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Assessment of measurable residual disease (MRD) upon treatment of acute myeloid leukemia (AML) remains challenging. It is
usually addressed by highly sensitive PCR- or sequencing-based screening of specific mutations, or by multiparametric flow
cytometry. However, not all patients have suitable mutations and heterogeneity of surface markers hampers standardization in
clinical routine. In this study, we propose an alternative approach to estimate MRD based on AML-associated DNA methylation
(DNAm) patterns. We identified four CG dinucleotides (CpGs) that commonly reveal aberrant DNAm in AML and their combination
could reliably discern healthy and AML samples. Interestingly, bisulfite amplicon sequencing demonstrated that aberrant DNAm
patterns were symmetric on both alleles, indicating that there is epigenetic crosstalk between homologous chromosomes. We
trained shallow-learning and deep-learning algorithms to identify anomalous DNAm patterns. The method was then tested on
follow-up samples with and without MRD. Notably, even samples that were classified as MRD negative often revealed higher
anomaly ratios than healthy controls, which may reflect clonal hematopoiesis. Our results demonstrate that targeted DNAm analysis
facilitates reliable discrimination of malignant and healthy samples. However, since healthy samples also comprise few abnormal-
classified DNAm reads the approach does not yet reliably discriminate MRD positive and negative samples.
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INTRODUCTION
Many patients with acute myeloid leukemia (AML) achieve
hematologic remission after treatment, but most of them will
eventually experience relapse [1]. Early and accurate detection of
remaining leukemia cells—previously referred to as “minimal
residual disease” (MRD), and now more appropriately termed
“measurable residual disease” with the same acronym—has been
shown to be a strong prognostic indicator for relapse of AML, and
might therefore be used as parameter for deciding on post-
remission treatment [2, 3].
Assessment of MRD is based on detection of specific immuno-

phenotypic [4], or genotypic [5] aberrations. This is commonly
performed by multiparameter flow cytometry (MFC) of leukemia-
associated immunophenotypes, and detection of specific mutations
by real-time quantitative PCR (RT-qPCR), digital droplet PCR, or next
generation sequencing (NGS) [1, 3]. So far, RT-qPCR is considered as
a gold standard for detection of MRD, however, it is applicable to
only 40–60% of AML patients as not all patients have suitable
translocations or mutations [3, 6]. Frameshift mutations of
nucleophosmin 1 (NPM1) are one of the most frequent molecular

abnormalities in AML that remain relatively stable in the course of
the disease and therefore represent an ideal target for RT-qPCR MRD
monitoring [7, 8]. Immunophenotypic detection of MRD can
potentially investigate more than 85% of AML cases, but this
approach lacks standardization of selected markers, instrument
settings or reporting thresholds [9].
Aberrant DNA methylation (DNAm) is a hallmark of cancer,

which is generally observed in AML [10, 11]. It is characterized by a
genome-wide loss of DNAm and accompanying hypermethylation
of promoter-associated CpG-islands [12]. The epigenetic land-
scape of AML is particularly modified by mutations and
epimutations in epigenetic modifiers, such as DNA methyltrans-
ferase DNMT3A [13–15] and TET2 [16]. Several studies demon-
strated that DNAm can be utilized as a biomarker for AML
diagnosis, classification, and prognostic stratification [17–19]. For
example, AML-subtypes reveal specific genome-wide DNAm
signatures [20, 21].
In this study, we followed the hypothesis that DNAm can also

be used to estimate MRD based on residual abnormal epigenetic
patterns. To this end, we identified genomic regions, which

Received: 16 February 2021 Revised: 25 May 2021 Accepted: 28 May 2021
Published online: 15 June 2021

1Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany. 2Institute for Biomedical
Engineering – Cell Biology, RWTH Aachen University Medical School, Aachen, Germany. 3Department of Hematology, Cellular Therapy and Hemostaseology, Leipzig University
Hospital, Leipzig, Germany. 4Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical School, RWTH Aachen University, Aachen, Germany.
5Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany. 6Medical Department I, University Hospital Carl Gustav Carus, TU Dresden,
Dresden, Germany. 7These authors contributed equally: Tanja Božić, Chao-Chung Kuo. ✉email: wwagner@ukaachen.de

www.nature.com/leu Leukemia

http://crossmark.crossref.org/dialog/?doi=10.1038/s41375-021-01316-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41375-021-01316-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41375-021-01316-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41375-021-01316-z&domain=pdf
http://orcid.org/0000-0001-8879-4754
http://orcid.org/0000-0001-8879-4754
http://orcid.org/0000-0001-8879-4754
http://orcid.org/0000-0001-8879-4754
http://orcid.org/0000-0001-8879-4754
http://orcid.org/0000-0002-2459-5841
http://orcid.org/0000-0002-2459-5841
http://orcid.org/0000-0002-2459-5841
http://orcid.org/0000-0002-2459-5841
http://orcid.org/0000-0002-2459-5841
http://orcid.org/0000-0003-1863-3239
http://orcid.org/0000-0003-1863-3239
http://orcid.org/0000-0003-1863-3239
http://orcid.org/0000-0003-1863-3239
http://orcid.org/0000-0003-1863-3239
http://orcid.org/0000-0003-1241-2048
http://orcid.org/0000-0003-1241-2048
http://orcid.org/0000-0003-1241-2048
http://orcid.org/0000-0003-1241-2048
http://orcid.org/0000-0003-1241-2048
http://orcid.org/0000-0002-1971-3217
http://orcid.org/0000-0002-1971-3217
http://orcid.org/0000-0002-1971-3217
http://orcid.org/0000-0002-1971-3217
http://orcid.org/0000-0002-1971-3217
https://doi.org/10.1038/s41375-021-01316-z
mailto:wwagner@ukaachen.de
www.nature.com/leu


generally reveal aberrant DNAm in AML. Targeted analysis of these
regions by bisulfite amplicon sequencing (BA-seq) with shallow-
learning and deep-learning algorithms, was then used to stratify
DNAm patterns of individual reads as either normal or abnormal.

MATERIALS AND METHODS
Identification of AML-associated CpGs
To identify CpGs that generally reveal aberrant DNAm in AML we used
Illumina Human Methylation 450k BeadChip datasets of blood from healthy
donors: GSE40279 [22], GSE50660 [23] and GSE77716 [24]; and from bone
marrow of AML patients: The Cancer Genome Atlas (TCGA) [25], GSE58477
(cytogenetic normal AMLs) [26] and GSE62298 [27]. To identify reliable and
reproducible candidate CpGs we randomly paired these control and AML
datasets. For each of these paired studies the candidate CpGs were selected
based on: (i) β-value (DNAm level) < 0.1 or >0.9 in healthy donors; (ii)
standard deviation (s.d.) of DNAm in healthy samples <0.05; (iii) and then
ranked by the mean DNAm difference between healthy and AML in the
corresponding datasets. Based on these criteria, we selected the top 100
CpGs that were either hyper- or hypomethylated in AML. The DNAm of
selected CpGs was also analyzed in DNAm datasets (all Human Methylation
450k BeadChip) of leukocyte subsets (GSE35069) [28]; hematopoietic stem
and progenitor cells (GSE63409) [29]; CD34+ cells (GSE58477) [26], B-cell
lymphoma (GSE37362) [30]; myelodysplastic syndrome (MDS; GSE51758) [31];
AML of elderly (GSE86409) [32], IDH1/IDH2-mutant AML (GSE153347), AML1-
ETO (GSE80508), FLT3-ITD (GSE64934) [33], and MDS and secondary AML
(GSE152710) [34].

Collection and preparation of samples
For targeted analysis of DNAm we used 34 blood samples of 15 AML
patients (first diagnosis and follow-up samples) from the Department of
Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation;
83 blood samples of 34 AML patients (first diagnosis and one or more
follow-up samples) obtained from the Study Alliance Leukemia Biobank
(SAL, Dresden, Germany); and peripheral blood of 63 healthy donors from
the Department of Transfusion Medicine at RWTH Aachen University
Medical School. The study was approved and all samples were taken after
written consent according to the guidelines of the local ethics committees
of RWTH Aachen University (Permit Numbers: EK206/09 (AML) and EK099/
14 (healthy donors)) and of the Medical Faculty of the Technical University
of Dresden (EK98032010). All AML samples at first diagnosis of the SAL
Biobank carry a mutation in NPM1 and MRD monitoring was performed
based on RT-qPCR using locked nucleic acid-containing primers adjusted
to ABL1 as a reference gene (NPM1mut/ABL) as described previously [35].
Genomic DNA was isolated from blood samples with the QIAamp DNA
Blood Kit (Qiagen, Hilden, Germany).
To estimate the sensitivity of our DNAm-based approach we performed

a limiting dilution assay by mixing DNA of a control sample (sample ID:
DD_H1_100) with DNA of an AML sample exhibiting high blast count in the
bone marrow and peripheral blood. Furthermore, we analyzed the DNAm
pattern of six leukemia cell lines: HL-60 (AML), KG-1a (AML), TF-1 (AML),
K562 (chronic myeloid leukemia), U937 (histiocytic lymphoma) and SUP-
B15 (B-cell precursor leukemia). DNA was isolated with the NucleoSpin
Tissue Kit (Macherey-Nagel, Düren, Germany). Further information on AML
samples is provided in Supplemental Table S1.

Bisulfite amplicon sequencing
Assays for targeted BA-seq were designed for four regions with AML-
associated CpGs. They comprise 14 neighboring CpGs around cg15289427,
10 CpGs around cg22797031, 15 CpGs around cg27630153, and 9 CpGs
around cg19586199. Genomic DNA (500 ng) of blood samples or cell lines
was bisulfite converted with the EZ DNAm (Zymo Research, Irvine, USA).
Subsequently, the four AML-associated regions were amplified using the
PyroMark PCR Kit (Qiagen) using primers with overhangs for subsequent
barcoding (Supplemental Table S2). PCR conditions are provided in the
Supplemental Table S3. Subsequently, all four regions of a sample were
pooled and purified using the Agencourt AMPure XP PCR Purification Kit
(Beckman Coulter, Brea, CA, USA). Pooled regions were amplified with a
2nd round of PCR using the PyroMark PCR Kit and primers containing 8 bp
long barcodes (Supplemental Table S4). Next, all samples were pooled,
purified with the Select-a-Size DNA Clean & Concentrator Kit (Zymo
Research), and library concentration was measured with the Qubit dsDNA
BR Assay Kit (Thermo Fischer Scientific). The prepared amplicon library was

denatured and diluted using the MiSeq Reagent Nano Kit v2 or MiSeq
Reagent Kit v2 (Illumina, San Diego, CA, USA). Due to low library diversity,
15–20% of the PhiX Control (Illumina) was spiked-in.
Pooled and barcoded samples were analyzed on the Illumina MiSeq

Benchtop Sequencer (Illumina) using the 250 bp paired-end sequencing
mode. Raw data quality was assessed with FastQC and trimmed with Trim
Galore (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/).
Trimmed reads were then aligned to given reference sequences and the
DNAm status of each CpGs was identified for each read by Bismark [36].
The average read depth was 8,500 (cg15289427), 36,000 (cg22797031),
37,000 (cg27630153), and 51,000 (cg19586199), while all samples with <50
reads on one of the amplicons were ignored. The analysis was done in R
and Python. Raw data has been deposited at Gene Expression Omnibus
under the accession number GSE166264. (Reviewer access token for
GSE166264: ajyjeaqujdkfpil)
SNP-analysis was done through splitting the reads within a sample into

two groups by the base with around 50% frequency of the top two
variants. This base was at least 3 bp apart from any CpG to exclude impact
by DNAm. Only few patients have such SNPs in the target regions.

AML-score based on four CpGs
The AML-score provides a simple measure based on the mean DNAm
levels at the four AML-associated CpGs, resulting in a score ranging from 0
to 1.

AML-score ¼ βcg15289427 þ βcg22797031 þ ð1� βcg27630153Þ þ ð1� βcg19586199Þ
4

Computational prediction of anomalous DNAm patterns
Control samples were randomly split into training and validation datasets
with a 7 to 3 ratio. Normal and abnormal DNAm patterns in individual
reads of BA-seq data were defined based on their occurrence in the
training set of healthy donors. We used two machine learning approaches
to define abnormal DNAm patterns: random forest and autoencoder.
Abnormal DNAm patterns were called by the machine learning algorithm
by supervised training on healthy and AML samples.
The random forest algorithm was applied with Python library scikit-learn

on each AML-associated region separately. The training datasets from
control samples plus additional first diagnosis samples were used to train
the model with maximal tree depth of 5. Based on the classification of
reads as abnormal and normal an anomaly ratio was calculated for each
region. The anomaly score for a given sample is then provided as the mean
of four anomaly ratios.
The autoencoder algorithm was constructed by Python library Keras

with the architecture of 8-3-8 nodes for encoder, latent, and decoder layer,
respectively. The binary signals for DNAm were converted to −1 (non-
methylated) and 1 (methylated) as the hyperbolic tangent activation
function was applied. Since we assume that DNAm patterns of different
blood cells are heterogeneous, all reads of a sample were classified before
they were applied for autoencoder: The classification is carried out by K-
means algorithm for unsupervised classification of the distinct blood cell
clusters of reads. This resulted in five clusters for each AML-associated
region. The purpose was to distinguish different reads that might derive
from distinct cell types, such as myeloid and lymphoid cells. The training of
the autoencoder was done for each cluster on each AML-associated region.
The loss function was defined by mean squared error, and the threshold
for abnormal reads was defined by the 99% percentile of loss function of
all reads in the training dataset. Any read above that threshold is regarded
as an abnormal read. The anomaly-ratio was calculated from the
proportion of detected abnormal reads, and eventually the anomaly score
was calculated from the mean of anomaly-ratios of all four AML-associated
regions. The anomaly score cutoffs for random forest and autoencoder
were defined by 99% percentile of the control training datasets.

Analysis of clonal hematopoiesis of indeterminate potential
(CHIP)
Library preparation and sequencing (250 bp paired-end) was performed on
the MiSeq Illumina platform with the MiSeq Reagent Kit V3 (MDS/MPN
panel). Raw data was analyzed with Ilumina RTA software (version 1.18.54),
and the SeqNEXT software (version 4.4.0, JSI medical systems GmbH,
Ettenheim, Germany) was used for alignment and variant calling. The self-
customized panel contained either the entire coding sequence or hot spot
regions of 31 genes (ABL1, ASXL1, BARD1, CALR, CBL, CHEK2, CSF3R,
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DNMT3A, ETNK1, ETV6, EZH2, IDH1, IDH2, JAK2, KIT, KRAS, MPL, NFE2, NRAS,
PDGFRA, PTPN11, RUNX1, SETBP1, SF3A1, SF3B1, SH2B3 (LNK), SRSF2, TCF12,
TET2, TP53, U2AF1). To minimize risk of detecting sequencing errors, a
threshold of 10 (absolute) and 5% (relative) variant reads for calling a
variant was chosen. After alignment, germline variants according to dbSNP
(150) database were excluded and the variant list was reviewed manually.

RESULTS
Specific genomic regions reveal frequent and marked
aberrant DNAm in AML
To select genomic regions that facilitate reliable discrimination of
DNAm patterns of malignant and healthy samples, we focused on
CpGs that were either consistently non-methylated or methylated
in healthy controls (β-value < 0.1 or >0.9) and had a low variation
of DNAm levels in control samples (standard deviation [s.d.] <
0.05), to make sure that normal DNAm could be robustly
discerned. Subsequently, we selected CpGs with the highest
difference in mean DNAm between control and AML samples. This
analysis was performed independently for three combinations of
DNAm datasets of control versus AML studies: GSE40279 (n= 656)
[22] versus TCGA (n= 194) [25]; GSE50660 (n= 464) [23] versus
GSE58477 (n= 62) [26]; and GSE77716 (n= 573) [24] versus
GSE62298 (n= 68) [27] (Fig. 1a,b; Supplemental Fig. S1). Notably,
despite the very different studies of AML and control samples,
there was a remarkable overlap in the top 100 selected CpGs: All
three comparisons revealed consistent aberrant hypermethylation

in AML at 26 CpGs, and hypomethylation at 19 CpGs (Fig. 1c,d;
Supplemental Table S5).
When we analyzed DNAm levels at these CpGs in individual

AML samples, we observed that aberrant DNAm was frequently
modified to extreme opposite to the controls—often the
difference of mean DNAm in control versus AML (Δβ-value) was
higher than 50% (Fig. 1e). This was unexpected given that the two
alleles within an AML cell are not necessarily coherently modified
and that individual AML samples comprise both leukemic and
normal blood cells. To further investigate if Δβ-values correlated
with blast counts, we have compared aberrant DNAm at the 26
and 19 CpGs with blasts from AML samples of the TCGA dataset
(Supplemental Fig. S2). Even AML samples with <50% bone
marrow blasts showed CpGs with Δβ-values > 0.7 or <−0.7,
indicating that the percentage of bone marrow cells with aberrant
DNAm is higher than anticipated by blast counts. Taken together,
we identified candidate CpGs that revealed aberrant DNAm across
many AML samples and the Δβ-values at these sites was often
remarkably high.

Targeted analysis of CpGs with aberrant DNAm in AML
To further curtail AML-associated regions for targeted analysis, we
selected four CpGs with perturbation in most AML samples, which
were associated with the genes for RHO family interacting cell
polarization regulator 2 (FAM65B; cg15289427), piezo type mechan-
osensitive ion channel component 1 (FAM38A; cg27630153), and

Fig. 1 Selection of AML-associated CpGs. a Scatter plot of mean DNAm levels (β-values) in Illumina Human Methylation 450k BeadChip data
of AML (TCGA; n= 194) versus normal blood samples (GSE40279; n= 656). The numbers of CpGs, which were consistently either non-
methylated (β-values < 0.1) or methylated (β-values > 0.9) are indicated. b These CpGs were further filtered by low variation in controls
(standard deviation [s.d.] < 0.05, red dashed line). Subsequently, the top 100 CpGs with either highest hypermethylation (blue) or
hypomethylation (red) in AML were selected. c, d In analogy, candidate CpGs were alternatively selected with two independent pairs of
control/AML studies (GSE50660/GSE58477 and GSE77716/GSE62298). Venn diagrams demonstrated the overlap of the top 100
hypermethylated (c) and hypomethylated CpGs in AML (d). e The distribution of DNAm levels across control (GSE40279, gray) and AML
samples (TCGA, red) is depicted for each of the overlapping 19 hypo- and 26 hypermethylated CpGs (*= CpGs selected for subsequent
targeted analysis).
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protein kinase CAMP-activated catalytic subunit alpha (PRKACA;
cg19586199), while cg22797031 is not associated with a specific
gene. Either way, analysis of the TCGA datasets revealed that DNAm
did not correlate with gene expression of FAM65B, FAM38A, and
PRKACA (Supplemental Fig. S3). In non-malignant samples the DNAm
levels at these CpGs were relatively consistent among leukocyte
subsets, during hematopoietic differentiation, and between genders
(Supplemental Fig. S4). Furthermore, DNAm at these CpGs hardly
correlated with chronological age (Supplemental Fig. S5). Notably, the
selected CpGs revealed also aberrant DNAm in B-cell lymphoma and
MDS, indicating that the aberrant DNAm at these sites is not disease
specific (Fig. 2a).
We subsequently designed BA-seq assays for the four AML-

associated regions (Supplemental Fig. S6). The reproducibility was
validated with three technical replicates and despite variation in
sequencing depth the composition of DNAm patterns was highly
reproducible in different sequencing runs (Supplemental Fig. S7). We
subsequently analyzed 62 blood samples of healthy controls, 48
AML samples at first diagnosis, and 46 follow-up samples, which
were classified as MRD positive (n= 28) or MRD negative (n= 17)
according to highly sensitive RT-qPCR detection of the NPM1
mutation [35]. The BA-seq data validated that AML-associated CpGs
were either consistently methylated or unmethylated in the controls,
whereas in AML at first diagnosis they display pronounced aberrant
DNAm, often even toward the opposite extreme (Fig. 2b). Similar
aberrations in DNAm were also observed for the MRD positive
samples. Notably, even samples that were classified as MRD
negative revealed higher variation in DNAm than the controls,
particularly at cg15289427, cg19586199, and cg27630153.
Since not all of the four AML-associated CpGs revealed aberrant

DNAm in all AML samples, we combined their DNAm levels into a
simple AML-score, ranging from 0 to 1, to discern healthy and AML
samples (Fig. 2c). When we applied the AML-score to the Illumina

BeadChip data, 99.5% of the control samples (GSE40279,
GSE50660, GSE77716; together n= 1693) were below 0.125,
whereas the vast majority of AML samples was above this
threshold (TCGA: 193 of 194; GSE58477: 59 of 62; and GSE62298:
66 of 68), indicating a sensitivity of 98.2%. The AML-score was
then tested across five independent studies with clinically diverse
datasets (n= 275) and revealed aberrant DNAm in 96% of the
samples (Supplemental Fig. S8). Furthermore, there was no
evidence that the AML-score is higher for samples with adverse
cytogenetic or molecular risk score, or that it is associated with
specific mutations (Supplemental Fig. S9).
In our BA-seq dataset, the control samples were always below

AML-score 0.125, whereas all AML samples tested were above this
threshold. The AML-score did not correlate with the NPM1 mutation
burden or blast counts (Supplemental Fig. S10). Furthermore, in the
follow-up samples 66% of MRD positive and even 34% of MRD
negative samples (n= 6) revealed an AML-score higher than 0.125.
We specifically screened the six MRD negative samples that revealed
positive AML-score for relevant driver mutations. In fact, three of the
samples (from two donors) revealed clonal hematopoiesis (TET2
C1273S, variant allele frequency [VAF] 39%; IDH2 R140Q, VAF 12%;
and IDH2 R140Q, VAF 30%; Supplemental Table S1). While this might
explain some of the residual epigenetic aberrations it did not
account for all of these MRD negative samples.
When we analyzed the prognostic value at the first follow-up,

the NPM1 expression was clearly associated with overall survival,
event-free survival, and relapse-free survival, whereas this was not
significant for the AML-score (Supplemental Fig. S11). Taken
together, our AML-score can discern healthy and malignant
samples with high specificity and sensitivity. This aberrant DNAm
can be observed across many studies and all molecular subsets
tested. However, the AML-score does not reliably discriminate
MRD positive and negative samples.

Fig. 2 Targeted analysis of AML-associated CpGs. a The DNAm levels at four AML-associated CpGs (cg15289427, cg22797031, cg19586199,
and cg27630153) were analyzed in Illumina Human Methylation 450k BeadChip datasets of controls, AML, and other hematologic
malignancies. b Alternatively, DNAm was analyzed with bisulfite amplicon sequencing (BA-seq) in controls (n= 62), AML at first diagnosis (n=
48), and follow-up samples that were either classified MRD positive (n= 28) or MRD negative (n= 17) based on NPM1mut. c DNAm at the four
AML-associated CpGs is combined into an AML-score. The cutoff of 99.5% percentile of the healthy samples is shown by the blue line.
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Analysis of DNAm patterns of individual reads in AML
The selected AML-associated regions comprise several adjacent
CpGs (cg15289427: 14 CpGs; cg22797031: 10 CpGs; cg27630153:
15 CpGs; and cg19586199: 9 CpGs) and individual sequencing
reads can therefore be translated into a binary sequel of

methylated and non-methylated CpGs. To estimate the relation-
ship of DNAm patterns between different donors we performed a
principal component analysis (PCA) by using reads of each AML-
associated region. Overall, the reads of the controls clustered
together while this was not observed for AML samples (Fig. 3a–d).

Fig. 3 DNAm landscapes at AML-associated regions. a–d Principal component analysis (PCA) of the frequency of unique DNAm patterns of
BA-seq data for each of the four AML-associated regions. e–l Mean β-values (±s.d.) of samples (control, AML, MRD positive and MRD negative)
at the neighboring CpGs within each AML-associated region. AML-associated aberrations are observed across entire amplicons. m–t The
DNAm levels of neighboring CpGs are connected for each sample to visualize the variance within the samples.
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The average DNAm levels at neighboring CpGs demonstrated that
entire AML-associated regions revealed aberrant DNAm in AML
(Fig. 3e–h). To a lesser degree this was also observed in MRD
positive and even in several MRD negative samples (Fig. 3i–l). The
maintenance of aberrant DNAm patterns in some of the MRD
negative samples was particularly observed in cg15289427
(Supplemental Fig. S12). Notably, within individual AML samples
the mean DNAm level of adjacent CpGs was not coherently
modified but follow a patient specific pattern, which is in line with
our previous results for the age-associated region in the gene
phosphodiesterase 4C (PDE4C) [37] (Fig. 3m-t). Thus, also the
variability of DNAm within short genomic regions can discriminate
healthy and malignant samples.
Besides imprinting and X-chromosome inactivation, the rest of

the genome is thought to be symmetrically methylated at both
alleles [38]—possibly due to coherent changes during epigenetic
development. However, CpGs of two homologous chromosomes
can also exhibit allele-specific DNAm (ASM) [39]. It might be
anticipated that particularly the dysregulated DNAm in AML does
not affect both alleles symmetrically. AML samples that comprise
single nucleotide polymorphisms (SNPs) were utilized to deter-
mine DNAm asymmetry in BA-seq amplicons. Notably, we
observed that DNAm patterns were always symmetric on both
alleles. This is exemplarily depicted for BA-seq reads of patient #56
with SNPs in AML-associated regions of cg27630153 and
cg19586199 (Fig. 4): there were significant changes in DNAm
patterns at first diagnosis, remission, and relapse, but the DNAm
patterns were always almost identical at both alleles.

Classification of individual DNAm patterns as normal and
abnormal
Next, we used machine-learning algorithms on the binary DNAm
patterns to classify individual BA-seq reads as normal or abnormal.
This might facilitate better classification of MRD positive and MRD
negative samples than the AML-score, which was based on mean

DNAm levels at individual CpGs (Fig. 5a,b). We used shallow
learning (Random forest) algorithm to train the model with 6.5
million reads of 43 healthy control samples and 2.6 million reads
of 34 first diagnosis samples. For each AML-associated region,
random forest uses the DNAm status of each CpG site and builds a
decision tree from the DNAm patterns. Hereby, the controls in the
validation set revealed a low anomaly score, whereas all AML
samples at first diagnosis had a higher score (Fig. 5c,d). Since our
MRD samples were from NPM1 mutated diagnosis samples, we
trained the random forest only on the NPM1-positive AML first
diagnosis samples, but this did not increase the anomaly
detection in MRD positive or negative samples (Supplemental
Fig. S13).
Alternatively, we used deep learning (autoencoder) either with

or without clustering. This method is trained only on the controls
and does not require an AML training set. The unsupervised
clustering is designed to distinguish various cell types in a sample
by their DNAm landscape and enable the autoencoder to learn
the pattern with higher specificity (Fig. 5e-h). The prediction
results of different methods were subsequently compared with
confusion matrixes (Fig. 5b-h). All methods could perfectly
separate control samples and AML first diagnosis but had low
accuracy in separating MRD positive and MRD negative samples.
Autoencoder with clustering could correctly classify 76% of MRD
positive samples, but it also classified 71% of MRD negative
samples as abnormal.

Sensitivity of anomaly detection in limiting dilution
The detection of residual NPM1 mutations with RT-qPCR is
highly sensitive (NPM1mut/ABL < 0.001%), but this approach is
not feasible in patients without such mutations. To estimate if
MRD analysis could also be performed based on our DNAm
patterns we performed a limiting dilution of an independent
AML patient (DNA from either bone marrow or peripheral blood)
and a control sample (Supplemental Fig. S14). In this dilution

Fig. 4 Aberrant DNAm is symmetric between both alleles. The figure depicts DNAm patterns of a patient (#56) with SNPs rs115701567 at
chr16:88844998 (cg27630153) and rs917911737 at chr19:14225172 (cg19586199). These SNPs were used to split BA-seq reads of the different
alleles. Particularly at first diagnosis the amplicon revealed aberrant DNAm, which normalized during therapy (reflected by lower MRD
burden). Upon relapse, both alleles revealed aberrant DNAm patterns. Notably, DNAm patterns were apparently always synchronized between
alleles.
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experiment, the AML- and anomaly-scores consistently declined
with further dilution of both peripheral and bone marrow AML
samples until 5% of malignant DNA. The sensitivity of detecting
malignant DNAm patterns by using the previously described
methods reached around 25% in random forest and autoenco-
der (Fig. 6). The method was limited by the fact that even
healthy blood comprised some reads that were classified
abnormal. Furthermore, we tested the algorithms with six
leukemic cell lines (HL60, KG1a, TF-1, K562, U937, and SUP-
B15). All of them were classified correctly as abnormal, but even
in these clonal cell lines DNAm patterns were heterogeneous
(Supplemental Fig. S15). Due to this variability of DNAm patterns
in control and malignant samples, the threshold to detect
residual malignant cells was much higher than with conven-
tional methods for MRD detection.

DISCUSSION
Acute myeloid leukemia (AML) is a very heterogeneous group of
diseases. Despite this heterogeneity, our study demonstrates that

targeted DNAm analysis at few genomic regions can very reliably
discern healthy and AML samples. It is well known that specific
CpGs are more susceptible to aberrant DNAm across various types
of cancer, but the underlying mechanism is still unclear [40]. The
epigenetic aberrations may be entailed by the frequent AML-
associated mutations in epigenetic modifiers, such as DNMT3A,
TET2, ASXL1, MLL, and EZH2. However, epigenetic dysregulation
overall seems to occur independent of the genetic background—
the increasing epigenomic plasticity may rather be due other
processes, such as aging-associated changes in DNAm or
epigenetic drift [40–42]. Either way, the hotspots for AML-
specific aberrations in DNAm provide new perspectives, not only
for diagnosis, but also for monitoring of therapeutic response and
estimation of residual disease burden after treatment. Advantages
of using DNAm as a biomarker are the quantitative metric of
DNAm levels at single nucleotide resolution, independence of the
presence of genomic mutations, and applicability to small
volumes of frozen material.
Our targeted analysis showed very high DNAm differences

between individual AML samples. Notably, almost all AML samples

Fig. 5 Benchmark of different methods for anomaly detection. The samples of BA-seq were classified as normal or abnormal by four
different methods and the percentages are demonstrated in the corresponding confusion matrix: a,b AML-score, c,d shallow learning by
random forest, e,f deep learning by autoencoder without clustering, and g,h deep learning by autoencoder with clustering. All methods used
the same training dataset and the same validation dataset of controls (blue line indicates the threshold of 99% percentile in the training set).
All anomaly ratios range from 0 to 1.
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showed at least at individual AML-associated CpGs higher Δβ-
values than expected with regard to the relative percentage of
blast counts. This result might indicate that the fraction of
malignant cells was underestimated by blast counts, or that
DNAm changes are also evolved in the non-malignant hemato-
poietic compartment. The fact that aberrant DNAm did not
correlate with blast counts and at least partly remained in MRD
negative samples might also be attributed to extrinsic influences
by the microenvironment. In fact, several studies demonstrated
that changes in the bone marrow can precede the initiation of
genetic events associated with neoplasia by creating a pro-
malignant state [43]. It is hence conceivable that perturbations in
the microenvironment impact on the epigenetic makeup of
hematopoiesis.
Furthermore, we demonstrate that the aberrant DNAm is

symmetric at homologous chromosomes. It is remarkable how
similar the DNAm patterns were on both alleles, given that
malignant transformation is usually initiated by heterogenous
driver mutations. While many studies described allele-specific
methylation (ASM)—which occurs particularly in cancer-
associated hypomethylation, disruptive SNPs, and transcription
factor binding sites [44]—little is known how the assimilation of
DNAm patterns on different alleles is actually mediated. Particu-
larly in plants, paramutation is a well-studied epigenetic
phenomenon, in which trans-communication between two
different alleles leads to meiotically heritable transcriptional
silencing of one of the alleles [45]. This process seems to be
mediated via endogenous RNA-silencing pathways and similar
interaction might also exist in the mammalian system [46–48]. We
speculate that the coherence of DNAm patterns at AML-associated
regions is governed by a similar inter-allele epigenetic crosstalk. A
better understanding of this process might enable targeting of
epigenetic plasticity during malignant transformation.
Many studies analyzed DNAm patterns in primary AML samples,

but only little is known how these epigenetic modifications
change upon therapy. Notably, even in complete remission,
without detection or residual NPM1 mutations, we observed

aberrant DNAm patterns that are hardly detected in normal
controls. For therapy-related myelodysplastic syndromes after
curative treatment of NPM1-mutant AML it has been demon-
strated that there can be pre-existing or even newly developed
clonal pre-leukemic hematopoiesis, concomitantly with the
acquisition of new somatic alterations (such as DNMT3A, IDH1/2
and TET2 mutations) [49]. Furthermore, we demonstrated clonal
hematopoiesis in some samples that were classified as MRD
negative. The fraction of samples with clonal hematopoiesis might
be higher with a genome wide mutational screening and a more
sensitive cutoff than 5% variant reads. Thus, it is conceivable, that
aberrant DNAm in our MRD negative samples is due to pre-
existing, therapy associated, or newly formed epigenetic aberra-
tions. In the future, it will be important to better understand
residual and new occurring genome wide DNAm changes in
remission and relapse.
In this study, we have compared different approaches for

anomaly detection in BA-seq data. The AML-score is the simplest
method to combine the mean DNAm levels at four AML-
associated CpGs, but it cannot capture the DNAm changes in a
broader landscape and does not take individual reads into
account. Furthermore, we used different deep learning algorithms
to classify normal and abnormal reads: Random forest utilizes all
CpGs for building the decision tree for clustering, but it may not
work well when there is no clear cutoff due to the high
heterogeneity in AML [50]. Autoencoder was able to take
advantage of the massive number of reads for learning and
treated all CpGs in a data-driven and pragmatic manner [51].
However, it didn’t perform well with or without unsupervised
clustering. The biggest challenge to use DNAm patterns for MRD
diagnostics seems to be that even healthy samples had a low
percentage of reads that were classified as abnormal. Therefore,
DNAm-based monitoring of MRD was not feasible at high
sensitivity.
The established methods for MRD diagnostic, such as MFC, PCR,

or sequencing approaches, are highly sensitive and can detect
down to 0.001% of malignant cells [3, 6]. In contrast, due to some

Fig. 6 Sensitivity of anomaly detection in limiting dilution. DNA of AML samples from a–d bone marrow or e–h peripheral blood were
mixed with the DNA of a healthy sample in various dilution steps. The four methods for anomaly detection (AML-score, random forest,
autoencoder without clustering, and autoencoder with clustering) were compared on these dilutions (blue line indicates the threshold
defined in the training set).
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variability in DNAm patterns of control samples the cutoff for our
current method is below 5% malignant cells—it therefore does
not yet facilitate robust MRD diagnostic. This is also reflected by
the finding that MRD monitoring based on RT-qPCR for residual
NPM1 mutation was clearly associated with overall survival, event-
free survival, and relapse-free survival, whereas this was not
observed for the AML-score. Either way, it is conceivable that in
combination with other MRD assays there might be a prognostic
benefit, but this would require a systematic larger study. The AML-
score may be valuable to support morphological analysis if
suitable mutations or surface markers are not available and it may
reveal occurrence of clonal pre-leukemic hematopoiesis. The
sensitivity and specificity for relapse of AML might be improved
with other, or additional, genomic regions. Furthermore, alter-
native sequencing methods that provide longer reads, such as
nanopore sequencing, may enable more reliable distinction
between normal and abnormal DNAm patterns. Future insights
into the targeting mechanisms that direct AML-associated DNAm
changes and of how the epigenetic patterns are assimilated and
modified in the course of therapy will provide new perspectives
for diagnosis and surveillance of hematopoietic malignancies.
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