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ABSTRACT

JASPAR (http://jaspar.genereg.net/) is an open-
access database containing manually curated, non-
redundant transcription factor (TF) binding profiles
for TFs across six taxonomic groups. In this 9th re-
lease, we expanded the CORE collection with 341
new profiles (148 for plants, 101 for vertebrates, 85 for
urochordates, and 7 for insects), which corresponds
to a 19% expansion over the previous release. We
added 298 new profiles to the Unvalidated collection
when no orthogonal evidence was found in the litera-
ture. All the profiles were clustered to provide familial
binding profiles for each taxonomic group. Moreover,
we revised the structural classification of DNA bind-

ing domains to consider plant-specific TFs. This re-
lease introduces word clouds to represent the scien-
tific knowledge associated with each TF. We updated
the genome tracks of TFBSs predicted with JASPAR
profiles in eight organisms; the human and mouse
TFBS predictions can be visualized as native tracks
in the UCSC Genome Browser. Finally, we provide a
new tool to perform JASPAR TFBS enrichment analy-
sis in user-provided genomic regions. All the data is
accessible through the JASPAR website, its associ-
ated RESTful API, the R/Bioconductor data package,
and a new Python package, pyJASPAR, that facili-
tates serverless access to the data.
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INTRODUCTION

Transcription factors are proteins that interact with the
DNA in a sequence-specific manner through recognition of
their TF binding sites (TFBSs) located at cis-regulatory re-
gions (promoters, enhancers) to regulate transcription (1).
TF binding to these regions occurs through direct interac-
tions between the DNA-binding domains (DBDs) of TFs
and the DNA. DBDs are classified into structural classes
and families, and TFs with related DBDs typically have sim-
ilar DNA binding preferences (2). The binding of TFs to
cis-regulatory regions promotes or inhibits the assembly of
the transcription machinery, thereby controlling gene ex-
pression regulation (1,3–5).

Sequence-specific TF-DNA interactions at TFBSs can be
experimentally determined either in vitro or in vivo. High-
throughput in vitro methods include systematic evolution
of ligands by exponential enrichment (SELEX) (6) and pro-
tein binding-microarrays (PBM) (7) where TFs are exposed
to synthesized DNA sequences. High-throughput in vivo as-
says include chromatin immunoprecipitation-based meth-
ods such as ChIP-seq (8), ChIP-exo (9) and ChIP-nexus
(10), and cleavage-based methods such as cleavage under
targets and tagmentation (11) or cleavage under targets and
release using nuclease (12). These high-throughput assays
(reviewed in (1)) provide unprecedented means to character-
ize the binding properties of individual TFs. Nevertheless,
a challenge lies in our understanding of how TFs interact
cooperatively at regulatory elements, for instance by form-
ing dimers (13). Recently, CAP-SELEX revealed that TF
pairs can bind in a DNA-dependent manner and that the
combined binding of TFs can alter their individual binding
specificities (14).

Despite the establishment of a wide variety of experimen-
tal techniques that delineate TF-DNA binding interactions
and TF binding specificities, experimentally identifying all
TFBSs for all TFs in various systems and biological con-
ditions is intractable. To address this challenge, researchers
rely on computational modeling to predict and investigate
TF-DNA interactions. Such methods are helpful for investi-
gating results of experimental methods with low resolution.
For instance, ChIP-seq peaks are typically an order of mag-
nitude larger than the actual binding sites of a targeted TF,
and therefore computational methods can be used to pin-
point the binding sites within the peaks (15,16).

Given the importance of understanding TF-DNA in-
teractions in studying gene expression regulation, various
computational methods have been devised to model and
predict TFBSs. The methods utilize experimentally identi-
fied TFBSs to build models and computationally predict
TFBSs in a given genomic sequence (5). These computa-
tional methods range from basic representations such as
sequence consensus-based models and position frequency
matrices (PFMs) to more complex representations such
as Markov and deep learning-based models (reviewed in
(13,17–18)). PFMs, which summarize occurrences of each
nucleotide at each position in a set of observed TF-DNA
interactions, are largely and most commonly used to cap-
ture TF binding specificities. Unlike the simple consensus-
based models, PFMs can be transformed to probabilistic
or energy-based models to obtain position weight matri-

ces (PWMs) (or position-specific scoring matrices (PSSMs))
that can be used to scan any DNA sequence and predict TF-
BSs with sum weights above a defined threshold (reviewed
in (17)). Hence, TF binding preferences can be represented
as PFMs, which can be interpreted as TF binding profiles or
motifs. In this manuscript, we will use the term PFM, motif,
and TF binding profile interchangeably.

JASPAR is a popular and regularly maintained open-
access and manually curated database storing TF binding
preferences as PFMs. The JASPAR CORE collection pro-
vides non-redundant binding preferences for TFs (one ver-
sioned profile per TF per taxon, except when a TF has mul-
tiple DNA-binding preferences) across 6 taxa: urochordata,
vertebrates, plants, insects, nematodes, and fungi. Inclusion
of new profiles requires orthogonal evidence for the bind-
ing preferences of the TFs, which is rigorously evaluated
by our expert curators. To complement the CORE collec-
tion, we previously introduced the Unvalidated collection to
store high-quality TF-binding profiles that are lacking or-
thogonal supporting evidence in the literature (19). Beyond
the high-quality TF binding profiles and metadata stored
in JASPAR, the popularity of the database originates from
its simplicity, the tools embedded in its web-interface, and
the multitude of popular resources and tools directly inte-
grating JASPAR profiles. Some of these tools include: (i)
the MEME suite, allowing various motif enrichment and
discovery analysis (20), (ii) TFBSshape allowing investiga-
tion of DNA shape features for TFBSs to provide insight
on the mechanism of protein–DNA interaction (21,22), (iii)
CiiiDER (23) for TFBS prediction and analysis such as
enrichment assessment in DNA sequences, (iv) RSAT, al-
lowing motif discovery, TFBS motif analyses (24) and (v)
i-cisTarget, which allows the prediction of cis-regulatory
modules and regulatory features (25,26).

In this paper, we present the 9th release of the JASPAR
database, which provides a substantial update and expan-
sion of TF binding profiles in the six taxonomic groups.
The update includes not only binding profiles (as PFMs)
but also revisited metadata. Additionally, we added word
clouds to display enriched terms associated with TFs in the
scientific literature. Furthermore, a rigorous structural clas-
sification of plant TF DBDs is provided to adequately con-
sider the numerous plant-specific TFs. Finally, the update
comes with a range of new or updated functionalities and
resources such as a TFBS enrichment tool, the pyJASPAR
package, new familial binding profiles, and native UCSC
human and mouse genome tracks with TFBSs predicted
from JASPAR TF binding profiles.

RESULTS

Expansion and update of the JASPAR database

TF binding profiles. In the 9th release of JASPAR, we dis-
carded unused collections introduced in early releases of
the database (27–29) that either did not correspond to TF-
specific binding profiles or were data-type specific; we main-
tained the CORE and Unvalidated collections. We com-
puted and compiled TF binding profiles obtained from
CAP-SELEX (14), NCAP-SELEX (30), SELEX-seq (31),
PBMs (32), ChIP-seq (33–36) and DAP-seq experiments
from ReMap 2022 (36) and GEO (37), and ChIP-exo (38)
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Figure 1. JASPAR CORE collection growth. The number of non-
redundant profiles in each taxon (see legend) and overall through all JAS-
PAR releases.

data (Supplementary Data 1 - Text for detailed list of
datasets and method details). After manual curation of
these profiles to confirm orthogonal supports in the liter-
ature, we augmented the CORE collection with 341 new
binding profiles for TFs in four taxa (Table 1; Figure 1):
148 profiles in plants (a 24% expansion for this taxon), 101
profiles in vertebrates (a 13% expansion), 85 profiles in uro-
chordates (only one motif was present since the second re-
lease of JASPAR in 2006 (27)), and seven profiles in insects
(a 5% expansion). Out of these added profiles, 52 were up-
graded from the Unvalidated to the CORE collection (27
and 25 for plants and vertebrates, respectively). Moreover,
out of the newly introduced PFMs, 31 are associated with
TF dimers. The literature that provides orthogonal evidence
for the newly introduced TF binding profiles is provided
in the metadata. Additionally, we updated 160 TF binding
profiles across the six taxa with new PFMs (Table 1).

High-quality PFMs lacking orthogonal support were in-
cluded in the Unvalidated collection (298 new profiles;
Supplementary Data 1––Supplementary Figure S1, Sup-
plementary Data 2––Supplementary Table S1). Specifically,
115 TF binding profiles are associated with zinc-finger TFs
and 95 associated with TFs binding DNA as dimers. We
provide the Unvalidated collection of TF binding profiles to
the community to use with due caution since they are not
yet supported with orthogonal evidence. We extend our in-
vitation to the user community to be involved in the motif
curation process by providing either new unvalidated pro-
files to consider or support to existing profiles in the collec-
tion.

We exhaustively revised the metadata to update informa-
tion about the TF names, the structural class and family of
the TF DBDs (following TFClass (39)), and links to exter-
nal databases such as UniProt (40), ReMap (36), UniBind
(15,16) and DNA Readout Viewer (41), whenever possi-
ble. Finally, we removed 32 profiles from the CORE col-
lection (22 plant, 6 vertebrate and 4 fungi profiles) as they
corresponded to synonyms of already present TF profiles,

had low information content, or were derived from con-
sensus strings (Table 1). In addition, we removed 85 pro-
files from the Unvalidated collection (44 vertebrate, 40 plant
and 1 fungi profiles) because: (i) the corresponding pro-
file or a new profile for the same TF was added to the
CORE collection; (ii) the profile was of insufficient quality
or (iii) the profile was misannotated (Supplementary Data
2––Supplementary Table S1; detailed list of all removed
profiles at https://jaspar.genereg.net/changelog/).

The JASPAR 2022 CORE collection now stores 1955
non-redundant PFMs (841 for vertebrates, 656 for plants,
179 for fungi, 150 for insects, 43 for nematodes, and 86 for
urochordates) (Table 1; Figure 1). Additionally, we main-
tained the associated collection of transcription factor flex-
ible models (TFFMs; hidden Markov-based models cap-
turing dinucleotide dependencies in TF–DNA interactions
(42)) that were initialized using JASPAR CORE PFMs and
trained on ChIP-seq data (Supplementary Data 1––Text).
This process resulted in 303 new TFFMs (207 for verte-
brates and 96 for plants).

Improved structural classification of plant TF DNA-binding
domains. In JASPAR, TFs are classified based on TF-
Class (39), which provides a hierarchical structural classi-
fication (including superclass, class, and family) originally
designed for human TFs and later extended to mammals.
Since plant genomes contain many classes of TFs absent
from TFClass, we expanded the TF structural classification
using TFClass guidelines (39) and published structural ev-
idence (Supplementary Data 2––Supplementary Table S2).
In some rare cases (e.g. GARP and NF-Y TFs), we slightly
diverged from TFClass so that the TF common name ex-
pected by users is provided in the structural class or fam-
ily name. We arbitrarily decided to classify plant specific
RAV TFs that contain two types of DBD (B3 and AP2)
in the B3 Class. WRKY TFs that have a Zinc finger and
a DBD derived from a GCM fold have been classified un-
der the GCM domain factors class and WRKY family, and
not in the Zinc-coordinating DNA-binding domains super-
class. This homogenised classification introduced 27 novel
entries in the TF DBD structural classification (Supplemen-
tary Data 2––Supplementary Table S2) and led to numerous
corrections in the class and family fields compared to pre-
vious JASPAR releases.

Word clouds of terms associated with TFs in the scientific lit-
erature

Biological information about TFs, or genes in general, is
scattered across many different resources, with PubMed
possibly being the most extensive one. In an attempt to pro-
vide rich annotations for the TFs in JASPAR, we mined the
corpus of article abstracts available in the PubMed database
(43). We compiled sets of abstracts associated with each TF
and weighted each word present by its relative importance
when compared to all abstracts associated with other TFs in
the same taxon (Supplementary Data 1––Text for method
details). For each TF, the 200 highest weighted words were
used to create a word cloud summarizing the annotations
associated with that TF. As an example, Figure 2 illus-
trates the word cloud of terms associated with the PAX6

https://jaspar.genereg.net/changelog/
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Table 1. Growth overview of the CORE collection of JASPAR 2022 compared to the previous release

Taxonomic
Group

Non-redundant
PFMs in
JASPAR 2020

New
non-redundant
PFMs in
JASPAR 2022 Removed profiles

Upgraded
profiles (from
Unvalidated to
CORE)

Updated PFMs
in JASPAR 2022

Total PFMs
(non-redundant)
in JASPAR 2022

Plants 530 121 22 27 44 656
Vertebrates 746 76 6 25 102 841
Urochordata 1 85 - - - 86
Insects 143 7 - - - 150
Nematodes 43 - - - - 43
Fungi 183 - 4 - 14 179
CORE total 1646 289 32 52 160 1955

Figure 2. JASPAR TF word clouds. Webpage providing information about the binding profile associated with PAX6. The word cloud of terms obtained
for PAX6 is highlighted in red, which supports the role of this TF in eye development and its implication in causing the genetic disorder aniridia.

TF in the scientific literature. Among the most significant
terms, we find ‘lens’, ‘iris’, and ‘foveal’ that are represen-
tative of the importance of PAX6 in the development of
the eye, while the term ‘aniridia’ reflects the link between
some PAX6 mutations and the genetic disorder aniridia
(44,45).

TF binding profile clusters, familial binding profiles, and ge-
nomic tracks

We updated the hierarchical clustering of the JASPAR TF
binding profiles for each taxon with the RSAT matrix-
clustering tool (46). Users can explore the CORE and Un-
validated collections through radial trees, which highlight
the TF DBD structural classes, and directly access the un-

derlying profiles by clicking on the TF name (https://jaspar.
genereg.net/matrix-clusters).

The hierarchical clustering of JASPAR PFMs was used
to generate a collection of familial binding profiles (5,47),
following previously published methodologies (16,48). Such
familial motifs are useful in applications where motif re-
dundancy (many TFs have similar binding preferences) is
not desired. In brief, we defined clusters based on the DBD
structural classes along the hierarchical clustering of PFMs.
Next, we computed a familial binding profile for each clus-
ter, summarizing the profiles within the clusters following
(48) (Supplementary Data 1––Text for method details; Sup-
plementary Data 1––Supplementary Figure S2). The fa-
milial binding profiles, also referred to as archetypes in
(48), can be explored and downloaded at https://jaspar.

https://jaspar.genereg.net/matrix-clusters
https://jaspar.genereg.net/matrix-clusters


Nucleic Acids Research, 2022, Vol. 50, Database issue D169

genereg.net/matrix-clusters and https://jaspar.genereg.net/
downloads/, respectively.

One of the primary uses of PFMs is to predict bind-
ing sites. To facilitate this, we created ready-made predic-
tion tracks for genome visualization and interpretation.
Specifically, we scanned the genomes of eight organisms
(Arabidopsis thaliana, Caenorhabditis elegans, Ciona intesti-
nalis, Danio rerio, Drosophila melanogaster, Homo sapiens,
Mus musculus, and Saccharomyces cerevisiae) with the JAS-
PAR CORE PFMs associated with the same taxon to
predict TFBSs and update the JASPAR TFBS genomic
tracks. Moreover, we created a collection of familial TF-
BSs by merging overlapping TFBSs that were predicted
from PFMs associated with the same familial binding
profile (Supplementary Data 1––Text for method details).
The TFBS predictions associated with all PFMs are avail-
able at http://expdata.cmmt.ubc.ca/JASPAR/downloads/
UCSC tracks/2022/. The familial binding TFBSs are avail-
able at https://jaspar.genereg.net/downloads/. Finally, we
provide JASPAR TFBS predictions as genomic tracks,
which can be visualized in genome browsers. Notably, the
UCSC Genome Browser (49) now presents predicted hu-
man (for the hg19 and hg38 genome assemblies) and mouse
(for the mm10 and mm39 genome assemblies) JASPAR
TFBS data as a native tracks for the human and mouse
genomes with information such as TF names, TFBS predic-
tion scores, and PFM logos (Supplementary Data 1 - Sup-
plementary Figure S3).

A command-line tool to evaluate JASPAR TFBS enrichment
in genomic regions

A common challenge in the field of transcriptional regu-
lation is to predict the TF(s) most likely to control a set
of cis-regulatory regions. This challenge is classically ad-
dressed by evaluating the enrichment for potential TFBSs
associated with candidate TFs in the genomic regions of in-
terest compared to background regions (16,26,50–53). We
previously introduced an enrichment tool that evaluates the
enrichment for sets of direct TF–DNA interactions from
UniBind in user-provided DNA regions compared to back-
ground regions (16). Following the same strategy, we intro-
duce a TFBS enrichment tool to predict TFs with an enrich-
ment of JASPAR TFBSs using the Locus Overlap Analy-
sis (LOLA) tool (54). The enrichment tool is available as a
command-line tool (https://jaspar.genereg.net/enrichment/,
https://bitbucket.org/CBGR/jaspar enrichment/).

As a use case, we studied the differential enrichment of
predicted TFBSs at DNase-seq peaks observed in A549
cells before and after 2 h treatment with 100 nM dex-
amethasone. DNase-seq is an assay capturing open chro-
matin regions (55). Dexamethasone is a known agonist of
the glucocorticoid receptor (NR3C1), a nuclear receptor
that binds the DNA upon ligand-based activation. Figure
3 provides a visual representation of the differential TFBS
enrichment analysis results when considering DNase-seq
peaks in treated versus untreated cells. As expected, NR3C1
(a member of the Steroid hormone receptors (NR3) fam-
ily) was the top enriched TF (–log10(P) = 58.77). Among
other TFs showing a high enrichment of TFBSs, we ob-
served many members of the Three-zinc finger Kruppel-

related family (e.g. KLF factors, SP3, and SP9) (Supple-
mentary Data 2––Supplementary Table S3). In another ex-
ample, we observed the enrichment of TFBSs for the TFs
FOXA1 and GATA3 in regions surrounding CpGs that are
hypomethylated in estrogen receptor positive (ER+) breast
cancers (56) (Supplementary Data 1––Supplementary Fig-
ure S4, Supplementary Data 2––Supplementary Supple-
mentary Table S4). These TFs are well established drivers of
ER+ breast cancers binding to hypomethylated enhancers
in ER+ breast cancers (56).

pyJASPAR––serverless pythonic interface to JASPAR data

All data is accessible through the JASPAR website
(https://jaspar.genereg.net/), its associated RESTful API
(https://jaspar.genereg.net/api/) (57), and the JASPAR2022
R/Bioconductor data package (source code at https://
github.com/da-bar/JASPAR2022). The JASPAR database
can also be accessed using Biopython (58) but it requires
a local MySQL server to query the underlying database,
which limits its access and use. To make access to JASPAR
data easier, we introduce a new Python package, pyJASPAR
(59), which allows users to query and access all JASPAR
data without setting up the underlying MySQL database.

pyJASPAR is implemented in Python 3 using the Biopy-
thon motifs module and SQLite3 to provide a serverless
Pythonic interface to the JASPAR database. The package
allows users to query and access TF binding profiles across
various releases of JASPAR. The releases currently avail-
able are: JASPAR2014, JASPAR2016, JASPAR2018, JAS-
PAR2020, and JASPAR2022. The pyJASPAR package will
be updated when future JASPAR releases become available.
TF binding profiles can be retrieved using JASPAR ma-
trix IDs, TF names, or other metadata information (Sup-
plementary Data 1––Text for more details).

pyJASPAR is open source and the code is available
at https://github.com/asntech/pyjaspar/ under the GPL-
3.0 License. The module can easily be installed with
Conda from the bioconda channel (https://anaconda.org/
bioconda/pyjaspar) (60) or from the Python Package Index
with the pip command. Detailed documentation with usage
examples is available at https://pyjaspar.rtfd.io/.

CONCLUSIONS AND PERSPECTIVES

For the 9th release of the JASPAR database, we substan-
tially expanded the JASPAR CORE collection by 19% (341
added motifs). The newly introduced TF binding profiles
were obtained after manual curation of PFMs predicted
de novo from >3500 ChIP-seq/-exo datasets (from ReMap
2022 (36) and GEO (61)) or retrieved from publically avail-
able repositories. While we continued our commitment to
provide non-redundant, high-quality TF binding profiles
for TFs across six taxa, this release comes with an impor-
tant increase in the number of profiles for urochordata, with
86 PFMs available when JASPAR has contained a single
one since 2006 (27). We now also provide TFBS predictions
in Ciona intestinalis using the 86 JASPAR binding profiles.
This increase exemplifies how the investigation of transcrip-
tional regulation is expanding across more model organ-
isms.

https://jaspar.genereg.net/matrix-clusters
https://jaspar.genereg.net/downloads/
http://expdata.cmmt.ubc.ca/JASPAR/downloads/UCSC_tracks/2022/
https://jaspar.genereg.net/downloads/
https://jaspar.genereg.net/enrichment/
https://bitbucket.org/CBGR/jaspar_enrichment/
https://jaspar.genereg.net/
https://jaspar.genereg.net/api/
https://github.com/da-bar/JASPAR2022
https://github.com/asntech/pyjaspar/
https://anaconda.org/bioconda/pyjaspar
https://pyjaspar.rtfd.io/
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Figure 3. TFBS differential enrichment analysis on DNase-seq data for A549 cells before and after 2 h of dexamethasone treatment. Enrichment significance
for each JASPAR profile from the vertebrate CORE collection is shown in the y-axis as -log10(P) in this beeswarm plot. Each point depicts the Fisher exact
test P-value (P) corresponding to a TF. The Points are colored based on the TF DBD structural family annotation, with a distinct color for each of the top
10 enriched families (see legend). Light yellow represents TF families outside of the top 10 enriched and with -log10(P) > 3 (Other) and brown represents
TF families for which -log10(P) ≤ 3 (non significant, N.S.).

An important question is what fraction of TFs have a
binding profile in JASPAR. For humans, the JASPAR verte-
brates CORE collection contains a binding profile for 43%
of the 1639 human TFs (1), 56% when including the Un-
validated collection. If we consider the 1717 reported TFs
for A. thaliana (62), 21% of these TFs have a profile in the
JASPAR plants CORE collection, 22% when including the
Unvalidated collection.

From the previous version of the Unvalidated collection
(19), we found literature support for 81 profiles. Unfortu-
nately, our team of curators did not succeed in identify-
ing orthogonal validation in the literature for several high-
quality motifs found enriched at ChIP-seq/-exo peak sum-
mits. As a result, 298 of such profiles were added to the pre-
viously introduced Unvalidated collection (19). The lack of
experimental support for these profiles indicates an oppor-
tunity for the research field to explore these understudied
TFs (63). Notably, 61% of the profiles in the vertebrates
Unvalidated collection is associated with C2H2 zinc fin-
ger factors. A potential contributing challenge to obtain-
ing orthogonal evidence may be the fact that many zinc-
fingers, which represent the largest class of TFs, have been
reported to regulate a limited number or even a single gene
(e.g. Zfp568 (64), ZNF558 (65), ZNF410 (66) and ZFP64
(67)).

This JASPAR update comes with a new tool to com-
pute TFBS enrichment given user-provided input and back-
ground sequences, mimicking a similar tool available with
the UniBind database (16). The tool relies on the genome-
wide TFBSs predicted using PFMs from the JASPAR
CORE collection. Even though JASPAR predicted TFBSs
will contain a high number of false positives, the enrichment

tool could be useful to suggest roles for TFs for which no
direct TF-DNA interactions are available in UniBind (16).

Consistent with Weidemüller et al. (63), we noticed that
limited scientific literature (i.e. at most a single manuscript
in PubMed) exists for many TFs, which clearly impacts the
utility of the JASPAR word clouds. This constraint varies
between taxa. For example, while the average number of
PubMed manuscripts per vertebrate TF was ∼500, uro-
chordata TFs were associated with an average of only four
manuscripts. Furthermore, a large number of TFs associ-
ated with individual PubMed manuscripts was observed.
The average number of vertebrate TFs associated with
PubMed IDs was ∼19 with some associated with hundreds
of TFs. An example is PubMed ID 21873635 that describes
methods development of the Gene Ontology database (822
TFs), PubMed ID 12477932 that describes the Mammalian
Gene Collection (MGC) Program (805 TFs), and PubMed
ID 15618518 that analyzes the expression of TFs in the
mouse brain (722 TFs). These manuscripts include gen-
eral information about TFs. Therefore, we see opportuni-
ties to further improve the literature annotation engine, by
decreasing the influence of outlier manuscripts and incor-
porating emerging natural language processing methods.

PFMs are still the most widely used models to repre-
sent TF binding preferences to DNA, despite their well-
established caveats such as fixed-length and the failure to
account for nucleotide interdependencies. A novel genera-
tion of computational models based on machine learning
approaches such as deep learning are arising (68,69). Nev-
ertheless, how to best share these models in a unified man-
ner is still unclear despite some recent efforts (70) and will
require discussion in the community. As the field moves to-
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wards a unified framework to share such models, we expect
their inclusion in future JASPAR releases.
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60. Grüning,B., Dale,R., Sjödin,A., Chapman,B.A., Rowe,J.,
Tomkins-Tinch,C.H., Valieris,R. and Köster,J. (2018) Bioconda:
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