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ABSTRACT

We describe a comprehensive and unique database
‘Priority index’ (Pi; http://pi.well.ox.ac.uk) of prior-
itized genes encoding potential therapeutic targets
that encompasses all major immune-mediated dis-
eases. We provide targets at the gene level, each
receiving a 5-star rating supported by: genomic ev-
idence arising from disease genome-wide associa-
tions and functional immunogenomics, annotation
evidence using ontologies restricted to genes with
genomic evidence, and network evidence from pro-
tein interactions. Target genes often act together in
related molecular pathways. The underlying Pi ap-
proach is unique in identifying a network of highly
rated genes that mediate pathway crosstalk. In the
Pi website, disease-centric pages are specially de-
signed to enable the users to browse a complete
list of prioritized genes and also a manageable list
of nodal genes at the pathway crosstalk level; both
switchable by clicks. Moreover, target genes are
cross-referenced and supported using additional in-
formation, particularly regarding tractability, includ-
ing druggable pockets viewed in 3D within protein
structures. Target genes highly rated across dis-
eases suggest drug repurposing opportunity, while
genes in a particular disease reveal disease-specific
targeting potential. To facilitate the ease of such
utility, cross-disease comparisons involving multiple
diseases are also supported. This facility, together
with the faceted search, enhances integrative mining
of the Pi resource to accelerate early-stage thera-
peutic target identification and validation leveraging
human genetics.

INTRODUCTION

Early-stage identification and assessment of genetically val-
idated therapeutic targets can increase the chance of late-
stage drug approval. This is extremely important consider-
ing two facts. The first fact is that the development process
of drug discovery is costly, with an average of ∼$1.4 bil-
lion spent per approved drug (1). The second is that the
drug attrition rate is extremely high during the drug de-
velopment process; it is estimated that ∼90% drugs enter-
ing phase 1 clinical trials fail to reach approval (2), which
is largely explained by a lack of efficacy. Genetic evidence
arising from human disease genomics, particularly genome-
wide association studies (GWAS), can inform the discovery
of therapeutic targets (3,4). Priority index (Pi), made avail-
able at http://pi.well.ox.ac.uk, is a comprehensive resource
for genetic targets in all major immune-mediated diseases,
generated via a well-established genetics-led prioritization
strategy. Our approach, Pi (5), leverages the informativeness
of GWAS in disease, functional immunogenomics, ontol-
ogy annotations and network evidence to enhance the drug
target prioritization and identification. The Pi approach is
purely genetics-driven; we call the prioritization without us-
ing any prior existing drug target knowledge as the discov-
ery mode. We also prioritize targets in the supervised mode
that enables the prioritization guided by existing therapeu-
tics in disease. Unless stated explicitly, we are talking about
the discovery mode when referring to the Pi approach and
resource hereinafter.

Drug targets with genetic support, particularly genetic
associations with disease, are twice as likely to be approved
as those without support (3). Implementation of genetics-
led early target selection, however, remains a prospective
area for drug discovery. Linking disease associated loci to
the specific genes and pathways responsible for genetic as-
sociations is fundamental to drug discovery and poses im-
mense challenges, notably for non-coding loci. By conven-
tion, the gene assignment from non-coding loci is based
on genomic proximity, and such assignment can be prob-
lematic, unavoidably resulting in false negatives given that
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the effects of loci on gene regulation may be to modu-
late more distant genes. Functional effects of non-coding
loci on genes may involve 3D chromatin structure and are
likely to act in a highly cell-type-specific manner. It is in-
creasingly recognized that the assignment of target genes
from non-coding loci requires supports from a wide range
of cell-type-specific functional genomic datasets, including
but not limited to long-range physical chromatin interac-
tions (6) and genetic regulation of gene expression (7). In
this aspect, Pi has advanced the progress of this field, both
methodologically (5,8) and conceptually (9,10). Here we de-
scribe the Pi database contents and the web-based utilities.
Our approach with Pi already supports the specific applica-
tions (11–15) and is particularly powerful in prioritizing im-
munomodulatory targets, taking advantages of a large body
of immunogenomic datasets that have been generated in a
wide variety of immune cell types and states. Moreover, the
Pi approach respects the omnigenic model of disease genetic
architecture (16), considering potential targets that include
not only seed (core) genes directly linked from GWAS sum-
mary data and functional immunogenomic data but also
non-seed networked (peripheral) genes that are linked to
core genes through the knowledge of protein interactions
(10). Very often target genes act together in closely related
molecular pathways, and current clinical interests target-
ing pathways highlight the importance of pathway-centric
target prioritization and selection. The endpoint (and the
uniqueness) of the Pi target prioritization is the identifica-
tion of a network of highly rated and interconnecting nodal
genes that mediate crosstalk between molecular pathways.

Since the Pi approach publication (5), we have improved
the Pi resource, including but not limited to: identifica-
tion of pathway crosstalk genes for each of immune dis-
eases based on the latest KEGG pathway collections, a wide
range of annotations on tractability, and druggable pock-
ets predicted using expanded known protein structures. The
validity of the resource has been assessed for all diseases
where performance evaluation is possible, with improved
performance demonstrated over the status quo. The most
significant progress has been made to enhance the presen-
tation and functionality of the Pi website (and associated
database), offering powerful ways to search and use the re-
source, particularly cross-disease comparisons (not avail-
able in our previous publication and elsewhere) that are es-
sential for integrative mining and drug repurposing. To re-
flect significant improvements and new facilities, in the re-
maining sections below we first describe the database con-
tents in detail, along with introducing how the resource is
generated and how well it performs based on benchmark-
ing. Then, we provide an overview of various utilities avail-
able via the website that may interest the users. Finally, we
conclude with directions for future developments.

DATABASE CONTENTS

Approach summary generating targets at the gene and path-
way crosstalk level

To aid in the users fully understanding the content of the
Pi database (Table 1), it is necessary to describe how it is
built (Figure 1A). Following a genetics-led viewpoint, we

have developed a generic approach that enables the estab-
lishment of linking genetic loci to modulated genes and fur-
ther down to drug targets. The resource has the focus on
immune-mediated diseases; all mapped onto Experimental
Factor Ontology terms (17) and complemented with expert-
level descriptors. In principle the application can be general-
ized into other disease areas. For detail on the concept, im-
plementation and generalization of translating genetic find-
ings (largely arising from immunogenomic datasets) into
drug targets, the users are referred to the previous publica-
tions of the approach (5) and an invited review (10). In brief,
disease GWAS summary statistics [primarily sourced from
GWAS Catalog (18)] is first used to define seed (core) genes
under genetic influence, including nearby genes (nGene)
based on genomic proximity and organization, conforma-
tion genes (cGene) using promoter capture Hi-C datasets,
and expression-associated genes (eGene) integrating eQTL
datasets. Restricted to seed genes with genomic evidence,
ontologies are next used to annotate function genes (fGene),
phenotype genes (pGene) and disease genes (dGene). Non-
seed networked (peripheral) genes are further identified by
exploiting the knowledge of high-confidence gene/protein
interactions from the STRING database (19). As a result,
a gene-predictor matrix is constructed, containing affinity
scores inside. The matrix is used for a genetics-led network-
based prioritization. In brief, affinity scores for each predic-
tor are first converted into P-like values, and then, for each
gene these P-values are combined using a Fisher’s combined
method, and finally, the combined P-values are rescaled
into the 0–5 range (i.e. 5-star rating). In doing so, per disease
a ranked list of >15 000 targets at the gene level is generated,
each gene assigned with 5-star rating and labeled with evi-
dence (i.e. genomic, annotation and network). The Pi ap-
proach is unique in identifying a network of highly rated
genes that mediate crosstalk between pathways. The identi-
fication of this pathway crosstalk is achieved by searching
for a subnet of gene interactions [defined by KEGG path-
ways (20)] enriched with highly rated genes that are linked
together through a few less rated genes as linkers. The search
is an iterative procedure, ensuring that a desired number
(usually 30–50) of genes is identified. This explicit control
over a manageable number of genes in the crosstalk is par-
ticularly useful for decision-making on which targets are
next taken forward for, for example, validation or repurpos-
ing. In summary, using the well-established approach ap-
plied to the latest data available to us, the Pi database pro-
vides the users with two versions of targets: not only a com-
plete list of prioritized genes but also a manageable list of
target genes at the pathway crosstalk level (see Table 1).

Approach novelty and performance

In terms of novelty, the Pi approach can exploit the drug
target discovery evidence in the context of their molecu-
lar interactions, that is, leveraging the knowledge of pro-
tein interactions to identify functionally linked novel tar-
gets with no direct genetic evidence [lacking such support
in Open Targets (21)]. In terms of performance (see Table
1), benchmarking supports the Pi approach to be highly
competitive compared to other genetics-based methods (in-
cluding Open Targets) and Naı̈ve prediction (the use of the
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A

B

Figure 1. Schematic overview of generating and accessing the Pi resource. (A) The workflow of generating the resource, with key steps and concepts
illustrated. (B) The interface for accessing resource, including the gateway to browser the resource and the faceted search to mine the resource. Notably, the
artwork ‘�’ of the same name is designed to resemble the Pi resource, with glowing circles (symbolising the pill) and red hexagons (the blood) to collectively
illustrate the commitment to accelerate genetics-led drug target discovery in immune-mediated disease.
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repurposing strategy to prioritize a gene by how often it
is targeted by existing drugs). Performance is measured
by area under the ROC curve (AUC) separating clinical
proof-of-concept targets (reaching development phase 2
and above) from simulated negative controls; details on sim-
ulation of negative controls are the same as previously de-
scribed in (5). The Pi approach is purely genetics-driven,
not using the information such as from text mining or
gene expression but rather only using primary data (GWAS,
and functional genomics in diverse cell types and activa-
tion states). Open Targets, also using genetics and genomics
for target identification and prioritization, represents the
state-of-the-art prioritization. In particular, the Open Tar-
gets Genetics Portal prioritizes targets based on GWAS and
functional genomics (22), the most relevant approach and
resource to Pi. Notably, the overall score from Open Tar-
gets already integrates knowledge of approved drug targets,
thus excluded for performance evaluation. Instead, used for
evaluation in this benchmarking are prioritizations based
on individual evidence, including genetic associations (GA;
evident from the Open Targets Genetics Portal), gene ex-
pression (EX) and text mining (TM). Such benchmarking
shows that Pi outperforms the GA and EX prioritizations
of Open Targets in all diseases analyzed, and Naı̈ve predic-
tion, which performs better than either GA or EX (Table 1).
It is worth noting that Naı̈ve prediction is based on the con-
cept of drug repurposing, thus limited in that it is unable to
predict new targets. As compared to the TM prioritization
of Open Targets, the Pi performs better in most diseases.
Taken together, benchmarking results based on the latest
prioritizations support the validity of the Pi resource. There
will, however, be a small number of diseases with limited or
no genetic data precluding such an approach.

Target tractability and druggability

Genetic evidence is only one component of the available
toolkit for target selection and validation. For each tar-
get gene, the Pi database provides information on tractabil-
ity and druggability. The target tractability is provided
based on three drug modalities (21,23,24), including small
molecule tractability (buckets 1–8), antibody tractability
(buckets 1–9), and PROTAC tractability (buckets 1–8). Also
provided is the druggable information, including ChEMBL
therapeutic drugs (25), DGIdb druggable gene categories
(26), and drug-like binding pockets that are predicted using
all known protein structures from the Protein Data Bank
(PDB) database (27,28).

DATABASE WEBSITE

Data access

The underlying data summarized in Table 1 are available for
browsing and download on the Pi website, developed using
the next-generation Perl web framework ‘Mojolicious’ and
the mobile-first responsive web framework ‘Bootstrap’. The
‘GATEWAY’ navigation tab (Figure 1B) provides the start-
ing point to access genetic targets prioritized in immune-
mediated diseases. For each disease, the complete ranked list
of target genes and the manageable list of pathway crosstalk
genes are provided separately for the discovery mode (i.e.

prioritization without using any prior existing drug tar-
get knowledge) and the supervised mode (i.e. prioritization
through machine learning algorithm ‘random forest’ inte-
grating predictors guided by known drug target knowledge,
that is, clinical proof-of-concept targets). Notably, the dis-
covery mode is highly recommended for most users, particu-
larly for those looking for under-explored target candidates,
while the supervised mode is suitable for the users seek-
ing to benefit from knowledge of efficacious drugs. In addi-
tion to editable files in respective disease-specific pages, the
users can download the MySQL relational database along
with detailed documentation on table schema and usage. All
downloadable files are free for use without any restrictions.

Faceted search

The faceted search on the Pi website (Figure 1B) is a mining
hub, with hyperlinks from the search results. Full text query
is supported for: immune diseases, target genes and their
known PDB structures. Search results for diseases are linked
to disease-specific pages with the tabular display for priori-
tized target genes. In this display, each gene is assigned with
a 5-star rating (and intuitively illustrated), along with an
overview of genomic and annotation evidence, the available
tractable and druggable information, and estimates of ge-
netic effects on disease. Also supported is the switch, upon
clicks, between the discovery and supervised modes, and
also between all prioritized genes and genes only in path-
way crosstalk.

Search results for a particular target gene are linked to
the gene-specific page (generic and irrespective of diseases),
showing (i) target general information including external
links to a closely related target prioritisation resource [Open
Targets (21)], and structural resources for known struc-
tures [PDBe-KB (28)] and predicted structures [AlphaFold
(29,30)]; (ii) target tractability assessed for three potential
drug modalities (i.e. antibody, small molecule and PRO-
TAC) (21,23,24); (iii) target druggable information includ-
ing DGIdb druggable gene categories (26) and PDB drug-
gable pockets (linked to 3D view of the PDB protein struc-
ture embedded with druggable pockets) (27); (iv) target pri-
ority, with a tabular illustration of prioritisation for this spe-
cific gene in both modes and across diseases (the link also
provided, allowing the users to explore the disease-specific
page on this specific gene), and drug development phases
for respective diseases; and (v) where available, target ther-
apeutics based on information on current therapeutics (in-
cluding drugs, development phases, target genes, disease in-
dications and primary sources) in the ChEMBL database
(25).

For lookups returning a specific PDB structure, the users
are provided with opportunities to interactively explore
druggable pockets in a 3D view. Gene symbol or access
code lookup is supported for all PDB structures. The Pi
website is integrated with known protein structures that
are predicted to contain drug-like binding sites (i.e. drug-
gable pockets) using the fpocket software (5,31). A gene
is defined to be tractable if its known protein structure(s)
are predicted to contain druggable pockets. Within the
Pi database, druggable pockets for all tractable genes in
the human genome are pre-computed and stored as both
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PDB- and PML-formatted files. These files are available for
download, and via NGL Viewer (32), also used for web-
based 3D view as cartoon (secondary structure abstrac-
tion), color-coded by PDB chains and embedded with drug-
gable pockets. Thus, the support of pocket predictions and
3D view adds an extra dimension to the Pi resource util-
ity. In conclusion, the faceted search is designed for multi-
tasking; it does not just provide search results but is also in-
tended to interconnect all database contents and thus en-
hance cross-referencing utility of the Pi resource.

Exploring targets at the pathway crosstalk level

A particular feature of the Pi resource is the ability to pro-
vide a manageable list of highly rated nodal genes that me-
diate crosstalk between molecular pathways. Here we take
multiple sclerosis (MS) as an exemplar, a common immune-
mediated inflammatory demyelinating disease involving the
central nervous system. In Figure 2 with this example we il-
lustrate how the users can access pathway crosstalk genes
and associated evidence, which facilitates the target dis-
covery. A total of 35 crosstalk genes are identified, with a
tabular summary of these genes and associated evidence,
tractability, druggability and effect estimates (Figure 2A).
Details on priority (and evidence used), tractability and
druggability are provided in the linked gene page, for ex-
ample, for the gene IL7R (Figure 2B). This gene is highly
rated (ranked 14th), supported by genomic evidence (nGene
and eGene) and annotation evidence (fGene, pGene and
dGene), has tractability based on antibody and PROTAC
drug modalities, is annotated by DGIdb druggable gene
categories, and contains PDB druggable pockets based on
the know protein structure ‘3UP1’ that can be interactively
viewed in 3D (Figure 2C). The multiple layers of informa-
tion on individual genes help the decision-making on target
selection and validation.

Comparing two or more diseases

Increasing evidence has revealed a high degree of genetic
overlaps among common diseases. Recently, many attempts
have been made at cross-disease comparisons, mostly focus-
ing on pleiotropic loci (33,34). Within the Pi website is a tool
called ‘COMPARE’ which compares genetic target genes
between any two or more diseases. Upon request, the multi-
disease rating score (MRS; ranged from 0 to 1) is calculated
to quantify the degree to which a target gene is highly rated
across diseases. For the priority being measured in the rank
metric, MRS considers the total number (N) of diseases un-
der consideration, the number (nTop) of diseases in which
the target is ranked in the top 1% (the top 150) of the pri-
oritized list for that disease, and the mean rank (mRank) of
the target only for those nTop diseases. The higher values of
MRS indicate the more diseases in which a target is highly
rated. For multiple diseases in query, COMPARE will iden-
tify the list of target genes, ranked by MRS.

As a proof of principle, we compare five diseases includ-
ing two autoinflammatory diseases (Crohn’s disease and ul-
cerative colitis) and three autoimmune diseases (including
MS, rheumatoid arthritis and systemic lupus erythemato-
sus) (Figure 3). Selecting these diseases for comparisons can

be easily done in a user request interface, together with the
choice for the prioritization mode and other options (Figure
3A). Available diseases are organized by the prioritization
mode, and in addition to one-by-one selection, selecting all
(and deselecting all) is also supported. The comparison re-
sults are summarised in a tabular display (Figure 3B), where
target genes are ranked by MRS, annotated by tractable and
druggable information, and labelled with disease-specific
ranks (also color-coded in background). This summary pro-
vides a useful means to identify shared target genes, such
as IL2 and the receptor IL2RA (35) that are highly rated
across diseases, and also to identify genes that are highly
rated in a particular disease, for example, IL7R in MS (36).
Based on shared target genes, the user can explore repurpos-
ing opportunity via a heatmap-like illustration and links to
gene-centric pages (either generic or specific to the disease).
Disease-specific targeting potential can also be explored,
particularly considering the tractable and druggable infor-
mation summarized in the table and detailed in the links.

CONCLUSION AND FUTURE DEVELOPMENTS

With the increasing rate of growth of human genetic and ge-
nomic datasets, the gap between disease associated loci dis-
covery and translational drug discovery is widening. Com-
putational translational approaches and open-access re-
sources are key to shorten such gap, both realistically and
rapidly. Centering on the concept of genetic target prior-
itization, we and others have enhanced the use of multi-
layered genomic datasets in target identification and vali-
dation. With the unique database ‘Pi’, focusing on immune-
mediated diseases, we provide a complete list of all priori-
tized genes, and more useful for the most users, a manage-
able list of nodal genes at the pathway crosstalk level. The
latter list, together with rich information on tractability and
powerful cross-disease mining facilities in the website, rep-
resents a status quo point with opportunities to take targets
forward for validation and repurposing. Benchmarking re-
sults show that our genetic target resource recovers proof-
of-concept therapeutic targets with a high level of accuracy,
and in most diseases, outperforms predictions based on lit-
erature mining. Thus the Pi database, in providing target
genes on a genome wide and also at the pathway crosstalk
level, makes an important contribution to the body of drug
target candidates in individual immune diseases and also in
two or more combinations of these diseases.

Going forwards, each year we will deliver not only one
major release of the Pi resource with new GWAS and func-
tional genomic datasets available to us, but also minor re-
leases with synchronization to the database updates partic-
ularly from STRING (protein interactions), PDB (protein
structures), Open Targets (target tractability) and KEGG
(pathway collections). For the individual user there is ca-
pacity to directly use the open-source package (available
at http://bioconductor.org/packages/Pi), and we continue
to provide high levels of engagement with end-users. As
part of the future development, in the first intention we
propose to expand the collection of context-specific func-
tional genomic datasets once publicly available, including
the recently available eQTL Catalogue (37). It is necessary
to increase confidence in prioritizing target genes where

http://bioconductor.org/packages/Pi
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Figure 2. The disease-specific user interfaces for exploring targets at the pathway crosstalk level and associated data, illustrated for multiple sclerosis (MS).
(A) The page for exploring pathway crosstalk genes. Bottom-right: a tabular display of the top 3 genes in pathway crosstalk together with an overview of
evidence, tractability, druggability and effect estimates. Left: network visualization of crosstalk genes, labeled by symbols (rank), colored by rating and
embedded with evidence. Also supported upon clicks is instantly switching to, for example, the page for exploring all target genes. (B) The page for the
rich cross-referencing information on one target gene, IL7R. In addition to the general information, the information on priority (and evidence used in Pi
for this gene), druggability and tractability are also provided, together with links externally (e.g. AlphaFold) and internally (e.g. details on PDB druggable
pockets). (C) 3D view of the protein structure, 3UP1. Shown in blue is the druggable pocket. The source files used for viewing are downloadable.
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Figure 3. Enabling target gene comparisons involving two or more diseases with the ‘Pi COMPARE’. (A) A user request interface allows the selections of
immune diseases, target genes, prioritization modes and priority metrics for comparisons. (B) The result page provides a summary of target genes in selected
diseases, ranked by multi-disease rating score. In addition to the switches, for example, between priority metrics, the users can also explore disease-specific
pages, and gene-centric pages (either generic or specific to the disease).
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regulatory effects of non-coding genomic loci on specific
genes are only seen in particular cell types, tissues or condi-
tions. The second intention is to allow applications across
the broadest range of diseases and identifications of poten-
tial novel under-explored targets. Expanding the disease fo-
cus beyond immune-mediated diseases may require the ag-
gregation of prioritization data at the organ or system level.
It is necessary particularly for disease areas where sufficient
information could be obtained only at the broader pheno-
type, enabling prioritization. This is motivated by our evolv-
ing understanding of disease genetic architecture, in that
Mendelian and complex diseases are less dichotomous than
previously thought, with significant sharing of genetically
implicated pathways (38). This conceptual advance high-
lights opportunities of leveraging Mendelian genetics in an
integrated manner with GWAS for target discovery and val-
idation. The third intension is to enhance druggability as-
sessment for under-explored target genes. Under-explored
targets are mostly lacking crystal structures resolved in ex-
periments. The 3D protein structures, predicted compu-
tationally via AlphaFold, make it possible to assess their
tractability by further predicting druggable pockets. The
last but not the least development in the future will be im-
proving tools for cross-disease comparisons and drug repur-
posing, in a way that they are more focused toward network-
based interactive infrastructures.
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