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Abstract
The significance of diversity, composition, and functional attributes of the gut microbiota in shaping human health is well 
recognized. Studies have shown that gut microbiota is closely linked to human aging, and changes in the gut microbiome can 
predict human survival and longevity. In addition, a causal relationship between gut microbiota dysbiosis and chronic age-
related disorders is also becoming apparent. Recent advances in our understanding of the cellular and molecular aspects of 
biological aging have revealed a cellular senescence-centric view of the aging process. However, the association between the 
gut microbiome and cellular senescence is only beginning to be understood. The present review provides an integrative view 
of the evolving relationship between the gut microbiome and cellular senescence in aging and disease. Evidence relating to 
microbiome-mediated modulation of senescent cells, as well as senescent cells-mediated changes in intestinal homeostasis 
and diseases, have been discussed. Unanswered questions and future research directions have also been deliberated to truly 
ascertain the relationship between the gut microbiome and cellular senescence for developing microbiome-based age-delaying 
and longevity-promoting therapies.
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Introduction

Human beings are considered “metaorganisms” due to our 
close symbiotic relationship with microorganisms which 
account for at least half the number of total cells in our body 
[1]. Most of these microbes are found in the gut, and exten-
sive research has established their central role in maintaining 
human health and systems by regulating the development 
and modulation of immune responses [2], host nutrition and 
metabolism [3, 4], brain development and behavior [5], and 
the progression of diseases such as cancer [6] and diabetes 
[7]. Moreover, the identification of an association between 
altered gut microbiota composition and the magnitude of 
COVID-19 severity in the ongoing pandemic highlights the 
importance of gut microbiota in shaping the bodily response 

to novel infectious agents [8]. Gut microbiota is abundant 
in complexity and diversity, and several different microor-
ganisms such as archaea, bacteria, fungi, and viruses reside 
in the human gastrointestinal tract [9]. The microbiota is 
maternally acquired at birth [10] and changes throughout 
the lifespan dominated by dietary habits and environmental 
signals [11]. Gut microbial heterogeneity amongst commu-
nities has also been observed with implications in health and 
disease [12, 13].

Aging has been described as “an unresolved problem of 
biology” [14], although intensive studies in the past few dec-
ades have vastly improved our understanding of the causes 
and effects of aging. In general, nine “hallmarks of aging” 
have been identified [15] which ultimately augment the prin-
ciple that aging is essentially a time-dependent culmination 
of various cellular and biochemical damage [16, 17]. Cellular 
senescence is a physiological stress response mechanism that 
is emerging as one of the most well-characterized hallmarks 
of aging [18]. Cellular senescence results in the development 
of senescent cells (SC) which show age-dependent accumu-
lation in tissues and organs of different mammalian species 
including rodents and primates [19–21]. The increased SC 
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burden with age disrupts tissue structure and function and 
is emerging as a critical factor for increased risk of disease 
and mortality in the elderly [22, 23]. A breakthrough study 
demonstrated that the removal of SC burden in aging tissues 
has the potential to delay the development and severity of 
age-related pathologies and improve lifespan [24]. Subse-
quently, molecular targeting of SC using pharmacological 
interventions showed that SC can be selectively removed 
from the organism which resulted in lifespan extension and 
delayed development of age-related symptoms and diseases 
[25]. Since then, several natural and synthetic compounds, 
which selectively target SC (senolytics) have been identi-
fied [26, 27], and senolytics-based clinical trials are already 
showing promising results in countering some of the deleteri-
ous effects of aging [28–30].

An intricate association between the gut microbiome and 
organismal aging is increasingly becoming apparent [31]. 
Since the gut microbiota co-evolves with the host, organis-
mal aging is inevitably accompanied by changes in the gut 
microbiome [32, 33]. As a result, distinct differences in the 
microbial composition, as well as the functional aspects of 
the microbiome between young and elderly human subjects, 
have been observed [34–36]. However, the interrelationship 
between the gut microbiome and cellular senescence in regu-
lating the process of aging and related diseases is only begin-
ning to be understood. In the present manuscript, I provide 
an overview of cellular senescence and gut microbiota in 
driving the aging process and then review the available evi-
dence linking the two phenomena. Possible therapies and 
future directions to better understand the causal relationship 
between cellular senescence and gut microbiota in governing 
organismal aging is also presented.

Cellular Senescence Links Biological Aging

Characteristics of Cellular Senescence

Cellular senescence is a physiological stress response mecha-
nism in mammalian cells characterized by irreversible cell 
cycle arrest mediated by activation of cell cycle inhibitor 
pathways (p53/p21 and/or p16Ink4a/pRb), DNA damage, chro-
matin remodeling, senescence-associated β-galactosidase 
(SA-β-gal) activity, changes in metabolic signaling pathways 
(mTOR/AMPK), impaired mitochondrial reactive oxygen 
species (ROS) production, cellular hypertrophy, and the 
development of characteristic senescence-associated secre-
tory phenotype (SASP) [37, 38]. The connection between 
aging and cellular senescence was initially based on the 
observation that SC tend to accumulate in aging tissues [39]. 
However, SC develop naturally and their crucial role in regu-
lating processes such as wound healing and embryonic tissue 
remodeling has also been documented [40, 41]. Today, it is 

accepted that age-related accumulation of SC, and not SC per 
se, is responsible for the increased age-related pathologies 
and decreased health span and lifespan [42]. It is argued that 
cellular senescence evolved as a mechanism to protect against 
tumorigenesis in cells exposed to chronic stress-induced 
damage [43], as opposed to apoptosis which is activated in 
response to acute stressors [44, 45]. In younger organisms, 
the SASP factors secreted by SC chemotactically attract the 
cells of the immune system such as macrophages, NK cells, 
or cytotoxic T cells which then recognize SC through specific 
cell surface receptors ultimately resulting in their elimina-
tion [46]. However, as organisms age, a tissue-specific and 
non-linear accumulation of SC is observed that eventually 
impairs organ functions [47, 48]. The chronic secretion of 
SASP components, which are a milieu of several cytokines 
and growth factors, by accumulating SC plays a particularly 
deleterious role by rendering harmful bystander effects on 
nearby healthier cells ultimately promoting pro-inflammatory 
and pro-tumorigenic behavior [49] (Fig. 1). Thus, SC, which 
are evolutionarily considered anti-tumorigenic, ultimately 
render the aging organism more prone to cancerous and 
inflammatory disorders in a classic case of antagonistic plei-
otropy [50]. Corroborating this, a wealth of data has shown 
that targeting the development of cellular senescence during 
aging improves longevity and healthspan, suppresses inflam-
matory disorders, enhances organ functioning, while trans-
plantation of SC can provoke disease conditions in healthy 
animals [24, 51–54].

Cellular Stress and Cellular Senescence

The development of cellular senescence is intimately 
linked to cell-intrinsic and extrinsic stressors [55]. Cell-
autonomous (intrinsic) stress could be attributed to replica-
tive stress, mitochondrial dysfunction, autophagic dysregu-
lation, and proteostasis, while external stressors include 
metabolic stress, heat, genotoxic agents, and heavy met-
als. It has been shown that during aging, the natural stress 
response is impaired [56], which, combined with chronic 
exposure to stressors, result in perturbations in mitochon-
drial redox balance, energy production, and aggravation of 
inflammatory pathways [57]. This can result in a vicious 
loop wherein damaged mitochondria produce more free 
radicals, and this sustained redox pressure further dam-
ages macromolecules and initiate DNA damage response 
that propels cells into the state of permanent cell cycle 
arrest and SASP, thereby hampering tissue and organ func-
tions characteristic of aging [45] (Fig. 1). Thus, premature 
stress-induced models of cellular senescence have been 
successfully used in in vitro studies. While other stressors 
may be indefinite and subject to regulation, replication-
induced stress is a fundamental feature of mitotic cells that 
gradually contributes to the development of replicative 
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cellular senescence [58]. Replicative stress arises because, 
during each cell division, chromosomes lose a part of their 
protective telomere cap, and with each successive division, 
telomeres become too short to sustain further replication 
resulting in activation of the cellular senescence program 
[58]. However, it is interesting to note that oxidative stress 
can also accelerate telomere attrition suggesting that the 
chronic presence of different stressors can rapidly induce/
augment different (oxidative/replicative/oncogenic) senes-
cence programs in cells [59, 60].

Although the development of SC is relatively better 
understood, however, the exact causes for the age-dependent 
increase in tissue SC burden are yet unclear. Recent studies 
have shown that the accumulation of SC in tissues is not 
linear, but accelerates with age, suggesting that a threshold 
barrier may exist beyond which SC accumulation exponen-
tially rises [48, 61]. The immune system is rapidly emerg-
ing as a critical regulator of the apparent age-associated SC 
accumulation. A recent study conclusively demonstrated that 
immune cells with dysfunctional cytotoxic ability exhibit 
inefficient clearance of SC in vivo resulting in their accu-
mulation and augmentation of inflammatory disorders [62]. 
This study advanced the idea that deleterious widespread 
functional and phenotypic changes in aging immune cells 
(immunosenescence) can result in impaired immunosur-
veillance and cytotoxic effector functions that may promote 
SC accumulation [46]. However, the situation gets further 
compounded by the fact that similar to other cells, immune 
cells also undergo cellular senescence with age, and thus, 
their efficacy in clearing SC may be subject to regulation by 
both immunosenescence and cellular senescence [63–65]. 
Surprisingly, a recent study demonstrated that similar to 
tumorous cells, SC can also develop immune evasive prop-
erties which may augment their survival and persistence 
in tissues thereby indicating a deeper relationship between 

host immunity and SC [66]. Taken together, it is evident 
that accumulation of SC is harmful, and strategies aimed 
at prevention or regression of cellular senescence during 
aging are desirable to alleviate morbidity and mortality in 
the elderly [67].

Gut Microbiota in Aging and Associated 
Diseases

Gut Dysbiosis Affects Healthspan and Lifespan

Alterations in the diversity and composition of the gut 
microbiota (gut dysbiosis) with advancing age affect metab-
olism and immune regulation that predispose the elderly to 
oxidative and inflammatory disorders [68, 69]. Therefore, 
maintenance of homeostatic balance in the intestinal micro-
biota is beneficial for the host, and any perturbations in 
microbial community structure that induce an imbalance 
between commensal gut microbes and opportunistic patho-
gens can render the gut vulnerable to damage and loss of 
intestinal homeostasis. The altered gut microbial state can be 
attributed to the loss of beneficial organisms, the prolifera-
tion of harmful pathogenic genera, or an overall decrease in 
microbial diversity [70]. For instance, studies have shown 
that age-related gut dysbiosis generally results in enhanced 
growth of facultative anaerobes, decreased numbers of ben-
eficial probiotic bacterial species, and altered firmicutes/
bacteroidetes ratio [71, 72]. There is enough evidence 
available to suggest a correlation between gut dysbiosis, 
longevity, and the prevalence of chronic disorders [73–75]. 
A recent report highlights that gut microbiome composition 
is a predictor of human survival and increased abundance 
of Bacteroides or low gut microbiome uniqueness is associ-
ated with decreased lifespan and enhanced morbidity [76]. 

Fig. 1   Overview of the devel-
opment and accumulation of 
senescent cells during aging. 
Chronic stressors (oxidative/
replicative/oncogenic), reduced 
cellular stress response capacity, 
and impaired immune functions 
can augment the development 
and accumulation of senescent 
cells in various tissues. Per-
sistent senescent cells develop 
SASP which affect nearby 
healthier cells through paracrine 
mechanisms, promote inflam-
matory and tumorigenic envi-
ronment and ultimately impair 
organ functions, and promote 
the aging phenotype. Illustration 
created at app.biorender.com
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Further, based on machine learning, another recent report 
inferred that the taxonomic profile of the gut microbiota can 
also be used to precisely predict the chronological age of an 
individual thereby advocating the concept of a microbiota-
based aging clock [77]. This is a significant finding which 
highlights a profound association between host microbial 
community structure and lifespan while also providing 
potential therapeutic implications. However, it is noteworthy 
that although all individuals undergo programmed chrono-
logical aging, the rate of biological aging varies markedly. 
Biological aging essentially refers to the understanding 
of disease-independent pathophysiological changes and 
molecular markers which contribute to characteristic aging 
phenotype and morbidity in the elderly. Biological aging is 
thus argued as a more comprehensive and reliable predictor 
of the deleterious effects of aging as well as the develop-
ment of mitigating therapies [78, 79]. In this regard, there is 
some evidence that decreased gut microbial diversity may 
be correlated with the “frailty index” which is considered a 
predictor of the biological age and healthspan [80, 81]. How-
ever, the relationship between gut dysbiosis and longevity is 
relatively well studied. For example, it has been shown that 
dysbiosis in the commensal bacterial population shortens 
the lifespan in Drosophila [82], while colonizing the gut 
of middle-age African turquoise killifish with bacteria iso-
lated from young donors resulted in lifespan extension and 
delayed behavioral decline [83]. Microbiota transplantation 
studies have demonstrated that the altered gut microbiome 
of the elderly is sufficient to induce morbidity in young 
recipients and thus affect the healthspan. For instance, it 
was observed that transplantation of the gut microbiota from 
aged mice to germ-free mice promoted inflammation in the 
small intestine and enhanced the leakage of inflammatory 
bacterial components into circulation which were correlated 
with higher levels of TM7 bacteria and Proteobacteria [84]. 
A recent study demonstrated that fecal microbiota trans-
plantation from aged murine donors led to impaired spatial 
learning and memory in young adult recipients accompa-
nied by a strong reduction of short-chain fatty acids (SCFAs) 
producing bacteria such Lachnospiraceae, Faecalibaculum, 
and Ruminococcaceae [85]. Similarly, fecal transplant gav-
ages from old mice (but not young mice) to germ-free mice 
showed decreased fecal SCFA production, and recipient 
animals demonstrated depressive-like behavior, impaired 
short-term memory, and spatial memory suggesting that 
aged microbiome alone is sufficient to decrease SCFAs in 
the host and to produce cognitive decline [86]. Similarly, 
fecal microbiota transplantation from old to young rats 
impaired cognitive behavior, decreased regional homoge-
neity, changed synaptic structures, increased glycation-end 
products, and enhanced oxidative and inflammatory stress in 
recipient young animals [87]. Further, a single-center clini-
cal trial recommended fecal microbiota transplantation as a 

home therapy that could clinically benefit recovery in elderly 
patients with Clostridium infection [88]. On the contrary, 
it has been reported that transplanting the gut microbiota 
of healthy old donor mice into young germ-free recipi-
ent mice enhanced hippocampal neurogenesis, intestinal 
growth, and activated the longevity FGF21-AMPK-SIRT1 
signaling pathways in the liver which was attributed to the 
increased presence of butyrate-producing microbes [89]. In 
this regard, another study has shown that although aging in 
healthy donors is associated with compositional alterations 
in the fecal microbiome, the overall microbial diversity and 
effectiveness of fecal microbiota transplantation may still be 
preserved [90]. However, despite heterogenic variations in 
different experimental conditions, it is evident that beneficial 
effects of desirable bacterial populations, such as butyrate-
producing microbes, may be useful in protection against 
age-associated morbidity. Taken together, it can be argued 
that the gut microbial profile is intricately associated with 
chronological as well as biological aging thereby signify-
ing its critical importance in shaping human lifespan and 
healthspan. In addition, it is important to note that aging not 
only influences the gut microbiota composition, but is also 
associated with changes in the gut lumen and barrier func-
tions such as shrinkage of the protective mucus layer of the 
gut, loss of intestinal tight junction proteins, and increased 
permeability of the epithelial barrier [91, 92]. As a result, 
bacteria and/or their metabolites can escape the gut lumen 
which may provoke immune cells in the Peyer’s patches of 
lamina propria, and further augment systemic inflammation 
if translocated into peripheral circulation [93] (Fig. 2).

Gut Dysbiosis and Age‑Related Disorders 
and Conditions

The relationship between gut dysbiosis and the risk of age-
related chronic disorders is also rapidly gaining attention 
[94, 95]. For instance, the development of type II diabetes is 
associated with the gut microbiome which has been shown 
to modulate the diabetogenic effects by affecting glucose 
metabolism, energy expenditure, inflammation, and gut per-
meability [96]. A recent report has demonstrated that type 
II diabetes is associated with widespread compositional 
changes in the gut microbiome of urban Africans [97]. 
Further, studies have also revealed that altered microbiota 
composition during type II diabetes is characterized by a 
decrease in anti-inflammatory and probiotic bacterial spe-
cies, while an increase in potentially pathogenic bacteria has 
also been observed [98, 99]. However, it must be noted that 
due to the heterogenic and multifactorial origin and effects 
of type II diabetes, conclusive evidence implicating specific 
microbes in the pathogenesis of the disease is challenging 
and remains elusive. Host microbiome is also rapidly emerg-
ing as a predictor of severity and therapy outcomes in several 
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incidences of cancers [100, 101]. Numerous studies have 
shown altered gut microbiota composition during the devel-
opment of various cancers including but not limited to colo-
rectal cancer [102], gastric cancer [103], lung cancer [101], 
pancreatic cancer [104], prostate cancer [105], breast cancer 
[106], brain cancer [107], and even leukemia [108]. Mecha-
nistically, the gut microbiome can influence tumorigenesis 
at sites distant to the gut by regulating circulatory levels of 
metabolites and nutrients as well as through the release of 
microbial toxins which are currently under intense investiga-
tion [109]. Changes in the gut microbiota community have 
also been documented in the pathogenesis of age-related 
cardiovascular disorders such as heart failure and coronary 
artery diseases. In general, decreased abundance of butyrate-
producing bacteria such as Faecalibacterium, Roseburia, 
and Eubacterium rectale has been observed in patients with 
coronary heart disease [110–112], as well as in patients with 
chronic heart failure and cardiac insufficiency [73, 113, 114]. 
While the mechanisms of the pathogenesis of gut microbi-
ome dysbiosis in the generation of cardiovascular disorders 
are yet unclear, age-related increase in intestinal permeabil-
ity and subsequently increased diffusion of harmful bacte-
rial metabolites that result in sustained inflammation have 

been considered. For example, increased circulatory levels 
of microbe-dependent trimethylamine-N-oxide have been 
observed in patients with heart failure which was also cor-
related with increased risk of mortality and the development 
of cardiovascular disorders [115, 116]. Taken together, it 
is reasonable to assert that the role and relevance of gut 
microbiota in the pathogenesis of some of the defining age-
related disorders of twenty-first century, i.e., type II diabetes, 
cancer, and cardiovascular diseases, is a significant emerging 
phenomenon that should not be overlooked [117].

In addition to chronic disorders, gut dysbiosis also 
appears to play a significant role in the development of 
age-associated natural yet deleterious processes such 
as immunosenescence and inflamm-aging [118, 119]. 
Immunosenescence is an umbrella term that describes 
age-dependent restructuring of the immune system which 
strongly determines the known alterations in immune 
response and functions in the elderly [120]. Despite its 
name, immunosenescence does not cause a global suppres-
sion of the immune functions since phenomenon such as 
increased systemic inflammation (inflamm-aging) is also 
observed in the elderly. According to the integrated immu-
nological theory of aging, immunosenescence forms the 

Fig. 2   Schematic diagram 
depicting the influence of aging 
on gut homeostasis. Dominated 
by diet and environmental 
factors, aging induces struc-
tural and functional changes 
in the gut microbiota resulting 
in a dysbiotic gut. The altered 
metabolome of the dysbiotic 
gut, shrinkage of the protective 
mucus layer, and loss of tight 
junction proteins promote “leak-
age” through the gut barrier. 
Bacteria as well as bacterial 
components, such as LPS and 
flagella, can translocate through 
the “leaky gut” and reach 
lamina propria resulting in acti-
vation of immune cells in the 
Peyer’s patches, and can also 
cause systemic inflammatory 
aggravation through peripheral 
circulation. Illustration created 
at app.biorender.com
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basis of the development of age-associated systemic oxi-
dative and inflammatory stress (oxi-inflamm-aging) which 
renders the elderly susceptible to increased risk of mor-
bidity [121]. Moreover, strong evidence is now emerging 
that immunosenescence may be directly responsible for the 
accumulation of SC in vivo and thus could be a potential 
therapeutic target [62, 65, 122]. A direct link between the 
gut microbiota and immunosenescence of blood neutrophils 
through the regulation of TLR and MYD88 signaling path-
ways has been reported [123]. Authors observed that the 
depletion of the gut microbiota significantly attenuated the 
numbers of circulatory aged neutrophils, while the addition 
of LPS through intragastric gavage completely restored the 
numbers of neutrophils suggesting that leakage of bacte-
rial components through the aging gut can drive neutrophil 
aging [123]. A recent study demonstrated that gut micro-
biota changes in young adulthood (32–42 years of age) may 
be associated with major metabolic, immunological, and 
inflammatory parameters which could be useful in detecting 
accelerated aging [124]. A report on healthy middle-aged 
and old-aged human subjects showed a quantitative and 
qualitative correlation between the composition of the gut 
microbiota and the markers of immunosenescence [125]. 
Another study demonstrated that exposing aged mice to the 
microbiota from young mice dramatically improved M-cell 
maturation in the intestine of the aged mice and increased 
antigen uptake and IgA responses suggesting a novel role of 
gut microbiota in enhancing M-cell mediated immunosur-
veillance and vaccine efficacy in the elderly [126]. It must 
be noted that the gut microbiota and the host immune sys-
tem have co-evolved to allow the existence of commensal 
bacteria through immune tolerance, and there is evidence 
that the deleterious effects of immunosenescence may also 
be linked to an abnormal immune response against gut 
microbes due to dysbiosis or decreased tolerance [127]. 
Interestingly, we have previously observed that dietary 
supplementation of probiotic fermented milk in aged mice 
can mitigate several aspects of immunosenescence through 
the suppression of inflamm-aging, improvement in Th1/Th2 
immune balance, and robust immune response to patho-
genic Escherichia coli [128].

Gut Microbiome and Cellular Senescence

A bidirectional relationship between the gut microbiome 
and cellular senescence can be envisaged wherein secretory 
metabolites of the gut microbiota mediated bio-transformed 
dietary components can directly impact cellular senescence 
in intestinal cells, while the accumulating senescent cells 
(epithelial/fibroblasts) in the intestine (and SASP thereof) 
may contribute to altered cellular functions and immune 
activation in the gut (Fig. 3).

Microbiota Metabolites and Cellular Senescence

The gut microbiome utilizes dietary fuel to synthesize 
an array of bioactive metabolites such as SCFAs, phe-
nols, neurotransmitters, HPA hormones, endotoxins, and 
ammonia through processes such as microbial fermenta-
tion [129]. These metabolites can reach circulation and 
affect the functioning of distal organs and systems [130, 
131], and as such, the gut microbiome is often considered 
a complex virtual endocrine organ [132]. Although cellu-
lar senescence is subject to several regulations, however, 
the natural development of cellular senescence can be 
regulated by cells’ ability to counter ROS-mediated oxi-
dative damage and stress response capacity [133]. Indeed, 
it has been demonstrated that increased oxidative stress 
over the lifespan of an animal can directly enhance the 
accumulation of SC [134], and the application of anti-
oxidants can attenuate cellular senescence both in vitro 
and in vivo [135, 136]. Therefore, it is conceivable that 
the development and accumulation of SC can be attenu-
ated or delayed either by enhancing the potency of cellular 
stress response and/or redox balance or simply by neutral-
izing the external oxidative/inflammatory stressors. In this 
regard, diverse metabolites of the gut microbiome and pro-
biotic bacteria, or microbiome-fermented dietary phyto-
molecules are known to exert strong anti-inflammatory and 
antioxidant attributes which may be useful in preventing 
senescence-associated pro-inflammatory and pro-tumori-
genic environment [137–142] (Fig. 3). Moreover, complex 
phytomolecules, especially polyphenols, which are poorly 
absorbed in the small intestine, are fermented by the colon 
microbiota to yield several simpler molecules which may 
have different and/or enhanced biological effects than the 
original compound [138, 143, 144]. We have also observed 
that amalgamation of probiotic bacteria and tea polyphe-
nol EGCG can differentially modulate the aging immune 
system as compared to individual treatments of constitu-
tive elements [145]. However, our recent work provided 
the first evidence of suppression of stress-induced prema-
ture cellular senescence by the application of probiotic 
bacteria. It was observed that metabolites secreted by a 
probiotic Lactobacillus fermentum, isolated from human 
fecal matter, can attenuate multiple characteristic mark-
ers of senescence in preadipocytes such as cellular hyper-
trophy, SA-β-gal activity, induction of SASP, DNA dam-
age response, Akt/mTOR pathway, and activation of cell 
cycle inhibitor signaling [146]. Using a reconstructed skin 
model, another study reported that extract of bacterium 
Sphingomonas hydrophobicum can delay skin senescence 
by attenuating the activation of p21, p16Ink4a cell cycle 
inhibitors, and SA-β-gal activity resulting in restructuring 
of skin as well as psychobiological effects [147]. It is thus 
conceivable that secretory factors of the gut microbiota 
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can influence cellular senescence, although further in vivo 
studies are warranted.

Senescent Intestinal Cells Can Impact Gut 
Inflammatory and Microbial Homeostasis

Cells of the intestinal tissue such as the intestinal epithelial 
cells (IECs) and subepithelial fibroblasts not only act as a 
protective barrier that separates the host tissues from the 
luminal environment but also serve as sensors to maintain 
inflammatory homeostasis in the gut. Age-related progres-
sive increase in SC burden and chronic SASP environment 
in the intestinal tissue can dysregulate the normal func-
tioning of IECs (such as barrier functions) and ultimately 
contribute to increased gut permeability and enhanced sus-
ceptibility to inflammation and infections (Fig. 3). A recent 
analysis showed an age-dependent increase in senescent 
p16Inka4a + /p21 + cells in various human organs, including 
the colon tissues, suggesting SC accumulation as a function 
of intestinal aging across the human lifespan [47]. Simi-
larly, another report revealed that intestinal tissue devel-
oped strong signatures of cellular senescence as evident 
by increased expression of senescence markers—p16Ink4a, 

p21Cip1, and SA-β-gal activity in both WT mice and acceler-
ated aging mice model—Ercc1−/Δ [148]. We also observed 
an age-dependent increase in DNA damage, cellular senes-
cence (p53/p21WAF1), activation of SASP regulators (NFκB, 
p38MAPK, Cox-2), and metabolic stress in the intestinal tis-
sue of aged mice indicating their vulnerability to spontane-
ous age-related genotoxic stress [149]. In addition, intestinal 
epithelial organoids derived from aged mice also showed 
consistent upregulation of senescence markers such as SA-β-
gal activity and p21 as compared to organoids derived from 
younger organisms [150]. Intestinal epithelial stem cells of 
old mice expressed enhanced mRNA levels of genes associ-
ated with cellular senescence and oxidative stress [151], and 
radiation exposure also induced premature cellular senes-
cence and SASP phenotype in intestinal stem cells in vivo 
[152]. It is thus evident that intestinal epithelial, as well as 
stem cells, exhibit age-dependent cellular senescence which 
can contribute to known functional alterations and disrup-
tion of gastrointestinal homeostasis. Moreover, the chronic 
SASP secreted by senescent intestinal cells can promote 
inflammatory environment and/or oncogenic transformation 
which can have harmful effects on gut permeability, immune 
activation as well as gut microbiome composition [149, 152] 

Fig. 3   Relationship between the 
gut microbiome and senescent 
cells. (1) Metabolites of the 
microbiome or those produced 
by microbial biotransformation 
of dietary components, can 
directly influence cellular stress-
ors and stress response capacity 
which can ultimately attenuate 
the development and progres-
sion of cellular senescence. (2) 
Cellular senescence can contrib-
ute to functional dysfunctions 
in the intestinal cells, and SASP 
secreted by these cells can aug-
ment aberrant intestinal inflam-
mation, immune cell activation, 
and gut dysbiosis. Illustration 
created at app.biorender.com
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(Fig. 3). A breakthrough study demonstrated the effects of a 
dysbiotic gut in the development of SASP and its deleterious 
effects. It was observed that obesity-induced alterations in 
the gut microbiota can augment the synthesis of a genotoxic 
bacterial metabolite- deoxycholic acid (DCA), which pro-
vokes SASP phenotype in stellate hepatic cells, ultimately 
inducing a pro-inflammatory environment and aiding in the 
development of hepatocellular carcinoma (HCC) in mice 
[153]. Remarkably, blocking DCA production or antibiotic-
mediated reduction in gut bacteria efficiently prevented HCC 
development in obese mice [153]. Another study reported 
the role of senescent colon tissue environment, including 
the SASP, in the pathogenesis of age-related disease of colo-
rectal cancer [154]. Authors observed increased numbers of 
senescent stromal cells in the colon stroma and identified 
GD15 as a key SASP factor secreted by senescent colon 
cells which augmented cell proliferation, migration, and 
invasion in colon adenoma; CRC cell lines; and primary 
colon organoids via the MAPK and PI3K signaling pathways 
[154]. It is also worth noting that although cellular senes-
cence is seemingly undesirable in the context of aging; yet 
pro-senescence strategies are often considered favorable for 
preventing the proliferation of cancerous cells [155]. In this 
context, bacterial metabolites such as butyrate have shown 
the potential to limit the proliferation of cancerous cells by 
upregulating the expression of pro-senescence genes such as 
p21, p27, and SASP regulators [156, 157], and suppressing 
genotoxic risk factors of cancer development [158, 159].

Are Anti‑senescence Effects of Dietary Food 
Components Mediated Through the Gut Microbiota?

A wealth of emerging data has demonstrated that nutra-
ceuticals, especially phytomolecules can attenuate several 
aspects of cellular senescence and SASP [160]. Given that 
these dietary components first interact with the gut microbi-
ome, it is plausible to envisage that the known anti-cellular 
senescence or other age-associated health beneficial effects 
of nutraceuticals may also be related to the modulation of 
the gut microbiome and gut metabolites thereof [161, 162]. 
For instance, the mechanisms of anti-cellular senescence and 
senolytic attributes of putative senolytics such as quercetin, 
EGCG, resveratrol, and fistein are incompletely understood 
and could be mediated by influencing the composition of the 
gut microbiome [163]. This is especially plausible given the 
fact that bioactive phytomolecules can promote the prolif-
eration of probiotic bacteria, suppress the growth of patho-
genic bacteria, and also act as second-generation synbiotics 
[145, 164]. A recent report has demonstrated that the con-
sumption of a senolytic combination of Dasatinib (D) and 
Quercetin (Q) resulted in lower SC burden (p16Inka4a and p21 
expression) and SASP phenotype (Cxcl1, IL1β, IL6, MCP1, 
and TNF-α expression) in the small and large intestine as 

compared with control mice. Remarkably, specific microbial 
populations in ileal, cecal, colonic, and fecal regions were 
also distinctly modulated by D + Q, suggesting that seno-
lytics might improve health via reducing intestinal senes-
cence, inflammation, and gut microbial dysbiosis in older 
subjects [163]. Our recent report also observed that dietary 
consumption of another putative senolytic, green tea EGCG, 
decreased SC burden in multiple tissues which correlated 
with increased suppression of pathogenic bacteria in the gut 
microbiome of aged mice [149]. Another natural senolytic 
fistein, which is abundant in numerous fruits and vegeta-
bles, can suppress premature ovarian failure [165] and age-
related Parkinson’s disease by regulating the composition 
of gut microbiota [166]. Further, polyphenols quercetin and 
resveratrol can enhance in vivo microbial diversity, espe-
cially related to beneficial probiotics such as Lactobacillus 
and Bifidobacterium, and augment intestinal inflammatory 
homeostasis [167–169]. Similar to polyphenols, few studies 
have shown that dietary supplementation of probiotic bac-
teria can also influence inflammatory disorders through the 
modulation of cellular senescence in colon tissue. For exam-
ple, administration of Lactobacillus pentosus var. plantarum 
C29 to aged rats inhibited inflamm-aging, improved expres-
sion of gut tight junction proteins, and bacterial diversity 
which correlated with suppression of cellular senescence in 
the colon of aged rats [170]. Similarly, consumption of pro-
biotic Lactobacillus brevis OW38 in experimental animals 
inhibited cellular senescence in the colon, and reduced the 
ratio of Firmicutes or Proteobacteria to Bacteroidetes [171], 
while consumption of a probiotic mixture IRT5, containing 
five different probiotic strains, attenuated multiple aspects of 
age-dependent colitis in rats by targeting cellular senescence 
and inflammatory aggravation [172].

Future Research Directions

There are several deficiencies and unanswered questions in 
our current understanding of the interrelationship between 
gut microbiota and cellular senescence (Fig. 4). Emerging 
evidence suggests that the gut metabolome could be a more 
pragmatic and functional marker of a healthy gut [173] since 
traditional metagenomic-based approaches lack quantitative 
functional annotation [174]. Recent observations suggest 
that gut metabolome analyses can effectively reveal micro-
biome-dependent interactions between diet and metabo-
lites, as well as ethnic and disease conditions [175–177]. 
However, studies delineating the role of gut metabolome 
alterations with lifespan and diseases are limited and are 
only beginning to be understood [178, 179]. Since there is 
evidence that secretory metabolites of commensal bacteria 
can directly modulate SC development [146], it would be 
interesting to assess how age-dependent gut metabolome 
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changes affect the oxi-inflammatory stress in the gut, and 
whether these changes could be correlated with increased SC 
burden in the intestine (Fig. 4). Secondly, there is an acute 
dearth of information on whether the effects of putative anti-
cellular senescence agents or senolytics and senomorphics 
could be related or even dependent on the modulation of 
the gut microbiome. This is significant since a particular 
focus amongst gerontologists is on identifying/develop-
ing diet-based senolytics, but their relationship with the 
gut microbiome is not clear. Moreover, probiotic bacteria, 
which have been ardently augmented as modulators of gut 
dysbiosis [180], are yet to be conclusively assessed for their 
anti-cellular senescence attributes per se (Fig. 4). Thirdly, 
it is essential to ascertain the direct biological impact of 
the SASP prevalent in senescent intestinal tissue cells in 
influencing the microbiota diversity and composition dur-
ing aging (Fig. 4). This may be tested by studying SC and 
their secretome on the growth and abundance of specific 
microbial populations or a milieu of different representa-
tive microbes. Finally, we know the impact of microbiota in 
the development and maturation of the immune system, and 
thus it is reasonable to speculate that strategies targeting gut 
dysbiosis could also improve immune functions during aging 

which may help counter SC burden and SASP development. 
However, as of now, this is purely speculative and further 
research is required to comprehend the relationship between 
age-related dysbiosis and immunosenescence vis-à-vis cel-
lular senescence [181].

Conclusions

The gut microbiome is considered as an additional organ in 
our body with epigenetic effects on health and physiology 
[182]. It is accepted that gut microbiota and human aging are 
intimately linked; however, our understanding of the aging 
process per se is yet incomplete and is being progressively 
deciphered. Despite its limitations, cellular senescence is cur-
rently the focus of aging research [183], which, combined with 
immunosenescence and gut dysbiosis, together form the major 
known contributors to the process of aging and its deleterious 
effects. Given this emerging paradigm, it is essential that the 
gut microbiome and aging be investigated in the emerging pur-
view of cellular senescence, SASP, and immunosenescence, 
which bears the promise to identify new therapeutic targets for 
microbiome oriented anti-aging interventions.

Fig. 4   Open questions and 
opportunities relating gut 
microbiome and cellular 
senescence. (1) How the gut 
metabolome changes with age, 
and how it could be related to 
cellular senescence and SASP 
is not known. (2) Whether the 
known effects of senolytics 
and anti-senescence agents are 
mediated through gut microbi-
ome modulation is not clear. (3) 
How does SASP of accumu-
lating senescent cells in the 
intestine can affect the diversity 
and composition of gut micro-
biome remains to be completely 
elucidated. Illustration created 
at app.biorender.com
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