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Abstract: Cancer is recognized as a preeminent factor of the world’s mortality. Although various modalities have 
been designed to cure this life-threatening ailment, a significant impediment in the effective output of cancer treat-
ment is heterogeneity. Cancer is characterized as a heterogeneous health disorder that comprises a distinct group 
of transformed cells to assist anomalous proliferation of affected cells. Cancer stem cells (CSCs) are a leading cause 
of cancer heterogeneity that is continually transformed by cellular extrinsic and intrinsic factors. They intensify 
neoplastic cells aggressiveness by strengthening their dissemination, relapse and therapy resistance. Considering 
this viewpoint, in this review article we have discussed some intrinsic (transcription factors, cell signaling pathways, 
genetic alterations, epigenetic modifications, non-coding RNAs (ncRNAs) and epitranscriptomics) and extrinsic fac-
tors (tumor microenvironment (TME)) that contribute to CSC heterogeneity and plasticity, which may help scientists 
to meddle these processes and eventually improve cancer research and management. Besides, the potential role 
of CSCs heterogeneity in establishing metastasis and therapy resistance has been articulated which signifies the 
importance of developing novel anticancer therapies to target CSCs along with targeting bulk tumor mass to achieve 
an effective output.
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Introduction

With the advancement of cancer genetics, it is 
evident that cancer is a heterogeneous ailment 
that involves the acquisition of genetic and epi-
genetic modifications to assist cancerous cell 
proliferation, dissemination and therapy resis-
tance [1]. Cancer heterogeneity has been cate-
gorized into two distinct types: intertumor het-
erogeneity and intratumor heterogeneity. Inter- 
tumor heterogeneity involves variations in the 
tumor of the same tissue in different individu-
als or variations in the tumor of different tis-
sues in the same individual. On the other hand, 
intratumor heterogeneity encompasses variabi- 
lity within a single tumor. Intertumor heteroge-
neity lays the foundation of tumor classification 
in different types and subtypes on the basis  
of histological appearance, specific expression 
markers, and divergent genetic profiles. Where- 

as, intratumor heterogeneity entangles tumor 
efficacious treatment and complete eradica- 
tion [2].

CSCs are oncogenic in nature and imputed as 
key drivers of tumor heterogeneity [3]. Although 
at first it was presumed that CSCs are a homog-
enous population of cells, with time it has been 
proved that CSCs are phenotypically and func-
tionally diverse. There is ample evidence that 
CSCs hierarchy leads to the intratumor hetero-
geneity [4-6]. In a contemporary study, Tabuchi 
and coworkers have unmasked CSCs functional 
heterogeneity at clonal level. They showed that 
CSCs in uterine endometrial carcinoma com-
prised two distinct sub-clones i.e. highly tumori-
genic clone and treatment-refractory clone [7]. 
Moreover, recent literature also represents that 
CSCs are not static but dynamic populations of 
cells that are continually transformed by the 
cells’ extrinsic and intrinsic factors [8].
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Bonnet and Dick were the first researchers to 
disclose CSCs in human acute myeloid leuke-
mia (AML). In accordance with their pioneer 
work, just like healthy hematopoietic stem ce- 
lls (HSCs) leukemia stem cells (LSCs) bear 
CD34+CD38- phenotype [9]. Recent investiga-
tions with large sample sizes display that LSCs 
are not only restricted to CD34+CD38- fraction 
but CD34+CD38+ fraction also harbors leuke-
mogenic cells [10, 11]. Confirming LSCs hetero-
geneity Taussig and collaborators stated that 
LSCs in NPM1-mutation harbor CD34- pheno-
type while CD34+ phenotype is only associated 
with NPM1-mutated AML that additionally pos-
sess higher risk to develop FLT3IDT mutation 
[12]. Results from some other groups also 
made explicit that both CD34- and CD34+ phe-
notypes can exist in NPM1-mutated AML [13].

Like leukemia, solid tumors also harbor several 
different subpopulations of stem-like cells. In 
the year 2003, Al-Hajj and his companions first 
identified breast cancer stem cells (BCSCs) 
with CD44+CD24-/LLIN- pattern [14]. Later, an- 
other group detected an elevated level of 
ALDH1 in both normal and CSCs. However, cells 
bearing both CD44+CD24-/L and ALDH+ markers 
were more malignant than the cells bearing  
a single marker only [15]. Further describing 
combination markers for BCSCs enrichment 
Pece and coworkers revealed that cells with 
CD24HCD49HDNERH, CD24HCD49HDLL1H and 
CD49FHDLLHDNERH phenotypes could be uti-
lized as markers for BCSCs identification [16]. 
On the other hand, to reveal BCSCs hetero- 
geneity, Hwang-Verslues and coworkers report-
ed a highly tumorigenic subpopulation of BC- 
SCs with PROCR+/ESA+ phenotype instead of 
CD44+CD24-/L and ALDH+ signature [17]. Simi- 
larly, in ER-α-negative breast cancer, not only 
CD44+CD24- and CD44+CD24+ cell populations 
were found oncogenic but they also found a 
third more malignant phenotype CD44+CD- 
49fHCD133/2H of BCSCs [18]. Furthermore, 
heterogeneous markers have been described 
for enrichment of CSCs in the tumors of oth- 
er organs [19]. For example in glioblastoma, 
CD133, CD44, CD15, A2B5, integrin α6 and 
LICAM markers have been reported for CSCs 
identification [20, 21]. Cell surface markers,  
in particular CD133, CD44, ALDH, CD166, 
CD133+ESA+, CD166+CD44+, and CD166+Ep- 
CAM+ are exploited for lung cancer stem cells 
(LCSCs) isolation, whereas for bladder cancer 

stem cells detection CD44, CD67LR, ALDH1A1, 
BCMab1 and EMA markers have been describ- 
ed in the literature [22].

In light of these data, it can be stated that CSCs 
have been found to be highly heterogeneous in 
different malignancies, and only one type of 
marker is not enough to isolate or target a par-
ticular CSCs from the bulk of the tumor mass. 
Hence, this review article is intended to sum-
marize recent findings of potential mechanisms 
of CSCs heterogeneity that how these are 
equipped with stemness features. At first, we 
have magnified the intrinsic factors, like tran-
scription factors, signaling pathways, genetic 
alterations, epigenetic modifications, ncRNAs 
and epitranscriptomics that we regard as the 
inherent properties of self-renewal. Secondly, 
we have pinpointed the role of TME as an extrin-
sic factor that can significantly alter phenotype 
of these cells. Additionally, the function of this 
heterogeneity in cancer dissemination and the- 
rapeutic resistance has been documented, al- 
ong with discussing some already established 
therapeutic approaches to target CSCs.

Models of CSCs heterogeneity

Historically, two contrasting models were pro-
posed to describe cancer heterogeneity. These 
models were named: the clonal evolution (CE) 
model and the cancer stem cell (CSC) model. 
The CE model was emanated from Darwin’s 
evolution theory, where a single cell is respon-
sible for tumor initiation. This model states that 
with time stochastic changes occur within a cell 
and as a consequence of cellular division these 
changes can pass to the daughter cells. The 
daughter cells are prone to acquire more and 
more perturbations and as a result of natural 
selection, only the most adopted clone will sur-
vive while the clones with less adaptation will 
extinct out eventually (Figure 1) [23]. On the 
contrary, the CSC model explicates that cancer-
ous cells harbor a small subgroup of stem cells 
with cancer-initiating potential. These cells are 
recognized as “cancer stem cells (CSCs)” and 
just like healthy stem cells, CSCs hold self-
renewable and differentiation capabilities. This 
model intimates that due to the stem cells dif-
ferentiation cancerous cells proliferate in a 
hierarchical fashion and thus, only CSCs are 
accountable for tumor induction, propagation, 
infiltration and relapse (Figure 1) [24].
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Although in the beginning, it was believed that 
these models are not mutually exclusive as 
some cancers follow the CE model, while others 
follow the CSC model. But this concept was not 
enough to describe cancer heterogeneity com-
pletely. For example, in chronic myeloid leuke-
mia (CML), a cancer that is completely directed 
by CSCs, imatinib treatment caused clonal evo-
lution [25]. Similarly, phenotypic plasticity has 
been observed in LSCs upon chemotherapy 
treatment [26]. These observations led to a 
third evolving model called the plasticity model, 
in which CSCs and non-CSCs harbor the ability 
to interchange their states among each other 
(Figure 1). Thus, the CE model and CSCs model 
are not mutually exclusive and the plasticity 
model further facilitates complicacy to the well-
explained paradigm of cancer heterogeneity.

Factors contributing to the CSCs heterogeneity

In order to understand CSCs heterogeneity, it is 
essential to comprehend how stemness attri-
butes are set up in cancerous cells. Therefore, 
in this section different intrinsic and extrinsic 
elements have been discussed which contrib-
ute to CSCs stemness initiation and main- 
tenance (Figure 2).

Intrinsic factors

Transcription factors

OCT4, SOX2, KLF4, c-MYC and NANOG are rec-
ognized as master pluripotency factors as they 
can reprogram somatic cells into induced plu-
ripotent stem cells by suppressing differentia-
tion-associated genes or upregulating pluripo-

Figure 1. Models of Cancer heterogeneity. According to the clonal evolution model stochastic mutations give raise 
to the divergent sub-clones which finally make the tumor heterogeneous. The second model or the CSCs model 
explicates that small population of stem cell like cells within cancer initiates and maintains cancer heterogeneity 
as they possess the ability to differentiate into any cell type. This model represents that the conversion of CSCs to 
non-CSCs is irreversible process. On the contrary, according to the plasticity model this conversion is bidirectional. 
Hence, cancer cells change their phenotype in response to the dynamic microenvironment.
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and leukemia its downregulation has been 
observed [27]. The three different isoforms of 
c-MYC are also overexpressed in different can-
cers to maintain CSCs characteristics [27]. Si- 
milarly, NR5A2 has been found to increase 
NANOG expression to maintain stemness of 
lung cancer [34]. Moreover, these factors also 
work in a combination of other transcription 
factors i.e. STAT3, ZIC3 and HESX1 to promo- 
te CSCs tumorigenic potential, transformation 
and metastasis [35].

Besides maintaining stemness properties of 
CSCs, transcription factors also play a key role 
in promoting tumor heterogeneity and plasti- 
city. For example, in glioblastoma, a core set  
of four transcription factors (SOX2, OLIG2, 
POU3F2 and SALL2) can reprogram differenti-
ated glioblastoma cells into tumor-initiating 
glioblastoma stem-like cells [36]. A recent stu- 
dy showed that increased c-MYC expression 
has been found to be linked with intratumor 
heterogeneity in triple-negative breast cancer 
cells [37]. Similarly, the transcription factor 
YB-1 was found to be responsible for the rever-
sion of differentiated tumor cells into CSCs 
[35]. Hence, it is evident that transcription fac-
tors play a dominant role in maintaining tumor 
heterogeneity by regulating CSCs proliferation 
and differentiation.

tency and self-renewal related genes. Accu- 
mulating evidence shows increased expression 
of these master regulators in CSCs [27]. For 
instance, increased expression of OCT4 has 
been found to be positively linked with chemo-
resistance and inversely linked with clinical 
prognosis in the majority of the tumors [28]. Its 
increased expression also shows an associa-
tion with glioma grades [29]. Likewise, SOX2 
promotes metastasis and cancer stem-cell 
function in invasive cutaneous squamous cell 
carcinoma [30]. Gangemi and companions rep-
resented that SOX2 is essential for sustaining 
tumorigenesis and self-renewal of glioblasto-
ma-initiating cells (GICs) as its knockdown halt-
ed glioblastoma tumorigenicity and prolifera-
tion [31]. KLF4, which is another important 
transcription factor of pluripotency, has been 
found to perform a dual role in cancer mainte-
nance. Sometimes, it acts as an oncogene as  
in the melanoma xenograft model, its deple- 
tion causes inhibition of cancer [32]. In the 
same fashion, its overexpression in osteosar-
coma cells caused the formation of osteosar-
coma cancer stem cells with chemoresistance 
and metastasis potential [33]. On the contrary, 
in some other cancers, its anticancer effect 
has also been documented as in liver cancer, 
bladder cancer, non-small-cell lung carcinoma 

Figure 2. Factors regulating CSCs to promote cancer heterogeneity. Cellular intrinsic and extrinsic factors up-regu-
late stemness traits in cancerous cells. They also help CSCs to evade immune response and change their phenotype 
to promote cancer.



Cancer stem cells: a major culprit of intra-tumor heterogeneity

5786	 Am J Cancer Res 2021;11(12):5782-5811

Cell signaling pathways

Many cell signaling pathways that control nor-
mal stem cells homeostasis are found to be 
highly activated or repressed in cancerous 
cells. Thus, leading to the activation and prolif-
eration of CSCs [27]. These pathways are not 
independent of each other but form a compli-
cated signaling network to regulate and propa-
gate tumors [38]. Different endogenous or ex- 
ogenous genes and ncRNAs are implicated in 
the regulation of these signaling pathways. In 
addition, these can also stimulate the expres-
sion of some downstream genes associated 
with the apoptosis, proliferation and metasta-
sis of CSCs [38]. In this section, some key sig-
naling pathways are discussed that support 
CSCs formation and function.

Notch signaling pathway: In mammals, the 
Notch signaling pathway has four receptors: 
(Notch1, Notch2, Notch3, and Notch4) and five 
ligands: (DLL1, DLL3, DLL4, JAG1 and JAG2) 
[39]. These ligands and receptors are trans-
membrane proteins that participate in cellular 
communication [27]. This pathway gets activat-
ed when a receptor binds to a ligand on an 
adjacent cell in a juxtacrine manner, resulting 
in the translocation of the Notch intracellular 
domain to the nucleus to activate transcription 
of targeted genes [40].

The Notch pathway has been found abnormally 
activated in different malignancies. However, 
its exact role in the maintenance of CSCs has 
just been recently understood. It is because dif-
ferent cancers express different Notch recep-
tors and ligands [41]. Hence, it functions as 
either tumor promoter or suppressor, depend-
ing upon the type of cancer involved. As a tu- 
mor promoter, Notch signaling is overactivated 
in pancreatic, gastric, colon and breast cancer 
cells [42-44]. While this pathway is found sup-
pressed in liver, prostate, lung and skin cancer 
cells [45-49]. This dual nature of the Notch sig-
naling pathway is controlled by the microenvi-
ronment [50]. Studies conducted on the role of 
Notch pathway in CSCs revealed that its ac- 
tivation promotes the development and differ-
entiation of CSCs. For example, in hepatocellu-
lar carcinoma (HCC) and breast cancer, aber-
rant activation of the Notch1 and Notch4 en- 
hanced metastasis and self-renewal properti- 
es of CSCs [51, 52]. Likewise, patient-derived 

pancreatic cancer stem cells (PCSCs) exhibit- 
ed increased expression of Notch1, Notch3, 
JAG1, JAG2 and HES1, suggesting the potential 
role of Notch signaling in CSCs maintenance. 
Moreover, overexpression of DLL4 in gastric 
cancer cells resulted in increased self-renewal 
and metastasis of gastric cancer stem cells 
(GCSCs) [53]. In glioblastoma, DLL1 requires 
actin cytoskeleton regulator ARP2/3 complex 
to activate Notch signaling for maintaining stem 
cells phenotype [54]. Notch pathway activation 
is also required for maintaining the undifferen-
tiated state of CSCs, as in adenomas its inhibi-
tion caused differentiation of adenoma cells 
into goblet cells [55]. Furthermore, some en- 
dogenous genes also activate the Notch path-
way. In cervical cancer, MAP17 sequestrates 
NUMB to differentiate tumor cells into CSCs 
[56]. Finally, it has also been observed that dif-
ferent tumorigenic factors also maintain CSCs 
phenotype by activating Notch. In osteosqa-
mous cell carcinoma cells, TNF-α mediated 
Notch activation promotes CSCs phenotype 
[57]. Similarly, hypoxia-induced JAG2 activation 
enhances the invasiveness properties of lung 
and BCSCs [58, 59]. Additionally, BMP-4 acti-
vates the Notch pathway to promote epithelial-
to-mesenchymal transition (EMT), a process 
that is cardinal to maintain cancer cells’ plastic-
ity and stem cell properties in breast cancer 
cells [60]. Collectively, these studies clearly 
express that the Notch pathway is essential for 
the survival and growth of CSCs in different 
cancers.

Wnt signaling pathway: The Wnt pathway is a 
highly intricate signaling pathway that plays a 
crucial role in the proliferation and mainte-
nance of CSCs [61]. This pathway has been 
divided into three subtypes: the canonical Wnt 
pathway, the non-canonical planar-cell polarity 
pathway and the non-canonical Wnt-calcium 
pathway [62]. Among these, the canonical Wnt 
pathway is the most understood and its inhibi-
tion has remained a topic of interest in cancer 
biology. In general, it incorporates 19 ligands 
and around 15 receptors [63]. The activation of 
the Wnt pathway has been found different in 
different malignancies. In some cases, it gets 
activated by mutations, like FLT3IDT mutation in 
AML [64], APC mutation in colorectalcarcinoma 
[65], AXIN mutation in gastric cancer [66] and 
β-catenin mutation in liver cancer [67]. While in 
other cases, growth factors from the TME, like 
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HGF, PDGF, VEGF and PGE2 activate this path-
way [68]. Tumor dormancy is a critical phenom-
enon that ultimately develops cancer metasta-
sis and recurrence. Studies suggest that ac- 
tivated Wnt signaling transforms dormant CSCs 
into active CSCs to promote tumorigenesis 
[69]. Moreover, activated Wnt signaling has al- 
so been found to be associated with the self-
renewal of CSCs. Different proto-oncogenes 
promote this process by activating the Wnt 
pathway [70]. For instance, in colorectal can-
cer, EZH2 enhances colorectal cancer stem 
cells (CCSCs) expansion by activating Wnt/β-
catenin signaling [71]. Whereas in prostate can-
cer, TERT (a telomerase reverse transcriptase) 
activates downstream targets of Wnt via mak-
ing a complex with β-catenin [72]. PKM2 in- 
creases the proliferation of BCSCs by activating 
the Wnt pathway [73]. In the same manner, 
capillary morphogenesis gene 2 upregulates 
β-catenin expression to regulate GCSCs pheno-
type [74].

Aberrant Wnt activation also regulates the 
dedifferentiation of CSCs. PMP22, which nor-
mally causes differentiation of CSCs, was found 
depleted after Wnt activation [75]. TRAP1 halt-
ed the differentiation of CSCs via regulating 
phosphorylation of the β-catenin [76]. Further- 
more, in esophageal squamouscell carcinoma, 
LGR5 caused Wnt activation to restrain CSCs 
differentiation [77]. Studies also show the role 
of Wnt signaling in inhibiting apoptosis of CSCs. 
DACT1 antagonizes the Wnt/β-catenin pathway 
to increase apoptosis in BCSCs [78]. Likewise, 
DKK2-mediated downregulation of β-catenin in 
BCSCs leads to the Go/G1 phase arrest and 
apoptosis in breast cancer [79]. Wnt signaling 
also promotes metastasis of CSCs. In the hu- 
man colon, pancreatic and lung CSCs upre- 
gulation of CD44v6 causes Wnt activation 
which leads to cancer metastasis and invasion 
[80-82]. Besides, CDH11 was found to decre- 
ase the migration ability of CCSCs by deactivat-
ing Wnt [83]. These studies suggest that aber-
rant Wnt activation plays a significant role in 
maintaining CSCs’ dedifferentiation, apoptosis 
inhibition, and invasion.

Hedgehog (HH) signaling pathway: The HH sig-
naling pathway is another complex regulatory 
network, that promotes tumorigenesis of differ-
ent organs by regulating CSCs [27]. This path-
way is comprised of three extracellular ligands: 
Sonic hedgehog, Desert hedgehog and Indian 

hedgehog, PTCH receptor, Smoothened protein 
(SMO) and three GLI transcription factors: GLI1, 
GLI2 and GLI3 [27]. Studies show increased 
expression of HH pathway mediators in differ-
ent CSCs. In human multiple myeloma-derived 
progenitor cells, high expression of SMO gene 
and increased transcriptional activity of GLI1 
were observed [84]. In the same manner, hu- 
man gliomas showed increased expression of 
HH signaling-associated genes PTCH1, GLI1 
and SHH [85]. Upon treatment with HH pathway 
inhibitor, enhanced expression of master pluri-
potency factors (SOX2, OCT4 and NANOG) was 
observed, which caused inhibition of self-re- 
newal and proliferation abilities of CSCs [85]. 
Furthermore, in the SMO-deficient murine CML 
model, ectopic expression of the SMO gene 
enhanced CML progression by increasing the 
frequency of CSCs [86].

Different oncogenes and tumor suppressor ge- 
nes also regulate tumorigenesis by modulating 
HH signaling in CSCs. In medulloblastoma stem 
cells, BCL6 caused repression of the HH path-
way by inhibiting GLI1 and GLI2 [87]. In glioma, 
SCUBE2 inhibited the HH pathway to halt the 
proliferation and migration of glioma cancer 
stem cells [88]. Also, in PCSCs, vasohibin 2 
caused the deactivation of SMO, GLI1 and GLI2 
[89]. HH signaling also promotes CSCs-me- 
diated tumor metastasis. CSCs isolated from 
human colon cancer liver metastasis patients 
exhibited increased expression of GLI1, GLI2 
and HIP genes. Besides, these CSCs also ex- 
pressed a high level of SNAIL 1 (an EMT-as- 
sociated gene), as compared to nonmetastatic 
controls [90]. In addition, RUNX3 a tumor sup-
pressor transcription factor inhibited metasta-
sis and stemness properties of CCSCs by caus-
ing GLI1 intracellular ubiquitination [91]. These 
studies indicate that overactivated HH signal-
ing assists CSCs growth, proliferation and 
metastasis.

JAK/STAT signaling pathway: The JAK/STAT sig-
naling cascade is one of the simplest signaling 
pathways that gets activated by different li- 
gands, like cytokines, hormones and growth 
factors [92]. This pathway regulates different 
important biological processes, such as self-
renewal, neurogenesis and hematopoiesis in 
embryonic stem cells (ESCs) [93]. Several lines 
of evidence indicate aberrant JAK/STAT activa-
tion in different CSCs. For example, overac- 
tivation of the JAK/STAT pathway-associated 
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genes, such as STAT1, IFNK, IFNGR, CSF2 and 
IL-6 has been observed in prostate cancer 
stem cells (PrCSCs) [94]. Whereas the activat-
ed form of STAT3 was found to be upregulated 
in BCSCs [42]. Overactivation of JAK/STAT sig-
naling also promotes stemness properties in 
human glioblastoma. As in an analysis of glio-
blastoma, patient-derived GICs showed TGF-β 
and LIF-mediated JAK/STAT pathway activation 
that led to the increased self-renewal and 
reduced differentiation capabilities in GICs 
[95]. In endometrial cancer, IL-6 caused acti- 
vation of the JAK1/STAT3 pathway in ALDHH 
and CD126+ cells [96]. Furthermore, in ovarian 
cancer, OCT4 promoted activation of the JAK2/
STAT3 pathway in CSCs [97]. The JAK/STAT pa- 
thway also plays an important role in the regula-
tion of LSCs [98]. Constitutive JAK/STAT activa-
tion has been observed in the LSCs isolat- 
ed from AML patients. Upon treatment with 
JAK1/2 inhibitor, LSCs lost their tumorigenic 
ability as in secondary transplant they failed  
to develop leukemia in immunocompromised 
mice [99]. The JAK/STAT signaling also partici-
pates in CSCs-mediated therapy resistance. As 
in colorectal cancer, the JAK2/STAT3/CCND2 
axis promoted CSCs growth after radiotherapy 
by limiting apoptosis and accelerating clono- 
genicity [100]. Similarly, in myxoid liposarcoma 
cancer stem cells, JAK/STAT signaling activa-
tion led to chemotherapy resistance [101]. Th- 
us, the JAK/STAT pathway serves an important 
role in promoting stemness properties and 
CSCs-mediated therapy resistance.

NF-ĸβ signaling pathway: NF-ĸβ is another com-
plex and essential signaling cascade that plays 
a crucial role in regulating inflammatory and 
immune responses [102]. Aberrant NF-ĸβ has 
been observed in hematological malignancies, 
breast tumors, head and neck squamous cell 
carcinoma (HNSCC), gastrointestinal, gyneco-
logical and genitourinary cancers [27]. Al- 
though previously its role was unclear in the 
regulation of CSCs, recent studies have shed 
light on its essential role in CSCs functioning, 
maintenance, proliferation and metastasis. In 
ovarian cancer, CD44+ cells showed increased 
expression of different NF-ĸβ pathway-associ-
ated genes to promote tumorigenesis [103]. In 
another study, BCSCs displayed increased level 
of NF-ĸβ-inducing kinase to support the prolif-
eration and metastasis of BCSCs [104]. IKKβ 
upregulated LIN28 expression to promote BC- 
SCs lung metastasis [105]. Moreover, in a 

recent study, Nancy and colleagues have also 
identified the role of NF-ĸβ signaling cascade  
in maintaining BCSCs plasticity to promote its 
aggressiveness and invasion [106]. Similarly,  
in the colorectal cancer mice model, PGE2-
mediated NF-ĸβ activation promoted CSCs ex- 
pansion and metastasis [107]. Finally, CCR7 in 
association with its ligand CCL21 caused NF-ĸβ 
activation in CD133+ CCSCs to enhance their 
survival, while inhibiting apoptosis [108]. These 
investigations demonstrate that the activated 
NF-ĸβ pathway regulates CSCs’ properties to 
increase tumor metastasis and aggressive- 
ness.

PI3/AKT/mTOR signaling pathway: PI3/AKT/
mTOR is an important intracellular signaling 
pathway that regulates the cell cycle. This path-
way has been studied extensively for its role in 
developing cancer. Moreover, its function in 
driving therapy resistance in various tumors 
has also been reported. However, limited data 
is available regarding its role in stemness ma- 
intenance [109]. PI3/AKT/mTOR signaling cas-
cade accelerates metastasis and invasion of 
PCSCs and PrCSCs [110, 111]. Deactivation of 
PTEN, a tumor suppressor gene, induced PI3K 
activation in CD133+/CD44+ PrCSCs to stimu-
late their survival and tumorigenesis [112]. In 
HNSCC, aberrant PI3K signaling improved the 
proliferation and metastasis capabilities of 
ALDH+CD44H CSCs [113]. Overactivation of 
mTOR has also promoted survival and self-
renewal in nasopharyngeal cancer stem cells 
and BCSCs [114, 115]. In HCC, mTORC2 
increased the expression of EpCAM [116]. 
Whereas, in CCSCs, activation of mTORC1 
increased ALDH1 activity [117]. In another 
analysis, activated PI3K/AKT pathway promot-
ed SOX2 expression in CCSCs to induce the 
production of radiotherapy resistant CSCs 
[118]. Therefore, it is evident that the PI3K/ 
AKT pathway promotes CSCs-mediated therapy 
resistance, metastasis and invasion.

The aforementioned CSCs regulatory pathways 
are not always linear, as in some cases cross-
talk among different signaling cascades also 
occur to regulate the properties of tumor-initiat-
ing cells. HH and PI3K pathways work together 
to regulate biliary tract CSCs and PrCSCs [119, 
120]. Likewise, the association between NF-ĸβ 
and Wnt/β-catenin pathway occurs in colorec-
tal cancer to support self-renewal and prolifera-
tion of CSCs. In this case, β-catenin increased 
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TNFRSF19 expression to overactivate, NF-ĸβ 
pathway [121]. However, in some cases, nega-
tive association also occurs between these 
regulatory pathways. For example in colon, 
breast and liver cancer, NF-ĸβ activation 
caused deactivation of β-catenin/TCF activity 
by increasing tumor suppressor LZTS2 [122-
124]. Cross-talk of CSCs regulatory pathways 
also participate in establishing therapy resis-
tance in tumor cells. For instance, PI3K and 
Notch pathways work in association to drive 
PI3K therapy resistance in triple-negative 
breast cancer [125]. In HH activated medullo-
blastoma a mice model, activation of PI3K was 
observed to sustain therapy-resistant CSCs in 
the perivascular niche [126]. Moreover, the 
association of these signaling pathways also 
regulates CSCs to promote tumor growth and 
metastasis. IL-6/JAK/STAT3 and TGF-β/Smad 
signaling work together to promote LCSCs 
metastasis [127]. The combination of Notch, 
IKK/NF-ĸβ and some other pathways enhanc- 
ed the proliferation and migration of CD133+ 
skin cancer stem cells [128]. Finally, the bind-
ing of IL-17E to IL-17B has been observed in 
HCC to activate NF-ĸβ and JAK/STAT3 path-
ways for regulating CSCs growth [129].

Genetic alterations

In the journey of cell division, cells agglomerate 
various genomic alterations just by chance. In 
an exquisite study, Tomasetti and Vogelstein 
revealed a strong correlation between no of 
stem cell division and tissue-associated cancer 
risk. This work indicates that stem cells are the 
main players of arising cancer in humans [130]. 
Although neoplastic transformation can even-
tuate in any cell type i.e. stem cells, progenitor 
cells, or differentiated cells, the stem cells are 
preferentially dominant targets for malignant 
transformation [131]. Thus, CSCs utilize normal 
molecular mechanisms of healthy stem cells, 
like self-renewal and proliferation to initiate 
and propagate cancer [24]. This phenomenon 
can be observed well in hematological malig-
nancies in which the acquisition of different 
forms of chromosomal translocations in HSCs 
produce different types of leukemia. For exam-
ple, BCR-ABL translocation in these progenitor 
cells originates CML [132], MLL-ENL transloca-
tion in CD34+ hematopitic stem cells and pro-
genitor cells leads to B-lineage and monocytic 
leukemia [133] and AML1-ETO in HSCs leads  
to AML [134]. It is well known that TET2 dele-

tion in the hematopoietic region is linked with 
CMML/MPN, while FLT3IDT mutation in TET2 
deprived hematopoietic stem cells transforms 
them to AML [135]. Furthermore, these two 
germline perturbations synergistically exert a 
pathogenic impact on the bone marrow niche 
by promoting leukemogenesis [135]. These 
types of genetic mutations have also been 
observed in the initiation of solid tumors as 
PTEN loss in human neural stem cells results  
in the formation of glioblastoma stem cells 
(GBSCs) [136]. Lee and coworkers have provid-
ed direct molecular genetic proof that neural 
stem cells that reside in the brain’s subventric-
ular zone carry driver mutations to originate 
glioblastoma [137]. Similarly, SMAD4 and PTEN 
mutated LRG5+ stem cells originate invasive 
intestinal-type gastric cancer in mice [138].

Oncogenic transformations have also been re- 
ported to be responsible for promoting the 
aggressiveness of cancer [139]. In a recent 
study, Weng and colleagues showed that 
KrasG12D/p53 loss caused upregulation of can-
cer stem cell-like traits (CD24, CD133 and 
EpCAM) in the prostate cancer mice model, 
which enhanced tumorigenic potential and 
bone metastasis of prostate cancer [140]. 
Moreover, oncogenic transformation in stem 
cells can also produce immune surveillance 
response in tumor cells. For instance, neoplas-
tic alterations in human mesenchymal stem 
cells reduced their immunogenicity and incre- 
ased their ability to inhibit mitogen-driven T- 
cells proliferation [141]. In the same manner, 
mutated stem cells are found to express an 
elevated level of immune modulators such as 
CTLA4 and CD274 (PD-L1) [142]. A current 
study confirms this phenomenon by revealing 
that PARP upregulation in LSCs inhibited NK- 
G2D-L expression which led to evade immune 
response [143].

Just like a healthy stem cell, normal differenti-
ated cells also depict a permissive pool for 
CSCs generation [144]. The two most prevalent 
brain tumors i.e. neuroblastoma and glioblas-
toma are presumed to be initiated from the 
dedifferentiation of mature neurons and glial 
cells [145]. Köhler and colleagues have provid-
ed in vivo evidence that differentiated, mature 
pigment-producing melanocytes cells are cells 
of origin of melanoma. Using the lineage trac- 
ing approach they showed that pigment-pro-
ducing melanocytes dedifferentiate and ex- 
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pand to originate BRAFV600E induced melanoma 
[146]. Similarly, the oncogenic isoform of C/
EBPα dedifferentiates hepatocytes into CSCs 
to initiate HCC and aggressive hepatoblastoma 
[147].

Epigenetic modifications

Even though genetic perturbations play a major 
role in tumorigenesis, these changes alone are 
not enough to establish all hallmarks of cancer. 
Therefore, genetic and epigenetic alterations 
go hand in hand to maintain and propagate 
tumors. For instance, loss of APC in LRG5+ 
intestinal CSCs led to DNA methylation to fur-
ther increase CSCs signature [148]. Additiona- 
lly, Arg-882-mutated DNMT3a in combination 
with RAS-mutation induced LSCs to originate 
AML [149]. Likewise, mutated DNMT3a induc- 
ed CpG hypermethylation and histone acetyla-
tion to deregulate stemness pathways [149]. 
Furthermore, irregular DNA methylation has 
been observed frequently in different malig-
nancies [150, 151]. In Aldeflour+ BCSCs, DNA 
hypermethylation of TAP gene helps to evade T 
cells [152].

Epigenetic alterations also regulate the plastic-
ity of CSCs. As the existence of functionally dis-
tinctive cellular subtypes i.e. CSCs and non-
CSCs in tumor leads to heterogeneity, epige- 
netic modifications can effectively switch CSCs 
into non-CSCs in established cancers. An ex- 
ample of this mechanism can be observed in 
liver cancer, in which modulation of Nanog pro-
moter methylation results in the switch between 
CSCs and non-CSCs [153]. Emerging evidence 
suggests that epigenetic modifiers contribute 
significantly to sustain and support oncogenic 
aptitude of CSCs. As ZSCAN4 mediated NANOG 
and OCT3/4 promoter hyperacetylation leads 
to enhanced CSCs features in HNSCC [154]. 
Collectively, in light of the mentioned literature, 
it’s evident that genetic and epigenetic modifi-
cations are mandatory factors for installing and 
maintaining stemness traits.

Non-coding RNAs

Although, in the beginning, there was consen-
sus among the scientific society that only a 
minority of the human genome (less than 2%) 
encodes for protein while the remaining major 
portion (98%) was considered junk. With the 
advancement of scientific research, RNA-se- 

quencing technology has revealed the impor-
tance of this junk portion in the regulation of 
gene expression [155]. Non-coding RNAs in 
particular, long non-coding RNAs (lncRNAs) and 
microRNAs (miRNAs) perform a crucial role in 
carcinogenesis as they can regulate cellular 
growth and differentiation by reprogramming 
the transcriptome [156, 157]. In recent years, 
their pivotal role in CSCs progression and stem-
ness maintenance has been studied extensive-
ly and it is well-mentioned that they are key 
regulators of stemness properties and stem 
cell plasticity [158, 159]. For example, the 
lncRNA MALAT1 and THOR maintain gastric 
cancer stemness by regulating SOX2 expres-
sion post-transcriptionally. This lncRNA binds to 
the SOX2 mRNA and strengthens its stability 
and expression [160, 161]. Similarly, lncRNA-
HAND2-AS1 has been found to increase stem-
ness of HCC and non-small cell lung cancer 
(NSCLC) through activating BPM signaling and 
suppressing TGF-β1 respectively [162, 163]. 
Correspondingly, lncGATA6 perpetuates intesti-
nal cancer stemness and stimulates tumori-
genesis [164]. In AML, the enhanced expres-
sion of HOTAIR in LSCs led to the inhibition of 
p15, which is a tumor suppressor gene. Thus, 
lncRNA could serve as a potential therapeutic 
marker as its knockdown could increase the 
survival time of AML patients [165]. Further- 
more, some oncogenic alterations could also 
affect the transcription of lncRNAs which are 
necessary for CSCs stemness maintenance 
and chemoresistance [166].

Correspondingly, elevated level of miRNAs has 
been found in different malignancies to pro-
mote stemness features. In HCC, the epigeneti-
cally altered miR-494 has been found to be 
linked with stem cell phenotype and sorafenib 
resistance [167]. Another study shows that 
miR-217 enhanced hepatocellular carcinoma 
stem cells phenotype via targeting DkK1 gene 
expression [157]. While in cutaneous squa-
mous cell carcinoma, miR-142-5p produced 
CSCs by inhibiting PTEN [168]. Besides regu- 
lating stemness-associated factors, these non-
coding RNAs also participate in the regulation 
of the process of EMT [159]. BCSCs, the most 
studied CSC in solid tumors, prevail in two 
dynamic states i.e. mesenchymal-like (CD24-

CD44+) and epithelial-like (ALDH+). This inter-
conversion aids in the invasion and dissemina-
tion of breast tumors at distinct sites. Studies 
also illustrate that different miRNAs, in particu-
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lar, miR-9, miR-100, miR-221 and miR-155 give 
raise to EMT state, whereas, miR-93, miR-200 
and miR-205 are associated with the induction 
of mesenchymal-to-epithelial state [159, 169].

The lncRNA/miRNA regulatory network is highly 
complex as lncRNA also harbors the ability to 
silence miRNA. In colorectal cancer, lnc34a 
epigenetically masks miR-34a to induce asym-
metric division of CSCs [170]. On the other 
hand, LINC00337 in cervical cancer acts like a 
competing endogenous RNA (ceRNA) of miR-
145, where it positively regulates KLF5 transla-
tion by inhibiting miR-145 [171]. These non-
coding RNAs are not always oncogenic as their 
tumor suppressor role has also been reported. 
In recent years, Chen and companions have 
discovered a novel lncRNA (lnc-LBCS) that in- 
hibits bladder cancer tumorigenesis and che-
moresistance by inhibiting SOX2 protein ex- 
pression [172]. Whereas, miR-15b suppresses 
TRIM14 to drive cisplatin sensitivity and inhibit 
CSCs in oral tongue squamous cell carcinoma 
[173]. Furthermore, depletion of HOTAIRM1 up- 
graded self-renewal of CSCs and tumor aggres-
siveness in colorectal cancer and uveal mela-
noma [174]. In the same fashion, miRNA, let-7g-
5p inhibited GBSCs phenotypes by reducing 
EMT via downregulating VSIG4 [175].

Epitranscriptomics

With the advancement of sequence databases 
and transcriptome-wide mapping, various post-
transcriptional modifications have been identi-
fied in both coding and non-coding RNA mole-
cules. At first, these modifications were pre- 
sumed to be limited to only tRNA and rRNA  
molecules. However, further investigations re- 
vealed that these changes also exist in mRNA 
molecules. Thus, an emerging group of RNA 
variations led to the foundation of epitranscrip-
tomics in 2012 [176]. Although previously (epi)
genetic alterations, transcription factors and 
cell signaling pathways were thought to be 
responsible for stem cells regulation and fate 
decision, increasing data suggest that RNA-
modifications also cause strong dramatic and 
dynamic changes during cellular reprogram-
ming or lineage decision [177, 178]. Hence, epi-
transcriptomics has emerged as an additional 
regulatory layer in CSCs stemness mainte-
nance and lineage commitment. Therefore, re- 
cent studies are focusing on the role of these 
RNA modifications in CSCs’ self-renewal differ-

entiation and proliferation. To date, more than 
170 different RNA alterations have been report-
ed [179]. Increasing evidence suggests that 
among these distinct modifications, the two 
RNA-based modifications: N6-methyladenosine 
(m6A) and adenosine-to-inosine (A-to-I) play a 
significant role in CSCs regulation and mainte-
nance [176, 180].

N6-methyladenosine modifications (m6A): N6- 
methyladenosine is one of the most frequent 
and prevalent RNA modifications that has been 
observed in almost all types of RNAs (mRNA, 
rRNA, tRNA, lncRNA, miRNA and cirRNA) [176, 
181]. This process of RNA editing involves 
methylation in the N6-position of adenosine 
that is mediated by methyltransferases (ME- 
TTL3/14/16, CBLL1, ZC3H3, WTAP, RBM15/ 
15B, VIRMA and KIAA1429), erased by demeth-
ylases (ALKBH5 and FTO) and identified by the 
reader proteins (IGF2BP1/2/3, YTHDF1/2/3, 
YTHDC1/2 and hnRNPA2B1) [182]. Accumu- 
lating evidence suggests that m6A acts as a 
molecular switch to control embryonic develop-
ment [183, 184]. In a transcriptome-wide anal-
ysis, m6A was found to induce abundant altera-
tions in the core pluripotency factors i.e. SOX2, 
OCT4, NANOG, and KLF4 [183]. Moreover, ME- 
TTL3 depleted mice exhibited increased half-
life of these key pluripotency genes, which 
resulted in embryonic lethality [183]. The m6A 
modifications also control the dedifferentiation 
of cancer cells. For instance, depletion of m6A 
methylation led to NANOG translation that 
caused the reversion of cancer cells to their 
primitive pluripotent state [185]. Similarly, an- 
other group observed increased expression of 
FTO in leukemia that reduced m6A methylation 
of RARA and ABS2, thus promoting AML growth 
and proliferation [186]. FTO-mediated demeth-
ylation has also been observed to regulate  
self-renewal of GBSCs as its inhibition by MA2 
impaired GBSCs proliferation and self-renewal 
[187]. In the same manner, ALKBH5 was found 
to be highly expressed in GBSCs and its deple-
tion disturbed the proliferation of patient-de- 
rived GBSCs by inhibiting FOXM1 expression 
[188]. Surprisingly, a lncRNA antisense to FO- 
XM1 promoted GBSCs tumorigenesis by accel-
erating FOXM1 and ALKBH5 transcripts inter-
action [188]. On the contrary, aberrant m6A 
alterations promote BCSCs generation [189]. 
Also, in AML, increased METTL3 activity has 
been observed that increased translation of 
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c-MYC and BCL2 [190]. Similarly, elevated level 
of METTL14 has been found in AML cells that 
lead to the upregulation of MYB and MYC mRNA 
to regulate LSCs [191]. Visvanathan and coau-
thors reported that MELTT3-mediated methyla-
tion also promotes glioma cancer stem cells 
dedifferentiation [192]. They also showed that 
MELTT3 targets SOX2 to sensitize glioma can-
cer stem cells to γ-radiation [192]. Finally, in 
colorectal cancer, increased expression level  
of m6A reader YTHDF1 has been found to as- 
sist self-renewal and colonosphere formation 
via increasing Wnt/β-catenin pathway activity 
[193]. Overall, depending upon the type of can-
cer both m6A-mediated methylation and de- 
methylation regulate tumorigenesis by modu-
lating CSCs stemness.

Adenosine to Inosine (A-to-I) editing: A-to-I 
modification is another important post-tran-
scriptional modification observed in eukaryot- 
es. In this process, hydrolytic deamination of 
adenosine takes place, which is catalyzed by 
ADAR-RNA editases: ADAR1, ADAR2 and ADAR3 
[194]. During mRNA translation this newly gen-
erated inosine base is read as guanosine by the 
ribosome, thus causing A-to-G transcriptome 
diversity if occurred in the protein-coding region 
[195]. A-to-I editing plays an important role in 
embryonic development and growth. Hartner 
and his group showed that ADAR1 depletion in 
mice caused hematopoietic deficits that led to 
embryonic lethality [196]. Similarly, ADAR2 de- 
ficient mice were born and developed normally 
but died after three weeks of birth [197]. 
Keeping in view the importance of A-to-I modifi-
cation in growth and development, it is not sur-
prising that it also participates in CSCs regula-
tion. Notably, A-to-I modifications have been 
found to regulate stemness features in hema- 
topoietic malignancies. According to Lazzari 
and coworkers, around 30-50% of multiple 
myeloma patients show ADAR1 amplification 
that favores poor prognosis [198]. In another 
study, ectopic expression of ADAR1 in LSCs led 
to myeloid progenitor cells expansion and en- 
hanced expression of GSK-3β that promotes 
LSCs self-renewal by activating β-catenin [199]. 
Furthermore, ADAR1 knockdown inhibited in 
vivo engraftment capability of multiple myelo-
ma via attenuating GLI1 activity [198]. ALDAR1 
also caused mutation in GLI1 by editing its exon 
12, which caused inhibition of HH pathway neg-
ative regulation [198]. In a tremendous study, 

Jiang and collaborators have identified that 
ADAR1 downregulation may serve as an effi-
cient way to eradicate dormant imatinib-resis-
tant LSCs. According to this study, ADAR1 con-
trols the cell cycle of progenitor cells by inducing 
A-to-I editing, which led to increase MDM2 ex- 
pression and p53 inactivation [200].

Besides mRNA, ADAR1-mediated A-to-I editing 
has also been observed to regulate the cell 
cycle by deregulating the formation of tumor 
suppressor miRNAs, leading to accelerate the 
self-renewal of CSCs. For example, wild-type 
ALDAR1 was found to inhibit tumor suppressor 
miR-277 expression, which targets STAT5 to 
restore imatinib sensitivity in CML [200]. Simi- 
larly, A-to-I editing caused inhibition of cell cycle 
proliferation-associated miR-411 [200]. Lastly, 
the expression of miR-26a-5p (target of master 
pluripotency factor MYC) was also repressed by 
ADAR1 mediated inosine editing [200]. These 
findings suggest that ADAR1 mediated RNA 
editing is pivotal for LSCs self-renewal and 
stemness maintenance. Hence, further studies 
should be conducted on the elucidation of the 
role of RNA-based alterations in the regulation 
of CSCs, which may serve as a novel biomarker 
for CSCs’ elimination.

Extrinsic factors

The cancer microenvironment

Cancer cells remain ingrained in a complex 
microenvironment that is usually comprised of 
various stromal cells, immune cells, cancer 
secretory factors, hypoxic regions and extracel-
lular matrix [201]. The cancer microenviron-
ment contributes significantly to the modula-
tion of CSCs phenotype. In light of a recent 
study, it can be stated that external cues from 
the TME induced phenotypic drift in CSCs. In 
this study, temozolomide treatment under hy- 
poxic conditions transformed glioma stem ce- 
lls (GSCs) and their progeny into various cell 
types, by modifying their surface marks [202]. 
A contemporaneous study ratifies this view by 
stating that stimulation of luminal-A breast can-
cer cells with a combination of tumor microen-
vironmental factors including TNF-α, epidermal 
growth factor and estrogen, promoted intra-
tumor heterogeneity [203]. Such a microenvi-
ronmental network enriched breast cancer 
cells with chemotherapy-resistant and highly  
metastatic CSCs with CD44/CD24L phenotype  
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that exhibited high plasticity [203]. It is well-
known that an ample number of mesenchymal 
stem cells are recruited to the stem cell niche. 
Exposure of MSCs to cancer cell-secreted solu-
ble factors transformed them to chemothera-
py-resistant cancer stem-like cells. Further sti- 
mulation of these cells with TGF-β enhanced 
their mesenchymal phenotype and invasion 
potency [204]. Cancer-associated fibroblasts,  
a major constituent of tumor stroma, were 
found to regulate liver cancer-initiating cells  
via releasing HGF [201]. Accordingly, interferon 
regulatory factor-7 produced an inflammatory 
microenvironment to induce angiogenesis and 
heterogeneity in glioma. It capacitated glioma 
cells to acquire GSCs state by releasing inter-
leukin-6 [205]. Altogether, CSCs’ fundamental 
traits and heterogeneity are greatly influenced 
by different extrinsic factors elicited from the 
cancer microenvironment.

Cancer stem cell’s heterogeneity and cancer 
metastasis

Cancer dissemination is considered a major 
obstacle in oncology. Albeit, various attempts 
have been made to mitigate and eradicate pri-
mary tumors completely, the successful pro-
gression of metastatic lesions makes cancer a 
leading cause of mortality. Accumulative evi-
dence represents that cancer stem cells, the 
key drivers of cancer metastasis, are geneti-
cally and phenotypically diverse in metastatic 
sites as compared to primary tumors. While 
studying breast cancer metastasis initiating 
cells, Lawson and his group unveiled a hierar-
chical model for metastasis. They found that 
metastasis cells obtained from low and high 
burden tissues were heterogeneous. As low-
burden metastatic tissues expressed elevated 
level of stemness, dormancy, EMT and anti-
apoptosis genes, while metastatic cells within 
high burden metastasis tissue were more het-
erogeneous with increased proliferation and 
differentiation capacity [206]. The expression 
level of stemness-associated genes was also 
found to be diverse in primary and metastatic 
sites. For instance, LGR5, a well-known marker 
for CCSCs, expression was remarkably greater 
at tumor-infiltrating front in contrast to tumor 
expanding front [207]. Similarly, more CSCs 
were found in the highest metastatic breast 
cancer model than in the lowest metastatic 
model [206].

Circulating tumor cells (CTCs) are associated 
with enhanced metastasis risk as in the pres-
ence of a favorable microenvironment CSCs in 
CTCs enable them to initiate metastasis [208, 
209]. A recent study shows that breast cancer 
CTCs express multiple CSCs marks [208]. Ly- 
beropoulou and coworkers found genetic dis-
cordance between CTCs and primary tumors in 
5-10% of cases [210]. The existence of a vari-
ant isoform of a particular subset of CSCs is 
also plausible that participates in dissemina-
tion. Identifying BCSCs heterogeneity Hu and 
colleagues reported that CD44v, a variant iso-
form of CD24-/CD44+/CSCs, was responsible 
for lung cancer metastasis [211]. Moreover, the 
expression of CD44v6 was higher in metastatic 
lesions compared to the initial tumor [80]. 
Recent studies present a dynamic picture of 
CSCs in metastasis settings [212, 213]. In the 
journey of establishing metastasis, colorectal 
CSCs first lose the LGR5 expression mark 
hence, LGR5- cells migrate to the metastasis 
site and then convert back to the LGR5+ state 
for effective metastatic growth [213]. These 
observations illustrate that CSCs plasticity and 
heterogeneity play a significant role in cancer 
dissemination as it enables metastatic cells to 
adopt the new microenvironment in the sec-
ondary site (Figure 3).

Cancer stem cell’s heterogeneity and therapy 
resistance

Although various modalities have been pro-
posed for the effective treatment of cancer, 
chemotherapy has remained one of the most 
extensively used methods for the treatment of 
many types of cancers [214]. Lately, remark-
able chemotherapeutic agents have been de- 
signed to eliminate primary tumor lesions and 
their residues which remain left after surgery or 
radiotherapy. However, heterogeneity in cancer 
cells renders them resistant to the effects of 
chemotherapeutic agents [215]. Hence, che-
motherapy resistance is a pivotal obstacle in 
the meaningful outcome of cancer treatment. It 
is increasingly appreciated that CSCs are more 
refractory to anticancer therapies as compar- 
ed to their differentiated counterparts [216]. 
Therefore, enrichment of CSCs [215] or elevat-
ed level of stemness-associated factors like 
SOX2, OCT4 and NESTIN have been observed 
in cancer cells upon chemotherapies [217]. 
Besides, another group of researchers repre-
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sented that rather than enrichment of CSCs, 
phenotypic plasticity drives drug resistance 
[218]. From the CSCs viewpoint, different me- 
chanisms exist that allow therapy to establish 
tumor heterogeneity. At first, chemotherapy 
favors the selection of CSCs to change intra-
tumor heterogeneity as CSCs harbor the ability 
to instigate cancerous cells in diverse hetero-
geneous lineages upon exposure to chemoth- 
erapy [215]. Similarly, some cytotoxic drugs like 
temozolomide can also induce heterogeneity in 
CSCs which ultimately aid in therapy resistance 
[219].

Phenotypic plasticity is another mechanism  
by which therapy can induce heterogeneity in 
tumor mass. For instance, by utilizing the EMT 
phenomenon, CSCs expeditiously shifts from 
the chemotherapy-sensitive (epithelial) pheno-
type to the chemotherapy-resistant (mesenchy-

mal) phenotype [220]. Recent literature shows 
that cancerous cells also exploit epigenetic 
modifications as a protective mechanism to 
shift phenotypes and escape chemotherapy.  
As KDM5B epigenetically converts melanoma 
propagating cells from CD34+ state to CD34- 
state to escape vemurafenib [221]. In an ele-
gant study, sherma and coworkers carried out a 
detailed analysis of patient-derived oral squa-
mous cell carcinomas primary cells evolution-
ary mechanism to cisplatin resistance. They re- 
vealed that pre-existing heterogeneity favors 
the selection of drug-resistant CSCs clones, 
while within homogenous cancer population 
epigenetic reprogramming caused transdiffer-
entiation of CSCs into the drug-resistant state 
[222]. Therefore, it can be stated that CSCs 
heterogeneity and plasticity is a major hurdle in 
the effective eradication of the tumor (Figure 
4). Hence, new anticancer therapies should be 

Figure 3. CSCs heterogeneity and plasticity favour metastasis. Cancer stem cells change their phenotype to assist 
metastasis at secondary site, where they either regain primary tumor characteristics or remain changed.

Figure 4. CSCs Heterogeneity favour therapy resistance. Upon chemotherapy CSCs modify their phenotype to resist 
therapy.
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designed to kill CSCs in parallel of targeting 
bulk tumor cells.

Targeting cancer stem cells

Considering the importance of CSCs in devel-
oping tumor heterogeneity, metastasis and 
therapy resistance, it is important to design 
novel strategies against them. Undoubtedly, 
the eradication of CSCs will effectively improve 
the prognosis and survival rate of cancer 
patients. In recent decades, several new mo- 
dalities have been proposed to eliminate CSCs 
present in the bulk tumor mass. These include 
disrupting regulatory signaling pathways, tar-
geting CSCs surface markers, disturbing TME 
and immunotherapy.

Targeting CSCs associated signaling pathways

As mentioned in the previous section, cell sig-
naling pathways play a vital role in the forma-
tion and regulation of CSCs. Mainly Wnt, Notch 
and HH pathways are found to be altered in 
CSCs as these are the key regulators for the 
maintenance and survival of these cancer 
propagating cells. Therefore, these pathways 
have gained increased attention from resear- 
chers to cure cancer.

Targeting notch pathway

The Notch pathway has been found abnormally 
expressed in many cancers, like leukemia, glio-
blastoma and lung, breast, colon and pancre-
atic cancer [223]. Its abnormal functioning sup-
ports different aspects of cancer biology i.e. 
CSCs differentiation, immune evasion, metas-
tasis and angiogenesis [224]. Currently, the 
three main approaches used to suppress Notch 
signaling include gamma-secretase inhibitors 
(GSI), Notch receptors inhibitors, and their com-
bination with other therapies. GSI, the first 
Notch inhibitor to enter clinical trials, showed 
potent antitumor activity in different malignan-
cies. For instance, MK-0752 exhibited targeted 
inhibition of pediatric brain tumors in phase I 
clinical trials [225]. PF-03084014, an oral GSI, 
showed anti-neoplastic activity in desmoid tu- 
mors in both phase I and II clinical studies 
[226]. Similarly, MRK-003 expressed anti-CSCs 
activity in breast cancer [227]. GSI also acts as 
an adjuvant to chemotherapeutic drugs to elim-
inate cancer. For example, the combination of 
PF-03084014 with docetaxel enhanced the 

chemosensitivity of PrCSCs to docetaxe [228]. 
Likewise, the combination of DAPT with cispla-
tin repressed growth and metastasis of lung-
resistant osteosarcoma cells [229]. Similar to 
GSI, DLL4 inhibition also showed promising 
results to suppress Notch pathway activation. 
Demcizumab, a humanized monoclonal anti-
body against DLL4, remarkably decreased tu- 
mor growth and CSCs markers in non-small cell 
lung, breast, pancreatic, ovarian and colon can-
cers, when used in combination with chemo-
therapy [230]. It also suppressed CSCs forma-
tion and tumor growth in advanced malignanci- 
es [230]. ABL001 is another therapeutic anti-
body, that was found to inhibit GCSCs popula-
tion, metastasis and invasion either alone or  
in the combination with irinotecan [231]. Xie 
and coauthors have identified that increased 
expression of DLL4 is linked with sunitinib 
resistance in metastatic renal cell carcinoma. 
Hence, inhibiting DLL4 and VEGF may serve as 
an efficient strategy to cure tumors of interest 
[232].

Targeting hedgehog pathway

Targeting the HH pathway is another strategy to 
inhibit CSCs proliferation. It also participates in 
embryonic development and its aberrant acti-
vation has been observed in different malig-
nancies [233]. The mechanism of HH pathway-
mediated transcription regulation mainly de- 
pends upon SMO proteins that cause activation 
and nuclear transfer of respective transcription 
factors. At present, FDA has approved three dif-
ferent SMO antagonists to cure basal cell car- 
cinoma (BCC) and AML. These include vismo-
degib, sonidegib and glasdegib [27].

Vismodegib was the first cyclopamine competi-
tive antagonist, approved in 2021 for metastat-
ic and advanced BCC. In the overall survival 
analysis of BCC patients, it was found that it 
can increase the median survival duration to 
2.8 years, which was computed as only 2 years 
with standard treatments. Afterward, exploring 
the efficacy of vismodegib in medulloblastoma, 
it was found that it can improve progression-
free survival (PFS) of SHH-subtype medullo-
blastoma patients than the non-SHH subtype 
cases. Furthermore, vismodegib also showed 
anti-neoplastic activity in the colon and oral 
squamous cell carcinoma [234, 235]. After vis-
modegib, FDA approved sonidegib for the treat-
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ment of surgery and radiation therapy-resistant 
BCC patients. In a phase I study of extensive 
grade small cell lung cancer patients, sonidegib 
was found effective to sustain PFS when used 
in combination with etoposide and cisplatinin 
SOX2 amplified patients [236]. Subsequently, 
in a phase II trial, it was found to cure 50% of 
recurrent medulloblastoma patients [237]. So- 
nidegib has also been found to affect CSCs 
properties and decreases carcinogenesis in 
glioblastoma, prostate cancer and renal cancer 
[238-240].

In 2018, FDA approved glasdegib for the treat-
ment of newly diagnosed AML patients. In ph- 
ase I trial, it displayed significant results for the 
treatment of partial hematologic malignancies 
in Japanese patients [241]. Moreover, in the 
phase II study, glasdegib in combination with 
cytarabine and daunorubicin showed promising 
results to cure AML and high-risk myelodysplas-
tic syndromes [242]. Similarly, the combination 
of glasdegib and low dose cytarabine was fo- 
und effective for AML patients which were not 
appropriate for intensive chemotherapy [243]. 
Besides these, some other SMO antagonists 
like taladegib and saridegib have been tested 
to treat advanced solid tumors and medullo-
blastoma respectively [244, 245].

Targeting Wnt pathway

Activation of the Wnt signaling pathway is also 
implicated in a variety of cancers [27]. At pres-
ent, various inhibitors of this pathway are in 
clinical testing, while most of the anti-Want 
drugs are in preclinical trials. Ipafricept is a 
high-quality recombinant protein, that inhibits 
the Want pathway by targeting FZD8 [246]. 
Correspondingly, vantictumab inhibits the Wnt 
signaling by binding with the FZD family recep-
tors. It also reduced the number of CSCs and 
the size of tumor growth in patient-derived 
xenograft models of different tumors. Besides, 
it also exhibited synergy with various chemo-
therapeutic drugs [247]. Cirmtuzumabis anoth-
er antibody that antagonized Wnt signaling to 
suppress stemness signatures in CML patients 
by targeting the ROR1 receptor [247]. PRI-724 
and CWP-2322 are β-catenin inhibitors effec-
tive for advanced myeloid malignancies and 
AML respectively [248]. Recent literature also 
highlights the effectiveness of using Wnt in- 
hibitors prior to standard-of-care chemothera-
peutic medications [249]. Moreover, the com- 

bination of C4 and nilotinib has been found effi-
cacious to inhibit Wnt pathways in CML stem 
cells [250]. Similarly, the triple combinations  
of ipafricept, NCT02069145 and sorafenib for 
metastatic pancreatic cancer, Wnt-974, cetux-
imab and encorafenib for metastatic colorectal 
cancer and vantictumab, gemcitabine and nab-
paclitaxel for HCC are also investigated.

Targeting CSCs microenvironment

The TME serves as an ideal place for maintain-
ing differentiation and tumorigenicity of CSCs. 
in recent decades, different therapeutic agents 
have been designed to inhibit signals from the 
cancer microenvironment, that aid generation 
and propagation of CSCs. VEGF is an important 
immunological regulator in the TME [251]. In 
hypoxic conditions, it causes induction of im- 
munosuppressive cells and vascular endotheli-
al cells to support tumorigenesis [251]. Pris- 
timerin, a natural compound isolated from 
Hippocrateaceae and Celastraceae, was found 
to reduce prostate cancer bone metastasis by 
inhibiting VEGF-mediated vasculogenesis in 
endothelial progenitor cells [252]. CXCL12 is 
another important constituent of the TME. It 
works in association with the CXCR4 receptor 
to assist cancerous cells to communicate with 
their microenvironment. Plerixafor is a potent 
therapeutic drug that targets CXCL12/CXCR4 
axis in hematological malignancies. LY25109- 
24 also antagonizes CXCR4 in patients with ad- 
vanced cancer. In addition, the combination  
of VEGF and CXCR4 antagonists (mcr84 and 
POL5551 respectively) has been found effec-
tive to increase the survival time of glioblasto-
ma patients by targeting the perivascular niche 
[253]. Similarly, the combination of plerixafor 
and high-dose etoposide and cytarabine has 
shown successful results to cure pediatric re- 
sistant or relapsed acute leukemia and myelo-
dysplastic syndrome [254]. Cancer-associated 
fibroblasts are a heterogeneous group of acti-
vated fibroblasts that regulate tumorigenesis  
in a variety of ways [255]. Some of their sub-
sets have been recognized to regulate CSCs by 
promoting their generation and propagation 
[255]. Therefore, directly disrupting the results 
in improved clinical outcomes. To date, differ-
ent antagonists have been designed to target  
surface markers present on their surface.  
For example, targeting FAP by sibrotuzumab, 
S1004A by 5C3 and ADC by TEM8 cured differ-
ent tumors [256, 257]. TGF-β is one of the 
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major secretions of CAFs, that regulate cancer 
stemness and metastasis. Inhibition of TGF-β 
signaling by LY364947 based nanotherapy was 
found to be effective to clear BCSCs [258].  
In the cancer microenvironment, M2 featured 
tumor-associated macrophages are found ab- 
undantly. Overexpression of the SRC gene in 
M2-like tumor-associated macrophages caus- 
ed cisplatin resistance [259]. A recent study 
revealed that dasatinib treatment caused the 
elimination of stemness markers and cisplatin-
resistant NSCLC [259].

Targeting CSCs-associated surface markers

Targeting CSCs surface markers has emerged 
as a novel strategy to eliminate cancer. Several 
monoclonal antibodies have been developed 
against CSCs biomarkers. Bivatuzumab is an 
effective monoclonal antibody against CD44v6, 
which is expressed in many cancers such as 
melanoma, breast, ovarian, lung and colon can-
cer [260, 261]. Talacotuzumab has been fo- 
und efficacious to eliminate CD16 and CD123 
[262]. Accordingly, adecatumumab can cure 
hormone-resistant prostate cancer by target- 
ing EpCAM. Recently, a group of researchers 
has developed a humanized anti-CD271 anti-
body for targeting CSCs in melanoma and hy- 
popharyngeal cancer [263]. On the contrary, 
another group has discovered ROR1 specific 
antibody to inhibit chemotherapy-refractory 
BSCs [38]. Although significant progress has 
been made to design antibodies against CSCs 
surface markers, their plastic nature enables 
them to evolve in distinct subtypes upon treat-
ment. Therefore, it is important to determine 
CSCs’ phenotype prior to treatment. Moreover, 
antibodies in combination with appropriate ch- 
emotherapeutic drugs should be used to ob- 
tain an optimal therapeutic outcome.

Immunotherapy

Paul Ehrlich, in his pioneer study, convinced the 
idea that a healthy immune system can fight 
cancer [27]. Based on this idea, cancer immu-
notherapy has been emerged as a novel app- 
roach to suppress cancer. Recent advances  
in cancer immunotherapies showed that this 
approach eradicates CSCs effectively. Different 
immunotherapies to target CSCs include den-
dritic cell-based vaccine, adoptive T-cells thera-
py, oncolytic virotherapy, immune checkpoint 
inhibitors and combined therapies [264]. Am- 

ong these, anti-CTLA-4, PD-1 and PD-L1 anti-
bodies have provided significant clinical out-
comes in patients with advanced malignancies 
[265, 266]. However, in the majority of cases, 
the use of single antibodies has remained lim-
ited due to the poor treatment response. Thus, 
combinatorial approaches provide a more re- 
markable response and increased recovery 
rate. For example, in the mouse melanoma 
model, the simultaneous use of anti-PD-L1  
and anti-CTLA-4 antibodies along with anti-
CSCs dendritic vaccine promoted tumor eradi-
cation by eliminating ALDHH [267]. Likewise, 
oncolytic herpes virus expressing IL-4 along 
with anti-PD-1 and anti-CTL-4 antibodies cured 
glioblastoma in mouse models [268]. In addi-
tion, PD-1 blockade has been reported to in- 
crease the anticancer activity of bladder can-
cer stem cells vaccine [269].

Conclusion

Cancer is a complex illness that is hard to cure 
due to its heterogeneity. Recent studies regard 
CSCs as the main cause of cancer heterogene-
ity. They make cancerous cells resistant to the 
therapies and escalate the processes of can-
cer dissemination, recurrence and therapy re- 
sistance. In light of the discussed data, it is evi-
dent that both cell intrinsic and extrinsic fac-
tors promote cancer aggressiveness by induc-
ing CSCs heterogeneity. Hence, CSCs along 
with the bulk cancer cells must be targeted to 
achieve a fruitful outcome of cancer therapy. 
However, the targeted removal of preexisting 
CSCs is inadequate as cellular reprogramming 
induces the generation of de novo CSCs from 
the differentiated non-cancer cells with diver-
gent characteristics. Therefore, it is needed to 
design new strategies to target stem cell het-
erogeneity and plasticity and associated fac-
tors that establish and maintain this diver- 
sification.
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