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BACKGROUND: Despite significant advances in multiple myeloma (MM) therapy, disease relapse and treatment resistance remain
major obstacles in clinical management. Herein, we have studied the clinical utility of miRNAs in improving patients’ risk-
stratification and prognosis.
METHODS: miRNA-seq was performed in CD138+ plasma cells of MM, smoldering multiple myeloma (sMM) and monoclonal
gammopathy of undetermined significance (MGUS) patients. The screening MM cohort consisted of 138 patients. miRNA levels of
CD138+ plasma cells were quantified by RT-qPCR following 3′-end RNA polyadenylation. Disease progression and patients’ death
were used as clinical end-point events. Internal validation was conducted by bootstrap analysis. Clinical net benefit on disease
prognosis was assessed by decision curve analysis. Kruykov et al. 2016 served as validation cohort (n= 151).
RESULTS: miRNA-seq highlighted miR-181a to be upregulated in MM vs. sMM/MGUS, and R-ISS III vs. I patients. Screening and
validation cohorts confirmed the significantly higher risk for short-term progression and worse survival of the patients
overexpressing miR-181a. Multivariate models integrating miR-181a with disease established markers led to superior risk-
stratification and clinical benefit for MM prognosis.
CONCLUSIONS: CD138+ overexpression of miR-181a was strongly correlated with inferior disease outcome and contributed to
superior prediction of MM patients early progression, supporting personalised prognosis and treatment decisions.
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BACKGROUND
Multiple myeloma (MM) is the second most frequently diagnosed
hematologic malignancy following non-Hodgkin lymphoma,
accounting for ~13% of all hematological neoplasms [1, 2]. The
disease progresses from a pre-malignant precursor stage, mono-
clonal gammopathy of undetermined significance (MGUS),
through an indolent intermediate condition known as smoldering
multiple myeloma (sMM), to a fully symptomatic myeloma that
requires treatment [3]. Within the progression from MGUS to MM,
several complex genetic events emerge, including cytogenetic
abnormalities, primary or secondary chromosomal translocations
and activation of oncogenes [4].
Recently, considerable progress has been made regarding treat-

ment strategies resulting in significantly prolonged patients’ survival
[5, 6]. Nevertheless, despite the notable improvements in patient care,

MM remains incurable due to frequent patients’ recurrence and
emergence of drug resistance in its clinical course [3, 7]. Currently, MM
prognosis relies on established clinical markers unified in the Revised
MM International Staging System (R-ISS). Although R-ISS is a reliable
staging system, patients of the same stage and with similar
clinicopathological features could present greatly heterogeneous
disease course, supporting the need for novel prognostic markers
[8]. In this regard, the elucidation of disease molecular landscape could
offer an alternative approach for the identification of modern
molecular indicators of disease course to dissect heterogeneity and
to support tailored patient’s management.
It is nowadays evident that the non-coding RNAs (ncRNAs)

family, which constitutes >75% of the human genome, regulates
essential human physiologic and pathologic processes. MicroRNAs
(miRNAs) represent a principal class of functional small non-
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coding RNAs (~22 nucleotides) that play a pivotal role in the
regulation of gene expression at the post-transcriptional level
[9, 10]. miRNAs exert their regulatory function by binding to the 3′-
untranslated region (3′-UTR) of mRNAs and recruiting the RNA-
induced silencing complex (miRISC), thereby leading to transla-
tional repression and mRNA decay [9]. Their function is crucial for
diverse cellular processes, including cell proliferation, differentia-
tion, apoptosis and cellular homeostasis, while the deregulation of
miRNAs expression has become a hallmark of the majority of
human malignancies [11, 12]. Compelling findings have shown
that numerous miRNAs are actively implicated in the pathobiology
of MM, holding also a great clinical potential in modern molecular
diagnostics and prognostics for MM management [6, 13].
Herein, using miRNA-seq we investigated miRNA profiles in

association with MM and its precursor stages, aiming to reveal
potential MM-related miRNAs of prognostic significance. Based on
miRNA-seq data and the screening of the identified miRNA
candidates, miR-181a clinical value in MM prognosis and
treatment outcome was further evaluated, for the first time, in
our screening (n= 138 patients) and an external validation (n=
151 patients) MM cohort. Our study highlighted that CD138+
plasma cells overexpression of miR-181a is associated with higher
risk for short-term disease progression and worse survival
outcome following treatment, independently of MM patients’
clinicopathological data. Ultimately, implementation of miR-181a
levels with the established disease markers resulted in improved
risk-stratification and superior positive prediction of patient’s
short-term progression and poor treatment response, supporting
miR-181a utility in modern management of MM patients.

MATERIALS AND METHODS
Screening cohort
A screening cohort of 193 consecutive patients diagnosed with MM (n=
138), sMM (n= 30) and MGUS (n= 25), with a median age of 69 years, was
included in the study. Bone marrow (BM) samples were obtained at the
time of diagnosis at the Department of Clinical Therapeutics, “Alexandra”
Hospital, Athens, Greece. Diagnosis was based on the standard criteria of
the International Myeloma Working Group (IMWG) [14]. All MM patients
were newly diagnosed and non-previously treated.
At the time of diagnosis whole blood count, biochemical analysis, serum

and urine M-protein levels assessment were performed. Trephine biopsy
was also performed, and cytogenetic abnormalities were detected using
conventional cytogenetic protocols and interphase fluorescence in situ
hybridization (FISH) at BM aspirate. Whole body low dose computed
tomography (WBLDCT) was used to assess bone disease. Focusing on MM
cohort, 22 patients had initial diagnosis of MGUS or sMM before the
development of symptomatic MM. According to the R-ISS staging system
24.7%, 47.8% and 20.3% of the patients were classified in stage I, II and III,
respectively. The median B2M and LDH levels were 4.5 mg/l and 165.5 U/l,
respectively, while 79 patients presented with ≥60% BM infiltration by
plasma cells. Renal impairment and bone disease were detected in 5.8%
and 65.2% of the patients at diagnosis, respectively.
Of the enrolled patients, 121 patients received bortezomib-based

regimens, while 11 of them were treated with lenalidomide-based
regimen. High-dose melphalan therapy with autologous stem cell
transplantation (HDM/ASCT) was administrated to 37 patients. Response
was assessed monthly with blood and urine tests, according to IMWG
criteria [15]. Post-treatment follow-up was adequately completed for 133
patients (96.4%) whereas 5 patients (3.6%) were excluded from the survival
analysis due to insufficient monitoring data. During a median follow-up
time (reverse Kaplan–Meier method) of 22 months (95% CI: 19.97–24.02),
disease relapse and death were detected in 32 (24.1%) and 29 (21.8%) MM
patients, respectively. Focusing on patients’ clinical outcome, the mean
event-free survival (EFS) and overall survival (OS) were 26.34 (95% CI:
24.63–28.05) and 27.31 (95% CI: 25.76–28.85) months, respectively, while
patients displayed a mean progression-free survival (PFS) of 23.9 months
(95% CI: 22.04–25.77). Detailed patients’ clinicopathological characteristics
are summarised in Table 1.
Prior to sampling, the study was approved by the Ethics Committee of

“Alexandra” Hospital, Athens, Greece, and all patients who participated
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were informed and signed an informed consent according to 1975
Declaration of Helsinki ethical standards, as revised in 2008.

Validation cohort
The Kryukov et al. 2016 (n= 151) [16] cohort was used as an independent
validation MM cohort. Kryukov et al. 2016 performed transcription profiling by
array using Affymetrix GeneChip Human Gene 1.0 ST Array in CD138+ plasma
cells from 151 newly diagnosed untreated MM patients. The clinical and
normalised expression publicly available data were downloaded by EMBL-EBI
ArrayExpress (accession number ArrayExpress: E-MTAB-1038 and E-MTAB-4032).

Isolation of CD138+ plasma cells—extraction of total RNA
BM aspirate samples were collected in EDTA tubes. Mononuclear cells were
isolated from BM aspirate using the Ficoll-Paque technique. CD138+
plasma cells were afterwards selected by positive magnetic cell sorting
selection with immunomagnetic microbeads coated with an anti-CD138
monoclonal antibody (MACS CD138 microbeads, Miltenyi-Biotec GmbH,
Bergisch Gladbach, Germany).
Total RNA was isolated from purified CD138+ plasma cells using TRI-

Reagent (Molecular Research Center, Cincinnati, OH) according to the
manufacturer’s protocol, dissolved in RNA Storage Solution (Ambion,
Austin, TX, USA) and stored at −80 °C until analysis. RNA concentration was
estimated using the Qubit RNA broad range assay in the Qubit 2.0
Fluorometer (Invitrogen, Carlsbad, CA, USA).

miRNA-seq
Next-generation sequencing (NGS) libraries were constructed from 4 sMM
patients, 4 MGUS patients, 4 R-ISS I, 8 R-ISS II and 8 R-ISS III MM patients.
NGS libraries were constructed with the QIAseq miRNA Library Kit (Qiagen,
Hilden, Germany), using 500 ng of total RNA as template per library. In
brief, adapters were ligated sequentially to the 3′ and 5′ ends of miRNAs,
UMI-based cDNA synthesis was carried out followed by cDNA cleanup and
finally amplification was implemented with a universal forward primer and
indexing reverse primers. The quality assessment of the created miRNA-
seq libraries was performed with the 2100 Bioanalyzer (Agilent Technol-
ogies, Santa Clara, CA, USA), using the Agilent High Sensitivity DNA Kit
(Agilent). Finally, the subsequent miRNA-seq was performed using an
Illumina NextSeq 550 (Illumina, San Diego, CA, USA), leading to the
production of 75 bp single-sequencing reads for each library.

Bioinformatics analysis
The quality control of the sequenced libraries was performed with FastQC
software, whereas adapter trimming was accomplished with TrimGalore
algorithm. Sequencing reads with lengths <16 nt and >40 nt were filtered out
of the raw datasets that were used for downstream analysis. In the next step,
miRDeep2 was used for the elucidation of the miRNA expression profiling
across the tested samples [17]. For each investigated sample, only miRNAs with
>10 unnormalised read counts and positive miRDeep2 score were taken into
consideration for further analysis.

Polyadenylation of total RNA and first-strand cDNA synthesis
Two hundred nanograms of total RNA were polyadenylated at 3′-end in a
10 μl reaction, containing 1 U of recombinant E. coli Poly(A) Polymerase
(New England Biolabs Inc., Ipswich, MA) and 800mM ATP, at 37 °C for 60

min. Subsequently, 10 min incubation at 65 °C was performed for
polymerase inactivation.
Reverse transcription of the polyadenylated RNA was held in a 20 μl

reaction mixture consisting of 200 U M-MLV Reverse Transcriptase
(Invitrogen), 40 U RNaseOUT Recombinant Ribonuclease Inhibitor (Invitro-
gen), 10mM dNTP Mix and 250mM oligo-dT adapter 5′-GCGAGCACA
GAATTAATACGACTCACTATAGGTTTTTTTTTTTTVN-3′ (V= G, A, C and N= G,
A, T, C), at 37 °C for 60min. Heat inactivation of M-MLV was performed at
70 °C for 15min.

Quantitative real-time PCR (qPCR)
The quantification of miRNA levels was performed by a SYBR-Green
fluorescent-based quantitative real-time PCR (qPCR) assay. Specific forward
primers for miR-1–3p, miR-125b-5p, miR-181a-5p, miR-503-5p, miR-218-5p,
miR-10a-5p and small nucleolar RNA, C/D box 48 (SNORD48), frequently
annotated as RNU48, were synthesised according to their published
sequences and in silico specificity analysis (Table S1).
The qPCR assays were carried out in the 7500 Real-Time PCR System

(Applied Biosystems, Carlsbad, CA, USA). The 10 μl reaction mixtures
contained Kapa SYBR® Fast Universal 2× qPCR Master Mix (Kapa
Biosystems, Inc., Woburn, MA), 200 nM of each PCR primer and 1 ng of
cDNA template. The thermal protocol comprised of a polymerase
activation step at 95 °C for 3 min, followed by 40 cycles of denaturation
step at 95 °C for 15 sec and finally primer annealing and elongation step at
60 °C for 1 min. Following amplification, the reaction specificity was
evaluated via melting curve analysis and agarose gel electrophoresis. All
reactions were performed in duplicates in order to obtain reproducible
results. The 2−ΔΔCT relative quantification (RQ) method was conducted for
the analysis of miRNA expression levels, using RNU48 as endogenous
reference control for normalisation purposes.

Gene Ontology (GO) enrichment analysis
miRDB target-prediction tool was used to identify the potential target
genes of miR-181a [18]. To minimise the prediction error rates only targets
with miRDB Target Score ≥80 were selected. Functional annotation of miR-
181a target genes was performed with Enrichr database platform (https://
maayanlab.cloud/Enrichr/) [19]. GO enrichment analysis (http://www.
geneontology.org/) was conducted categorising target genes into groups
according to three classification standards, Biological Processes (BPs),
molecular functions (MFs) and cellular components (CCs). BPs, CCs and MFs
with a p-value < 0.05, and combined enrichment score >20 were retained
following analysis. The significantly associated terms were imported to
REVIGO where they were clustered based on their relatedness and any
redundancy was excluded [20].

Statistical analysis
Statistical analysis was performed by IBM SPSS Statistics 20 software (IBM Corp.,
Armonk, New York, USA). Sapiro–Wilk and Kolmogorov–Smirnov tests were
applied to test the normal distribution of the data. The non-parametric
Mann–Whitney U test and Kruskal–Wallis test were used appropriately to assess
the correlation of miRNA levels with categorical clinicopathological features.
Kaplan–Meier survival curves using log-rank test, and Cox proportional

regression analysis were implemented for patients’ survival analysis. The X-tile
algorithm was applied for the optimal selection of the cut-off values of miRNA
levels. Disease relapse and patients’ death were used as clinical end-point
events for EFS, as well as OS and cancer-specific survival (CSS), respectively. PFS
was evaluated by patients’ relapse and/or death (whichever came first). Internal
validation was performed by bootstrap Cox proportional regression analysis
based on 1000 bootstrap samples. Finally, decision curve analysis (DCA), in
order to evaluate miR-181a clinical benefit in patients’ prognosis and treatment
outcome, was performed according to Vickers et al. [21], by STATA 16 software
(StataCorp LLC, College Station, TX, USA).

RESULTS
miRNA expression profiling of CD138+ plasma cells by
miRNA-seq
To investigate the alterations of miRNA expression in MM,
miRNA˗seq was performed in CD138+ plasma cells from MM,
sMM and MGUS patients using the Illumina NextSeq 550 system.
The main steps of miRNA-seq workflow are schematically
presented in Fig. 1. Following filtering out noise using FastQC,
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TrimGalore and miRDeep2 softwares, 2114 different known
miRNAs were successfully mapped on the human genome
sequence. To further filter our results, we excluded miRNAs with
<10 raw read counts and negative miRDeep2 score, narrowing
down to 319 miRNAs that were selected for downstream analysis
(Fig. 1a). Our analysis was divided in two parts in order to explore
the changes in the transcriptomic level between a. MM and sMM/
MGUS and b. R-ISS I, II and III MM patients.
Focusing on the differences between MM vs. sMM/MGUS, 221

of the 319 miRNAs were found to be concurrently expressed in
MM, sMM and MGUS patients (Fig. 1b). Among them, 113 miRNAs
were identified to be differentially expressed between MM and
sMM/MGUS samples with fold change (FC) ≥ 1.5 or FC ≤ 0.67
(Fig. 1d; Table S2), of which, 35 (31.0%) miRNAs were found to be
upregulated in MM compared to sMM/MGUS (Fig. 1f). Similarly,
199 of the 319 miRNAs were present in all 3 R-ISS stages (Fig. 1c).
Applying: (a) progressive deregulation of miRNA expression levels
between R-ISS I-II-III, and (b) FC ≥ 1.5 or FC ≤ 0.67 between R-ISS I
and R-ISS III, 55 miRNAs met the abovementioned criteria (Fig. 1e;
Table S3), of which, 35 miRNAs (63.6%) were found to be
overexpressed in R-ISS III compared to R-ISS I stage (Fig. 1g).
Overall, six miRNAs (miR-1–3p, miR-125b-5p, miR-181a-5p, miR-

503-5p, miR-218-5p and miR-10a-5p) were concurrently deregu-
lated between both MM vs. sMM/MGUS and R-ISS III vs. R-ISS I
patients (Fig. 1h) and selected for further expression analysis and
clinical evaluation in a subset screening cohort of 45 MM patients
(~33% of our successfully followed-up screening cohort). No
statistically significant differences of clinicopathological and
follow-up data observed between patients of the subset (n= 45)
and the complete (n= 138) screening MM cohorts. Notably, the
survival analysis highlighted miR-181a to be the only candidate
displaying significant association (unfavourable) with both OS
(Kaplan–Meier: p= 0.016; univariate Cox: HR= 8.455; p= 0.044)
and PFS (Kaplan–Meier: p= 0.036; univariate Cox: HR= 2.880; p=
0.047) of MM patients (Fig. S1), while no statistically significant
correlation was documented either for OS or PFS for the other
candidates (miR-1–3p, miR-125b-5p, miR-503-5p, miR-218-5p and
miR-10a-5p). Additionally, target-prediction and GO analysis of
miR-181a (Fig. S2) resulted in 27 BPs, 9 CCs and 10 MFs to be
significantly enriched, including B cell apoptotic process and
response to glucocorticoids, in line with the documented role of
miR-181a in B-lymphoid cells differentiation [22]. In this regard,
the strong association of miR-181a overexpression with the worse
survival outcome of the subset cohort prompted us to further
evaluate its clinical significance in improving risk-stratification and
treatment prognosis of MM patients.

CD138+ overexpression of miR-181a is associated with short-
term post-treatment progression and worse survival outcome
Kaplan–Meier and Cox regression analyses were performed to
evaluate the clinical significance of miR-181a levels of CD138+
plasma cells for the post-treatment survival outcome of MM patients
(Figs. 2 and 3; Table S4). According to the X-tile algorithm, the 70th
percentile of miR-181a levels was adopted as the optimal cut-off value.
Kaplan–Meier curves illustrated the significantly shorter OS

expectancy of MM patients with CD138+ overexpression of miR-
181a (p < 0.001; Fig. 2a). Notably, the adverse prognostic utility of
miR-181a overexpression was maintained regarding MM-specific
survival (p= 0.002; Fig. 2b). To confirm miR-181a prognostic value
in MM, the Kryukov et al. 2016 cohort (n= 151) was analyzed as
external independent validation cohort. Supporting our findings,
the evaluation of the validation cohort affirmed the unfavourable
prognostic nature of CD138+ overexpression of miR-181a for the
MM patient’s survival (p= 0.042; Fig. 2c). Finally, univariate Cox
regression analysis strengthened the inferior OS of the MM
patients with increased miR-181a (HR: 3.867; 95% CI: 1.825–8.193;
p < 0.001; Fig. 2d). Focusing on MM post-treatment progression,
Kaplan–Meier curves highlighted also that patients with CD138+

overexpression of miR-181a presented significantly shorter PFS (p
= 0.001; Fig. 3a), which was also confirmed by univariate Cox
analysis (HR: 2.559; 95% CI: 1.453–4.507; p= 0.001; Fig. 3b),
compared to patients with lower miR-181a levels.
As MIR181A1 is located on 1q32.1, and gain of chromosome 1q

(+1q) consists of one of the most common recurrent cytogenetic
abnormalities in MM [23, 24], we sought to investigate the
potential impact of +1q in miR-181a overexpression and clinical
value in MM (Fig. S3). In this regard, +1q was not associated either
with miR-181a levels (p= 0.423) or with patients’ OS
(Kaplan–Meier: p= 0.400; univariate Cox: p= 0.405) and PFS
(Kaplan–Meier: p= 0.591; univariate Cox: p= 0.595). Finally, multi-
variate Cox regression analysis clearly confirmed the ability of
CD138+ overexpression of miR-181a to predict the adverse
clinical outcome of MM patients independently of +1q.
Furthermore, to evaluate the independent prognostic value of

miR-181a in MM, multivariate Cox regression models, adjusted to
patients’ R-ISS stage, high-risk cytogenetics [+1q21, t(4;14), del
(17p13), t(14;16), t(11;14), del(13q)], B2M, LDH and creatinine
levels, gender, age, HDM/ASCT and response to 1st-line therapy,
were performed. The analysis highlighted miR-181a elevated
levels as independent predictor of MM patients’ worse survival
(HR: 2.629; 95% CI: 1.117–6.187; p= 0.027; Fig. 2e) and higher risk
for post-treatment progression (HR: 2.524; 95% CI: 1.300–4.899; p
= 0.006; Fig. 3c). The survival analysis of patients’ EFS, although
not proven to be statistically significant, pointed out the shorter
EFS intervals of patients with upregulated miR-181a levels (p=
0.100; Fig. S4).

miR-181a overexpression significantly enhances the
prognostic ability of the clinically established MM markers
Prompted by the independent prognostic significance, we
evaluated further the potential of miR-181a to improve patients’
prognosis by the established and clinically used markers of MM
(Fig. 4). In this regard, R-ISS stage, high-risk cytogenetics [+1q21, t
(4;14), del(17p13), t(14;16), t(11;14), del(13q)] and response to 1st-
line therapy, represent the most widely used prognostic indicators
of the disease.
Integration of miR-181a levels with these markers clearly

improved patients’ prognostication. More precisely, Kaplan–Meier
curves highlighted that the combination of R-ISS stage with miR-
181a overexpression could provide a better stratification of MM
patients’ OS (p= 0.001; Fig. 4a) and PFS (p= 0.016; Fig. 4b)
expectancy, as R-ISS II patients overexpressing miR-181a displayed
significantly shorter survival and analogous to R-ISS III patients,
compared to R-ISS II patients with lower miR-181a levels,
resembling R-ISS I. Similarly, the analysis of CD138+ miR-181a
levels was able also to further stratify the risk for adverse disease
progression between patients in high-risk cytogenetics group. In
this regard, high-risk patients with elevated miR-181a levels
showed significantly inferior disease outcome, in terms of OS (p <
0.001; Fig. 4c) and PFS (p < 0.001; Fig. 4d), compared to high-risk
patients having lower miR-181a levels, resembling standard-
risk group.
Finally, focusing on patients’ response to 1st-line therapy,

patients’ stratification was significantly improved by the evalua-
tion of miR-181a expression. More precisely, miR-181a over-
expression could effectively predict patients with optimal
treatment responses (Stringent Complete Response—sCR, Com-
plete Response—CR and Very Good Partial Response—VGPR) at
higher risk for disease progression (p < 0.001; Fig. 4e) and worse
survival outcome (p < 0.001; Fig. 4f), compared to optimal
treatment responders expressing lower miR-181a levels.

DCA revealed the advanced clinical benefit in ΜΜ prognosis
by CD138+ miR-181a evaluation
DCA was performed, according to Vickers et al. [21], in order to
study the clinical benefit of the multivariate prediction model
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miR-181a levels: high vs. low

R-ISS Stage: III vs. I / II

High risk cytogenetics: yes vs. no

LDH: ≥220 U/L vs. ≤ 220 U/L

B2M: ≥5.5 mg/L vs. ≤ 5.5 mg/L

Creatinine: ≥ 2 mg/dL vs. ≤ 2 mg/dL

HDM / ASCT: no vs. yes

1st line: PR, SD, PD vs. sCR, CR, VGPR

Gender: male vs. female 

Age (continuous variable)
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Fig. 2 CD138+ overexpression of miR-181a is strongly correlated with worse survival outcome following treatment. a–c Kaplan–Meier
survival curves for overall survival (OS; a) and cancer-specific survival (CSS; b) of the MM screening cohort, as well as OS (c) of the Kruykov et al.
2016 validation cohort, according to miR-181a expression. p-values calculated by log-rank test. d, e Forest plots of the univariate (d) and
multivariate (e) Cox regression analysis for the OS of MM patients. Multivariate analysis adjusted for miR-181a, R-ISS stage, high-risk
cytogenetics, B2M, LDH and creatinine levels, gender, age and response to 1st-line therapy. Internal validation was performed by bootstrap
Cox proportional regression analysis based on 1000 bootstrap samples. HR Hazard Ratio, 95% CI 95% confidence interval of the estimated HR,
BCa 95% CI bootstrap bias-corrected and accelerated 95% CI of the estimated HR based on 1000 bootstrap samples.
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Fig. 3 Patients overexpressing miR-181a are at significantly higher risk for short-term disease progression. a Kaplan–Meier survival curves
for the progression-free survival (PFS; a) of the MM patients according to CD138+ expression of miR-181a. p-values calculated by log-rank test.
b, c Forest plots of the univariate (b) and multivariate (c) Cox regression analysis for the MM patients’ PFS. Multivariate analysis adjusted for
miR-181a, R-ISS stage, high-risk cytogenetics, B2M, LDH and creatinine levels, gender, age and response to 1st-line therapy. Internal validation
was performed by bootstrap Cox proportional regression analysis based on 1000 bootstrap samples. HR Hazard Ratio, 95% CI 95% confidence
interval of the estimated HR, BCa 95% CI bootstrap bias-corrected and accelerated 95% CI of the estimated HR based on 1000 bootstrap
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Fig. 4 Evaluation of CD138+miR-181a levels increases risk-stratification efficacy and results to superior clinical benefit in MM prognosis.
Kaplan–Meier survival curves for the overall survival (OS) and progression-free Survival (PFS) of MM patients according to CD138+ expression
of miR-181a combined with R-ISS stage (a, b), high-risk cytogenetics (c, d) and response to 1st-line therapy (e, f). p-values calculated by log-
rank test. sCR stringent complete response, CR complete response and VGPR very good partial response, PR partial response, SD stable
disease, PD progressive disease.
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incorporating miR-181a levels of CD138+ plasma cells along with
the established clinically used MM markers (Fig. 5). In this regard,
the analysis demonstrated the significantly augmented clinical net
benefit of the model integrating miR-181a overexpression in
predicting patients OS (Fig. 5a) and PFS (Fig. 5b) compared to
R-ISS stage and response to 1st-line therapy model. The super-
iority of miR-181a-dependent prediction model, even at low
threshold probabilities, is pivotal for the efficient risk-stratification
and management of the MM patients.

DISCUSSION
Despite significant advancements in MM therapy, the majority of
the patients will become refractory and relapse [25, 26], while the
highly heterogenous treatment response of MM patients hinders
the reliable disease prognosis and the personalised patients’
management [27]. Thus, the identification of novel tools to
improve patients’ risk-stratification and prediction of disease
course is of first clinical priority. In addition to their role in normal
homeostasis, miRNAs have been strongly implicated in tumor-
igenesis and progression of various human malignances, as well as
in modern cancer diagnostics [28, 29].
Focusing on MM pathogenesis, miR-125b and miR-34a display a

tumour suppressive function and are significantly downregulated
in MM patients [30, 31]. In particular, ectopic expression of miR-
125b has been recently found to impair MM cell proliferation by
upregulating miR-34a, which in turn inhibits the IL-6R/STAT3
pathway [32] and represses CDK6, BCL2, and NOTCH1 expression
[33]. On the other hand, miR-21 exerts a well-documented
oncogenic role, the expression of which is induced by IL-6 in a
STAT3-dependent manner [34]. Interestingly, a recent study
highlighted that IL-17 producing CD4+ T cells (Th17) cells with
elevated miR-21 levels induced tumour growth and osteoclast-
dependent bone impairment, whereas suppression of miR-21
resulted in inhibiting Th17-mediated MM proliferation and
osteoclasts activity [35]. Regarding drug resistance, miR-29b can
influence the bortezomib sensitivity to MM cells by targeting Sp1
[36] and MCL1 [37], whereas overexpression of miR-221/222
promotes dexamethasone resistance through the inhibition of
autophagy [38] and PUMA/BAK/BAX apoptotic pathway [39].
Lastly, aberrant levels of miR-137 [40] and miR-410 [41] in CD138+
plasma cells have been strongly correlated with early disease
progression and poor treatment outcome of MM patients,
indicating a strong clinical value in MM prognosis.

In the present study, by performing miRNA-seq in CD138+
plasma cells of patients with MM and its precursor conditions
(sMM/MGUS), we investigated MM-related miRNA profiles and, for
the first time, we have demonstrated the clinical utility of miR-
181a in improving patients’ prognosis and prediction of disease
outcome.
Our miRNA-seq analysis revealed six miRNA candidates (miR-

1–3p, miR-125b-5p, miR-181a-5p, miR-503-5p, miR-218-5p and
miR-10a-5p) to be concurrently deregulated in MM vs. sMM/
MGUS, as well as in R-ISS III vs. R-ISS I patients. The levels of the six
miRNAs were quantified in a subset MM cohort (n= 45) and,
following survival analysis, miR-181a was found as the only
candidate of prognostic significance both in OS and PFS of MM
patients. The miR-181a is a member of the evolutionarily
conserved miR-181 family (miR-181a/b/c/d), encoded by the
MIR181A1 (1q32.1) and MIR181A2 (9q33.3) genes. Focusing on
normal hematopoiesis, miR-181a was of the first miRNAs reported
to be preferentially expressed in the BM, modulating B and T
lymphocytes differentiation [22, 42]. Focusing on MM, Pichiorri
et al. were the first to report a significant upregulation of miR-181a
levels in BM plasma cells of MM/MGUS patients compared to
healthy individuals [43]. Additional studies have also reported the
upregulation of miR-181a in MM patients compared to healthy
controls, as well as in advanced disease stages and patients with
poor response to 1st-line therapy [44, 45], without, however, miR-
181a clinical value in patients’ prognosis and post-treatment
outcome to be evaluated in clinical setting. Supporting the central
role of miR-181a in hematopoiesis, our target prediction and GO
enrichment analysis highlighted the significant enrichment of
target genes related to hematopoietic cell differentiation and
apoptosis, as well as response to glucocorticoids.
The survival analysis of our MM screening cohort (n= 138)

demonstrated the independent unfavourable prognostic value of
miR-181a for MM outcome, as CD138+ plasma cells overexpres-
sion of miR-181a was associated with significantly higher risk for
short-term relapse and worse survival expectancy of the patients.
Moreover, multivariate Cox regression models highlighted the
poor treatment outcome of the MM patients overexpressing miR-
181a independently of the established disease markers and
patients clinicopathological data, including response to 1st-line
therapy, R-ISS stage, high-risk cytogenetics, HDM/ASCT, B2M, LDH
and creatinine levels, age and gender. In line with our findings, the
analysis of Kryukov et al. 2016 [16] external validation cohort (n=
151) clearly verified the worse survival outcome of the MM
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Fig. 5 Decision curve analysis demonstrated the improved clinical net benefit of multivariate models integrating miR-181a with the
established clinical markers. a, b Decision curves of the multivariate prediction models for the overall survival (OS; a) and progression-free
survival (PFS; b) of MM patients. Net benefit is plotted against various ranges of threshold probabilities.
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patients with CD138+ overexpression of miR-181a compared to
those with lower levels.
Of the most common cytogenetic abnormalities in MM is +1q,

which correlates with disease progression from MGUS/sMM to
fully symptomatic MM and inferior patients’ outcome. More
precisely, +1q has been associated with higher tumour burden,
early relapse and drug resistance, while recent studies have
highlighted that +1q can predict the worse survival of MM
patients independently of other high-risk cytogenetic abnormal-
ities, ISS stage and patients’ age [46, 47]. Several genes located in
1q, including cell cycle regulator CKS1B, BCL2 antiapoptotic family
member MCL1 and RNA editing enzyme ADAR1, have been
proposed as key regulators of pathogenesis in +1q myeloma, by
altering MAPK/ERK and JAK/STAT3 signaling pathways and thus
modulating cell proliferation and survival. Strikingly, overexpres-
sion of CKS1B, MCL1 and ADAR1 is highly associated with +1q
patients and aggressive clinical course [23, 24]. Although
MIR181A1 gene maps on 1q32.1, the analysis of our screening
cohort did not highlight any correlation of +1q with either miR-
181a levels, indicating no significant impact of +1q on miR-181a
clinical value for the patients’ prognosis. In this regard, multi-
variate Cox analysis confirmed that CD138+ overexpression of
miR-181a can effectively predict worse survival outcome inde-
pendently of +1q.
Our findings are in agreement with previous studies regarding

the expression regulation and oncogenic role of miR-181a in MM.
More precisely, overexpression of miR-181a in RPMI8226 MM cells
promoted cells proliferation, while miR-181a silencing resulted in
significantly reduced survival and proliferation rates, and stimu-
lated apoptosis [48, 49]. Moreover, miR-181a knockdown in vivo
using xenograft mouse models of MM, strongly inhibited tumour
growth [43, 49]. To explain this tumour-promoting role of miR-
181a in MM, the direct targeting of HOXA11 and the MEG3/miR-
181a/HOXA11 regulatory network has been demonstrated in vitro,
in which the downregulation of MEG3 lncRNA, sponging miR-
181a, results in HOXA11 targeting-related MM progression [50].
Beside MM, the tumorigenic and/or clinical role of miR-181a has

been reported in numerous solid human malignancies, including
ovarian [51], breast [52], colorectal [53], pancreatic [54] and gastric
[55] cancers, as well as in childhood ALL and AML. Notably, the
elevated miR-181a enhances G1/S transition and cell proliferation
in pediatric AML, by regulating the tumour suppressor ATM [56].
Moreover, in childhood ALL, increased cell growth and prolifera-
tion was promoted by the miR-181a-mediated targeting of WIF-1
and the downstream stimulation of Wnt/β-catenin signalling [57],
while miR-181a knockdown clearly inhibited NOTCH1-induced T-
ALL development [58]. More recently also, elevated miR-181a
exosomal levels detected in childhood ALL patients, while
silencing of exosomal miR-181a prevented the exosomal-
induced leukemic cell proliferation in vitro [59].
Taking advantage of the independent clinical value of miR-181a

in MM patients’ outcome, we have further investigated miR-181a
ability to improve the prognostic performance of the established
and clinically used MM markers, including R-ISS stage, high-risk
cytogenetics and response to 1st-line therapy. In this regard, the
evaluation of miR-181a expression significantly improved the risk-
stratification specificity of MM patients, resulting in the advanced
positive prediction of patients’ poor treatment outcome and
short-term progression within R-ISS II, high-risk cytogenetics and
optimal treatment response patients. Consequently, as clinically
evaluated by DCA, the integration of miR-181a expression along
with the established disease markers lead to a superior MM
prognosis prediction model.
Although previous studies have demonstrated the tumour-

promoting role of miR-181a in MM, the lack of further in vitro
validation of miR-181a regulatory role in CD138+ plasma cells is
the main limitation of the study. Future studies, focusing on the in-
depth characterisation of miR-181a role in MM will unveil the

causal link between its function and the strong clinical value on
patients’ risk-stratification and treatment prognosis. Moreover,
different cut-off values were adopted in our screening and
validation cohorts, which is mainly attributed to the different
methodologic approaches applied in miR-181a quantification
(specific RT-qPCR in screening vs. high-throughput expression
profiling in validation cohort). Certainly, multi-institutional large-
scale studies could identify the optimal cut-off value of CD138+
miR-181a levels to be utilised in clinical setting.
In conclusion, upregulated miR-181a levels of CD138+ plasma

cells observed by miRNA-seq in MM compared to sMM/MGUS
patients and in advanced R-ISS stages, while the analysis of the
screening and validation cohorts highlighted the significantly
higher risk for short-term progression and worse survival
outcome of MM patients overexpressing miR-181a. Additionally,
multivariate regression models verified CD138+ elevated miR-
181a levels as independent predictor of poor treatment and
survival outcome of MM patients. Finally, evaluation of miR-181a
expression with the clinically used disease markers, including
R-ISS stage, high-risk cytogenetics and response to 1st-line
therapy, resulted in enhanced risk-stratification specificity, super-
ior positive prediction of patients’ poor treatment outcome and
higher clinical benefit compared to the established markers
alone, supporting miR-181a utility in modern diagnostics and
management of MM patients.
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