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ABSTRACT

DNA methylation is known to be the most sta-
ble epigenetic modification and has been exten-
sively studied in relation to cell differentiation, de-
velopment, X chromosome inactivation and disease.
Allele-specific DNA methylation (ASM) is a well-
established mechanism for genomic imprinting and
regulates imprinted gene expression. Previous stud-
ies have confirmed that certain special regions with
ASM are susceptible and closely related to human
carcinogenesis and plant development. In addition,
recent studies have proven ASM to be an effective tu-
mour marker. However, research on the functions of
ASM in diseases and development is still extremely
scarce. Here, we collected 4400 BS-Seq datasets
and 1598 corresponding RNA-Seq datasets from 47
species, including human and mouse, to establish a
comprehensive ASM database. We obtained the data
on DNA methylation level, ASM and allele-specific
expressed genes (ASEGs) and further analysed the
ASM/ASEG distribution patterns of these species.
In-depth ASM distribution analysis and differential
methylation analysis conducted in nine cancer types
showed results consistent with the reported changes
in ASM in key tumour genes and revealed several po-
tential ASM tumour-related genes. Finally, integrating
these results, we constructed the first well-resourced
and comprehensive ASM database for 47 species
(ASMdb, www.dna-asmdb.com).

INTRODUCTION

DNA methylation is an important epigenetic modification
that plays a key role in cell differentiation (1,2), develop-
ment (3,4), ageing (5), genomic imprinting (6,7), X chro-
mosome inactivation (8,9) and disease (10,11). Bisulfite se-
quencing (BS-Seq) is a method for detecting DNA methy-
lation at single-base resolution on the genome scale by con-
verting nonmethylated cytosines into thymines and has sub-
stantially improved the study of DNA methylation (12).

Diploidy normally affords protection against the delete-
rious effects of recessive mutations. Nevertheless, the func-
tional haploid state eliminates this protection, making sin-
gle genomic or epigenetic changes dysfunctional. Owing to
this feature of haplotypes, imprinted genes are susceptible
targets for many animal and plant diseases, and the de-
struction of imprinting can lead to cell dysfunction (13).
Imprinting is mainly related to allele-specific DNA methy-
lation (ASM), and different methylation patterns in alleles
can lead to different phenotypes, such as diseases and even
different therapeutic and drug responses to diseases (7,14–
16).

Recent reports have shown that ASM is increased in some
cancers, such as lymphoma and myeloma (17), and ASM
can serve as an effective tumour marker and plays impor-
tant roles in the development of seeds and seedlings (15,18–
20). Studies have revealed that the loss of maternal allele
methylation of insulin-like growth factor II (IGF2) is asso-
ciated with increased expression of growth-promoting genes
in Wilms tumour (21). In breast cancer, the specific up reg-
ulation of imprinted genes such as HM13 is due to the loss
of DNA methylation (22). Furthermore, the risk of ductal
carcinoma in situ (DCIS) increased with higher KvDMR-
ICR2 (KvDMR imprinting control region 2) methylation
and lower PLAGL1/ZAC1 methylation (23). Therefore,
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research on ASM in diseases, especially in cancer, is ex-
tremely urgent and necessary.

However, due to the past lack of ASM detection tools be-
fore, research on ASM at the genome scale is greatly limited.
In recent years, several ASM detection tools, such as Meth-
Haplo (24), MethPipe (25), MONOD2 (20), DAMEfinder
(26) and CpelAsm (27), have been developed for ASM
study. This progress has made it possible to carry out ASM
research at the genome scale. Compared with other ASM
detection tools, MethHaplo, developed by our laboratory,
can perform ASM detection through methylation sequence
assembly without relying on heterozygous SNP informa-
tion. By this means, we can obtain genome-wide ASM re-
sults, especially in regions where heterozygous SNPs are
not enriched. This superiority of MethHaplo enables us to
carry out ASM-related research more comprehensively in
the whole genome, such as seeking potential ASMs in pro-
moter or intergenic regions and exploring the mechanism of
ASM in cancer.

Therefore, we collected 5,998 Gene Expression Omnibus
(GEO) (28) samples (including 4400 BS-Seq data and 1598
RNA-Seq data) from 47 species, including Homo sapi-
ens and Mus musculus, and performed DNA methylation,
ASM and allele-specific expressed gene (ASEG) analyses
of the corresponding samples. Using the results from these
analyses, we constructed a well-resourced, comprehensive
database (ASMdb) that not only contains ASM results from
multiple species but also provides ASEG results from the
corresponding RNA-Seq datasets.

In addition, to provide more information about DNA
methylation and ASM in cancer, we compiled the data on
DNA methylation in humans and performed further anal-
ysis of differential DNA methylation and high-frequency
ASM for cancer and normal data in nine tissues, including
liver and lung, with sufficient data samples. We hope that
these specific analysis results could facilitate research on
ASM in cancer. We are firmly convinced that this compre-
hensive multispecies ASM database could provide a good
vision for the analysis of ASM and promote research on
various aspects of ASM.

MATERIALS AND METHODS

Database implementation

The database was organized using MySQL (version 5.7.26),
and the web interface was developed using HTML with
JavaScript (Figure 1). The ‘Meth Browser’ module was con-
structed with JBrowse (release 1.16.6) (29), which could
show single-base DNA methylation level and ASM and al-
low exploration of methylation patterns. The database has
a convenient web interface to facilitate searching, browsing
and downloading the DNA methylation data.

Data collection

BS-Seq is currently the most common technique for detect-
ing single-base DNA methylation at the genome-wide scale.
To construct a comprehensive allele-specific DNA methyla-
tion database, we searched the NCBI GEO database, down-
loaded all available whole-genome bisulfite sequencing data

by October 2019, and filtered the low-quality data. Finally,
4400 (out of 5014) BS-Seq DNA methylation datasets and
1598 (out of 1819) corresponding RNA-Seq datasets were
used (Table 1, Supplementary Table S1). These datasets
originated from 47 species, including Homo sapiens, Mus
musculus, Arabidopsis thaliana and Oryza sativa (Figure 2A
and B). The database also shows the distribution of human
methylation data in various tissues (Figure 2C).

Processing of DNA methylation data

The trimming of low-quality reads and artificial sequences
was performed with Fastp (30). The parameters of Fastp are
as follows: the window size option shared by sliding (-W)
is set to 4, the mean quality requirement option shared by
sliding (-M) is set to 20, the quality threshold for a qualified
base (-q) is set to 15, the percentage of bases allowed to be
unqualified (-u) is set to 40%, one read’s N base number (-
n) is set to 5, and the threshold for the low complexity filter
(-Y) is set to 0. The clean reads were mapped to the corre-
sponding reference genomes (Supplementary Table S2) us-
ing BatMeth2 (31), and the SAM files were converted to the
BAM format with SAMtools (32). DNA methylation call-
ing was performed with the Calmeth function in the Bat-
Meth2 package (31). Sequences with a map quality score
lower than 20 were filtered out, and cytosine sites with cov-
erage of 5 or more were considered effective methylation
sites for further analysis.

Filtering data with low bisulfite conversion rate

Considering that most of the WGBS data did not include
spike-in sequences for bisulfite conversion rate estimation,
we tried several commonly used methods to evaluate the
bisulfite conversion rate: (i) calculating the methylation level
of mitochondria in mammalian humans and mice; (ii) cal-
culating the methylation level of CHG in animals; (iii) calcu-
lating the methylation level of mammalian telomere repeat
CCCATT (33) and (iv) calculating the methylation level of
chloroplasts in Arabidopsis thaliana. Because there are few
reports about DNA methylation in mitochondria (34–36),
we did not use this method to calculate bisulfite conver-
sion. We kept the data for which the bisulfite conversion rate
of the CHG method was >95% or that of the chloroplast
method was >98%. After data filtering, we obtained 1484
(out of 1656) sets of high-quality human methylation data,
2026 (out of 2329) sets of mouse data, 287 (out of 384) sets
of other animal data and 416 (out of 458) sets of Arabidop-
sis thaliana data, with a total of 4400 (out of 5014) sets of
high-quality DNA methylation data.

Identification of ASM

The DNA methylation level was calculated with BatMeth2
software (31). ASM was identified by MethHaplo (24) with
the default parameters. In the ASM detection process, all
the totally methylated (methylation level > 0.9) and totally
unmethylated (methylation level < 0.1) sites were removed
first, and only partially methylated cytosine sites, denoted
as effective sites, were retained for haplotype region identi-
fication.
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Figure 1. Procedure used for ASMdb construction. The ASMdb database was constructed with MySQL and Django tools. BatMeth2 was used to map
BS-Seq data, calculate the DNA methylation level and visualize the methylation patterns. MethHaplo was used to detect allele-specific DNA methylation.
Hisat2 was used for RNA-Seq data mapping. ASEQ was used to detect allele-specific expressed genes. For annotation purposes, we used MethylSeekR to
divide the genome into four categories of regions: unmethylated regions (UMRs), low-methylation regions (LMRs), partially methylated domains (PMDs)
and highly methylated domains (HMDs) according to the methylation level.

Table 1. Statistics of BS-Seq and RNA-Seq datasets in ASMdb

Species BS-Seq RNA-Seq

Projects Samples Categories Projects Samples Categories

Homo sapiens 174 1484 417 41 758 105
Mus musculus 227 2026 681 55 575 162
Arabidopsis thaliana 40 416 198 15 140 40
Danio rerio 2 48 11 1 3 3
Macaca mulatta 4 39 12 1 16 8
Pan troglodytes 1 38 8 1 16 8
Marchantia polymorpha 2 29 2 0 0 0
Solanum lycopersicum 4 23 14 2 10 5
Harpegnathos saltator 1 20 8 0 0 0
Oryza sativa 2 20 7 2 11 5
Others 67 257 142 22 69 43
Total 524 4400 1500 140 1598 379

Note. Categories represent different tissues, stages, or conditions.

Identification of allele-specific expressed genes (ASEGs)

The raw reads from the RNA-Seq data were trimmed
as clean reads using Fastp with the default parameters.
The clean reads were mapped to the corresponding refer-
ence genome using Hisat2 (37), and SAMtools was used
to sort the BAM file. The SNP information used for
ASEG detection was derived from the BS-Seq correspond-

ing to the RNA-Seq data. The ASEGs were detected by
ASEQ (38).

Identification of HMD/PMD/LMR/UMR

DNA methylation files containing the coverage and methy-
lation level were obtained using BatMeth2. According to
the methylation level, each BS-Seq sample was divided into
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Figure 2. Overview of ASMdb. (A) Main species included in ASMdb. (B) Proportion of BS-Seq data from various species in ASMdb. (C) Proportion of
BS-Seq data from each tissue in humans. (D) Main functional modules in ASMdb. (E) An example of a genome browser screenshot around the FOXD3
gene region in human liver tissue (chr1:63321858–63325268, 3.41 kb).
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partially methylated domains (PMDs), low-methylation re-
gions (LMRs) and unmethylated regions (UMRs) using
MethylSeekR (39). We removed the gap regions with con-
tinuous ‘N’ in the genome, and the remaining regions were
called highly methylated domains (HMDs) (40). The de-
tails of the scripts are shown in the ‘Help’ module of
ASMdb.

High-frequency ASM related gene (ASMG) and ASEG anal-
ysis

In each sample, we counted the number of ASM loci in
each gene and the upstream 3 kb range of the gene and
then added up the frequency of the gene covering ASM in
all samples. Finally, we identified the 100 ASM genes with
the highest frequencies. Similarly, we calculated the ASEGs
with the highest frequency in each sample, which were called
high-frequency ASEGs.

Differential DNA methylation genes between cancer and nor-
mal tissues

We screened the DNA methylation data on human can-
cer and corresponding normal tissues and obtained the
methylation data of 8 tissues (no differential methylation
was detected in ovary data), including the brain, liver and
lung. Then, we used the Wilcoxon rank-sum test to per-
form differential DNA methylation analysis (41). Finally,
we performed a screen to identify genes whose P-value less
than 0.01 and whose absolute value of the difference in the
DNA methylation level was greater than 0.1 (P-value < 0.01
and |meth.diff| > 0.1). In addition, our database allows
the user to set different P-values and differential DNA
methylation thresholds to filter the differentially methylated
genes.

RESULTS

Web interface

A user-friendly web interface (Figures 2 and 3) is provided
to allow users to query the database through multiple mod-
ules: (i) ‘Meth Browser’, a genome browser for browsing and
searching single-base DNA methylation level, ASM, SNP,
HMD/PMD/LMR/UMR, and other chromosome methy-
lation states (Figure 2E); (ii) ‘Analysis/Function’ (Figure
2D), a retrieval module for the online illustration of the
ASM and ASEGs in specific samples, the DNA methyla-
tion profile in various species, the DNA methylation profile
of gene promoters and gene bodies in different samples, dif-
ferential DNA methylation in cancer, and high-frequency
ASMG and ASEG in cancer; (iii) ‘DataSets’, a module that
shows all the datasets in the ASMdb and the statistical
results from the corresponding data; (iv) ‘Tools’, a mod-
ule that contains the related tools for DNA methylation
analysis and (v) ‘Help’ and ‘About Us’, modules with de-
tailed documentation and tutorials. For more detailed in-
structions, we provide a PDF document (https://www.dna-
asmdb.com/download/ASMdb-tutorial.pdf).

ASMdb genome browser

The genome browser was developed using JBrowse (ver-
sion 1.16.6), which provides a user-friendly and convenient
interface for browsing single-base DNA methylation levels
and ASM. Users are able to select specific genomic regions
to view the associated DNA methylation patterns in di-
verse samples. Moreover, JBrowse plugins, such as ‘Methy-
lation Plugin’ and ‘ScreenShot Plugin’ (42), provide addi-
tional models for displaying DNA methylation informa-
tion and give users the abilities to save and download the
results in PDF/PNG format. Additionally, the ASM re-
sults per sample detected from BS-Seq data are shown as
an independent track in the genome browser. Users can
search in the ASMdb Meth Browser based on its genomic
location or the gene symbol. Associated tracks, such as
HMD/PMD/LMR/UMR, SNPs, gene expression levels,
CpG islands and RefSeq genes, are shown in the genome
browser. To better illustrate the genome browser, an exam-
ple showing the DNA methylation distribution around the
FOXD3 gene in the genome browser is presented in Fig-
ure 2E. Studies have shown that FOXD3 has a momentous
impact in a variety of cancers, including liver cancer, and
its expression in cancer is regulated by DNA methylation
(43–45). The results of our genome browser revealed an ap-
parent difference in DNA methylation levels between liver
cancer and normal liver tissues. Moreover, users can upload
local data for viewing, and the browser allows the uploading
of files in the format supported by JBrowse, such as bigWig
and BED.

Function of ASMdb

Allele-specific related analysis. The ‘Allele-specific DNA
methylation’ page displays the heat map of ASM density
on chromosomes and ASM information for each sample
as well as a description of the sample (link to the genome
browser) and sample ID (link to the NCBI). This page also
presents the ASM list, which includes information on the
chromosome location, the length of the ASM regions, the
number of ASM cytosine sites in each ASM region and the
length of this ASM region (Figure 3A).

The ‘Allele-specific expressed genes’ page provides the
heat map of ASEG distribution on chromosomes in each
sample, as well as the list of ASEG information. The ASEG
table includes details of the gene list and ASM region near
each gene (within 3 kb) (Figure 3B). Users can query the
ASEG genes in the specified sample and check whether
ASM occurs near those genes. The ASM and ASEG analy-
sis results provided by this database can be helpful for allele-
specific related research. Moreover, we found that in some
regions where ASM is detected, ASEG is usually also de-
tected (average percentage in humans: 25.02%; average per-
centage in mice: 19.78%; average percentage of Arabidopsis:
17.41%) (Figure 3C).

The ‘High-frequency allele genes in species’ page provides
high-frequency ASMG and high-frequency ASEG in each
species. In addition, we exhibit examples that show the high-
frequency ASMG and ASEG information from all human
BS-Seq data (Figure 4A and B).

https://www.dna-asmdb.com/download/ASMdb-tutorial.pdf
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Figure 3. Allele-specific analysis. (A) The distribution of ASM on chromosomes and the list of ASM obtained from human neural progenitor cells. (B) The
distribution of ASEGs on chromosomes and the list of ASEGs obtained from human neural progenitor cells. (C) The overlap between ASM and ASEG.
We calculated the percentage of ASEGs overlapping with ASM obtained from each methylation dataset and with ASEGs obtained from the corresponding
RNA-Seq dataset. For statistical credibility, we removed the data with fewer than 500 ASM or ASEGs.
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Figure 4. Screenshots of representative functional modules in ASMdb. (A) The distribution of high-frequency ASMG on chromosomes in humans. (B)
The distribution of high-frequency ASEG on chromosomes in humans. (C) An example of the average DNA methylation level profile across samples
from humans. (D) DNA methylation profile around the ERBB2 gene across samples from humans. The red box highlights the DNA methylation level of
primordial germ cells.

DNA methylation profile. A query on the ‘Sample DNA
methylation profile’ page displays a bar plot or histogram
of the DNA methylation levels across all samples. This page
provides a DNA methylation table with a description of
each sample (link to the genome browser), including the
sample ID (link to NCBI) and the mC, mCG, mCHG and
mCHH methylation levels (Figure 4C).

A query on the ‘Gene meth profile across samples’ page
displays a bar plot or histogram of the DNA methylation
profiles of the gene body or promoter across different sam-
ples. This page provides information regarding the location
of the gene and the corresponding DNA methylation level
(Figure 4D). We can view the DNA methylation level of
the ERBB2 gene in different tissues. Figure 4D shows that

the average DNA methylation levels of ERBB2 in primor-
dial germ cells (PGCs) were significantly lower than those
in other tissues. Such results provide useful information to
users for the study of DNA methylation.

Allele-specific DNA methylation in cancer. ASMdb pro-
vides the DNA methylation level distribution of each gene
promoter and gene body in cancer and normal tissues in
human BS-Seq data (Figure 5A). This database allows the
selection of different cancer types as well as corresponding
DNA methylation data (Table 2, Supplementary Table S3).
For instance, previous studies have shown that ERBB2 is
closely related to overall survival in lung cancer (46). Con-
sistently, there is an obvious difference in the DNA methy-
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Figure 5. The ERBB2 gene was used as an example to show the representative functional modules in ASMdb. (A) The location information of ERBB2 and
its expression level from the GEPIA2 database. (B) The DNA methylation levels of the ERBB2 gene in normal and cancer samples. The red box indicates
the differential DNA methylation level around the promoter. (C) Differential DNA methylation genes detected between lung cancer and normal lung data.
The red box indicates that ERBB2 was detected as a significantly differentially methylated gene in lung cancer.
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Table 2. Analysis of the corresponding disease types in ASMdb tissues

Tissues Disease Type(s) Tissues Disease type(s)

Blood • ALL Brain • Alzheimer
• AML3 • Cancer
• CLL • Schizophrenia
• Colon-cancer
• Lung-cancer

Breast • Cancer Colon • Cancer
Liver • Cancer Lung • Cancer
Prostate • Cancer Pancreas • Cancer

lation level between normal lung and lung cancer tissue
around the ERBB2 gene (Figure 5A and B). To obtain the
gene expression level in cancer, ASMdb provides an associa-
tion analysis with GEPIA2 (47). The expression of ERBB2
in lung cancer tissue was significantly higher than that in
normal tissue (Figure 5A). Moreover, the methylation level
of the promoter of the ERBB2 gene was significantly de-
creased in cancer tissue (Figure 5B). This is consistent with
our understanding that genes with high methylation levels
in the promoter region have low expression levels. Overall,
using this function, we were able to view the DNA methy-
lation levels in different tissues and under different condi-
tions.

Differentially methylated genes in cancer. To further ex-
plore the differentially methylated genes in cancer, we
screened the DNA methylation data related to cancer and
then performed differential DNA methylation analysis with
the corresponding normal DNA methylation data. We
found that the promoter region of the ERBB2 gene in lung
cancer showed obvious differences in DNA methylation lev-
els (Figure 5C).

High-frequency ASMG and ASEG in representative cancers.
We counted the high-frequency ASMG and ASEG in repre-
sentative cancers. The results of the high-frequency ASMG
distribution on chromosomes in liver cancer and normal
liver tissues are shown in Figure 6A. The results of high-
frequency ASEG distribution on chromosomes in lung can-
cer and lung normal tissues are shown in Figure 6B. More-
over, ASMdb provides a list of high-frequency ASMG and
ASEG in cancer and corresponding normal tissues.

Functional examples. Combined with previous studies and
the related results in our database, we demonstrated two
functional examples. Previous studies indicated that the
KCNQ1 gene is a known imprinted gene that plays a key
role in liver cancer, breast cancer and other cancers (48–
50). In ASMdb, KCNQ1 was detected as a high frequency
ASMG and ASEG in liver cancer. According to the DNA
methylation level and ASM distribution of the gene, we
observed a significant DNA methylation difference in the
gene promoter. Interestingly, ASM was found among can-
cer samples only in the promoter of KCNQ1 (Figure 6C).
The ASM distribution in the promoter may play an essen-
tial role in the allele-specific expression of KCNQ1.

Additionally, we detected that the AVPR1A gene has a
high frequency of ASM distribution in liver cancer (Figure
6D), implying an association between AVPR1A and liver

cancer. Although studies have found that AVPR1A is re-
lated to the occurrence of prostate cancer and thyroid can-
cer (51,52), the gene has not been reported in liver cancer.
The results of the differential enrichment of ASM and the
DNA methylation level of the AVPR1A gene in liver cancer
indicate the potential significance of the AVPR1A gene in
liver cancer.

DISCUSSION AND FUTURE DIRECTIONS

The first allele-specific DNA methylation databases

In this study, we developed the ASMdb database, which can
serve as a comprehensive resource on allele-specific DNA
methylation in diverse organisms. Currently, there are some
existing databases for DNA methylation mainly based on
BeadChip data, which do not provide comprehensive in-
formation on genome-wide DNA methylation and allele-
specific DNA methylation based on high-throughput se-
quencing data. For example, MethHC 2.0 (53) provides only
human BeadChip data, MethBank 3.0 (54) contains DNA
methylation BeadChip data from humans and mice as well
as 354 WGBS-Seq data from seven species, and Pancan-
meQTL (55) is a database of DNA methylation BeadChip
data for the analysis of DNA methylation and SNP associ-
ations in cancer. ASMdb is a comprehensive and valuable
allele-specific DNA methylation database containing 5998
high-throughput datasets, including BS-Seq and RNA-Seq
data. ASMdb provides DNA methylation and ASM results
for each data point and analysis results on cancer data, in-
cluding genes with differential DNA methylation and high-
frequency ASMG/ASEG.

Future directions

In the future, we will continue to update ASMdb as fol-
lows: (i) During the ASMdb database development stage,
we have collected BS-Seq data from before October 2019. In
the future, we will further collect and analyse DNA methy-
lation data from different sources and species. (ii) We will
provide additional online functions on the website based on
user feedback. We promise that ASMdb will be kept up to
date to ensure that its value as a user-friendly allele-specific
DNA methylation database. We expect that ASMdb will
contribute to research on DNA methylation and ASM in
cellular function.

ABBREVIATION

ASEG Allele-specific expressed gene
ASM Allele-specific DNA methylation
ASMG Allele-specific DNA methylation related gene
BS-Seq Bisulfite sequencing
DCIS Ductal carcinoma in situ
GEO Gene Expression Omnibus
HMD Highly methylated domain
ICR2 Imprinting control region 2
IGF2 Insulin-like growth factor II
LMR Lowly methylated region
PGC Primordial germ cell
PMD Partially methylated domain
UMR Unmethylated region
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Figure 6. Application examples of ASMdb. (A) The distribution of high-frequency ASM-related genes in liver cancer and normal data. (B) The distribution
of high-frequency ASEG in lung cancer and normal data. (C) Genome browser screenshot of the KCNQ1 gene in human liver cancer and normal data. The
green box highlights the differential DNA methylation levels and ASM between cancer and normal data. (D) Genome browser screenshot of the AVPR1A
gene in human liver cancer and normal data. The green box highlights the differential DNA methylation levels and ASM between cancer and normal data.
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DATA AVAILABILITY

ASMdb is a database with online and open access, available
at https://www.dna-asmdb.com. Any constructive com-
ments and suggestions are welcome to send to Prof. Guo-
liang Li at email address guoliang.li@mail.hzau.edu.cn.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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