: 194 HCC; V: 
328 HCC

1 French center 
TCGA

CNN Histopath images Survival after HCC 
resection

CNN models using pathology 
images predicted survival with 
C-index 0.75-0.78 and 
outperformed conventional 
models

Shi et al[62] 2021 T: 1125 HCC; V: 
320 HCC

1 center in China; 
TCGA

CNN Histopath images HCC outcomes Deep learning-based “tumor 
risk score” was superior to 
clinical staging and stratified 5 
groups of different prognosis

Yamashita et al
[63] 2021

T: 36 WSI; V: 30 
WSI

1 center in 
United States; 
TCGA

CNN Histopath images Post-surgical 
recurrence

CNN risk scores outperformed 
TNM system for predicting 
recurrence and identified high-
and low-risk subgroups

ANN: Artificial neural network; AUC: Area under the curve; CC: Cholangiocarcinoma; CNN: Convolutional neural network; CV: Cross-validation; FLL: 
Focal liver lesion; GDC: Genomic Data Commons; HBV: Hepatitis B virus; HCC: Hepatocellular carcinoma; HCV: Hepatitis C virus; HV: Healthy 
volunteers; LT: Liver transplant; MVI: Microvascular invasion; MWA: Microwave ablation; OS: Overall survival; PFS: Progression-free survival; RFA: 
Radio-frequency ablation; RNN: Recurrent neural network; SR: Surgical resection; STS-net: Spatial transformed similarity network; SVR: Sustained 
virologic response; T: Training; TCGA: The Cancer Genome Atlas; V: Validation; VHA: Veterans Health Administration; WSI: Whole slide image; CT: 
Computed tomography; MRI: Magnetic resonance imaging; NHIRD: National Health Insurance Research Database; TNM: Tumor, Nodes, Metastasis; 
TACE: Trans-arterial chemoembolization; LI-RADS: Liver Imaging Reporting and Data System.

prospective, multi-centered studies involving diverse populations with external 
validation will be necessary before DL algorithms can be widely accepted.

A currently under-explored, but highly promising and exciting area for the 
application of DL is the field of autonomous robotics. In a recent editorial, Gumbs et al
[64] state that while the current form of robotic surgery seems like a form of minimally 
invasive surgery, the true power of robotic surgery exists in its potential to create 
autonomous actions. Recently, a DL-based surgical instrument tracking algorithm was 
able to closely track the instruments during robotic surgery and evaluate the surgeons’ 
performance, demonstrating that DL algorithms can learn the correct steps of robotic 
surgery[65]. With the help of DL and other AI technologies, it may be possible to 
imagine a future where fully autonomous robots perform resection of large, complex 
HCC in ways that no human surgeons can mimic. However, there are significant 
barriers before the idea of fully autonomous robotic surgery can become a reality, 
including the current technical limitations of autonomous surgical robotics, as well as 
the hesitation of patients and providers to fully trust autonomous robots to perform 
invasive operations. “Explainability” of the DL algorithms will be critical here, as 
humans would need to be able to understand and correct every single mistake that an 
autonomous robot makes during surgery. Therefore, for the foreseeable future, DL will 
most likely remain as a helpful, adjunctive tool to assist human surgeons.

CONCLUSION
This review has provided a comprehensive overview of various ways in which DL 
algorithms can be employed to assist medical providers and enhance the care of 
patients with HCC (Table 1). DL algorithms not only can efficiently and accurately 
replicate the same jobs performed by human physicians, but more importantly can 
help discover novel biologic pathways and disease subgroups with clinical sig-
nificance by processing and analyzing complex high-dimensional data in ways 
impossible for the human brain.

Despite some important limitations to overcome, application of state-of-the-art AI 
technologies such as DL for the care of patients with HCC is no longer a futuristic idea 
but is rapidly becoming a reality. Most of the studies covered in this review were 
published within the past two years, and the number of studies utilizing DL continues 
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to increase exponentially. We anticipate that DL algorithms will soon take a major role 
in the diagnosis, prognostication, and treatment of patients with HCC.
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