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LectinOracle: A Generalizable Deep Learning Model for
Lectin–Glycan Binding Prediction
Jon Lundstrøm, Emma Korhonen, Frédérique Lisacek, and Daniel Bojar *

Ranging from bacterial cell adhesion over viral cell entry to human innate
immunity, glycan-binding proteins or lectins are abound in nature. Widely
used as staining and characterization reagents in cell biology and crucial for
understanding the interactions in biological systems, lectins are a focal point
of study in glycobiology. Yet the sheer breadth and depth of specificity for
diverse oligosaccharide motifs has made studying lectins a largely piecemeal
approach, with few options to generalize. Here, LectinOracle, a model
combining transformer-based representations for proteins and graph
convolutional neural networks for glycans to predict their interaction, is
presented. Using a curated data set of 564,647 unique protein–glycan
interactions, it is shown that LectinOracle predictions agree with
literature-annotated specificities for a wide range of lectins. Using a range of
specialized glycan arrays, it is shown that LectinOracle predictions generalize
to new glycans and lectins, with qualitative and quantitative agreement with
experimental data. It is further demonstrated that LectinOracle can be used to
improve lectin classification, accelerate lectin directed evolution, predict
epidemiological outcomes in the context of influenza virus, and analyze whole
lectomes in host–microbe interactions. It is envisioned that the herein
presented platform will advance both the study of lectins and their role in
(glyco)biology.
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1. Introduction

Lectins, a class of glycan-binding proteins
(GBPs), are present across all domains of
life and play a fundamental role in a diverse
range of biological functions by recogniz-
ing and binding specific carbohydrate struc-
tures on cell surfaces.[1] Examples of their
importance in biology abound.[2] Follow-
ing infection, activation of the complement
pathway is regulated by mannose-binding
lectin (MBL) recognizing mannose residues
on the surface of pathogens. Homing of
leukocytes during an adaptive immune re-
sponse is coordinated through expression
of selectins on the activated endothelium at
the site of infection.[3] Viral and bacterial
pathogens in turn use lectins to adhere to
and infect target cells. The host infection
by influenza viruses is mediated by hemag-
glutinin that binds sialic acid on the sur-
face of cells in the upper respiratory tract.
In fact, recognition of sialic acid in differ-
ent contexts by different hemagglutinin se-
quences forms the basis for influenza host
range.[4]

Lectins are often divided into many families based on se-
quence similarity and, consequently, common structural folds.
Ligand binding is commonly enhanced by the presence of re-
peated glycan-binding domains (GBDs) and assembly into mul-
timeric complexes, thus increasing the overall avidity for the cog-
nate glycan.[5] While GBPs are found in all domains of life, the
distribution of lectin families varies across taxonomic groups,
suggesting the independent emergence of glycan-binding mech-
anisms during evolution.[6]

Glycans, the specific ligands of lectins, are composed of
monosaccharides assembled into complex, branching structures
and are present on the surface of all cells.[7] The composition and
structure of glycans varies between cell types, species, and dis-
ease state, resulting in differential preferences for lectin interac-
tions, particularly in complex samples.[8] Despite rapid method-
ological development in recent years, the experimental study of
glycan structure and function remains limited compared to anal-
ogous investigations of DNA, RNA, and proteins, revolution-
ized by the emergence of affordable next-generation sequencing
and high-sensitivity mass spectrometry. While sequential in na-
ture, glycans are not included in the central dogma of biology
and thereby do not benefit from sequencing-based approaches.
Structural and functional investigations of glycans are further
complicated by: i) non-templated synthesis regulated by subcel-
lular localization and expression levels of glycosyltransferases,
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glycosidases, and nucleotide sugar substrates, and ii) nonlinear
structures with multiple possible branch points and different
linkages.

The intrinsic ability of lectins to selectively bind specific glycan
motifs presents an opportunity to perform functional glycan in-
vestigation without the need for explicitly determining monosac-
charide sequences. In experimental settings, lectins are used,
e.g., for characterizing molecular interactions, investigating cell
identities, and mitogenic stimulation.[1] In a clinical context, the
glycan-binding properties of lectins can be exploited in the devel-
opment of therapeutic strategies,[9,10] e.g., neutralization of bac-
terial toxins, or interfering with cellular adhesion, thus prevent-
ing viral infection. However, only a fraction of the known lectins
has been experimentally characterized regarding glycan-binding
specificities, limiting the readily available resources for experi-
mental studies of glycan function.

Recently, ≈1,000,000 putative lectin sequences were identified
from UniProt data sets of >24,000 species, providing a database
of possible lectins, e.g., for use in future biochemical analysis and
therapeutics development.[11] To use these lectins, their binding
specificity has to be established. In the past two decades, glycan-
binding profiles of lectins have been mapped using glycan arrays.
Here, hundreds of distinct glycan structures are immobilized on
a glass surface to quantify the glycan-binding ability of a specific
protein sample. While providing accurate binding specificities,
the individual experimental investigation of thousands of lectins
using glycan arrays is currently not feasible. However, computa-
tional predictions informed by machine learning models could
narrow down the experimental search space.

Machine learning algorithms provide predictions for unseen
input data, based on relationships learned from labeled training
data. Deep learning structures such algorithms in layers, enable
the identification of salient features without having to explicitly
designate them. This creates a model that can be optimized and
ultimately outperformed human ability in tasks such as language
processing or computer vision.[12,13] Recent advances in deep
learning have provided neural net architectures capable of solv-
ing highly complex biological problems. Accurately predicting
protein structure from amino acid sequence, seeming like an
insurmountable task a few years ago, is now readily available
with tools such as AlphaFold2 and RoseTTAFold.[14,15] Deep
learning models such as Evolutionary Scale Modeling 1b (ESM-
1b)[16] have been trained on the entirety of UniRef50, millions of
clustered protein sequences, to learn relationships of the protein
space and use this understanding for predicting structural or
functional properties of these sequences. In the case of ESM-1b,
a transformer-based model learns relevant sequence stretches
from proteins via the mechanism of attention to understand
protein similarity. This is performed by using single protein
sequences as inputs to a trained ESM-1b model and receiving
a learned representation, a vector of numbers positioning this
protein in a multidimensional learned space that can be used for
predictions.

In glycobiology, deep learning has recently enabled new analy-
ses of sequence–function relationships.[17,18] Based on this, we
developed SweetNet,[8] a graph convolutional neural network
method that learns glycan representations by taking their branch-
ing structures into account. Briefly, SweetNet considers glycans
as molecular graphs, with monosaccharides and linkages as

nodes. Then, a series of graph convolutions is performed, in
which each node is described by its neighbors and where each
subsequent convolution defines a wider circle of “neighboring”
nodes. This information is then summarized via various pooling
operations and further processed until a prediction is returned.
Operations such as transforming a glycan into a graph and other
processing operations have recently been added to our Python
package glycowork,[19] which facilitates this and other applica-
tions.

Given the obvious benefits of a model predicting protein–
glycan interactions, this challenging task is a valuable applica-
tion of models such as SweetNet. Previous efforts in predict-
ing lectin–glycan interaction perform reasonably well in reca-
pitulating already-determined experimental data[20,21] but lack
scalability and the possibility of providing predictions for novel
lectins, which is essential for making more glycan-binding pro-
teins available and thus empowering future investigations. Fur-
ther, previous approaches have, at least in part, lacked model
interpretation—learning what the model learned—as well as
model application to understanding the manifold roles of lectins
in biology.

Therefore, we here propose a new model architecture for
lectin–glycan interaction prediction that uses information from
both glycans and lectins to be fully generalizable. For this, we
use our deep learning glycan model SweetNet, designed for ac-
commodating the branched nature of glycans in combination
with a transformer-based model for protein sequences, using
the concept of attention to focus on learned relevant parts of
the sequence for prediction. Our resulting model, LectinOra-
cle, accurately predicts Z-score transformed relative fluorescence
units for lectin–glycan interactions, showing significant correla-
tion with data from various custom glycan arrays not included
during training and agreement with literature on newly charac-
terized lectins. Based on predicted glycan-binding specificity of
characterized and uncharacterized lectins, we suggest a lectin
classification system–aided by sugar specificity in addition to pro-
tein folds—that spans taxonomic groups, simplifying the task of
selecting suitable lectins for experimental purposes. By provid-
ing open access to LectinOracle and demonstrating its utility in
a wide range of applications, we aim to provide necessary tools
for expanding our understanding of lectin–glycan interactions in
diverse topics such as disease susceptibility, host–microbe inter-
actions, agriculture, and (auto)immune disease.

2. Results

2.1. Developing a Deep Learning-Based Model to Predict
Lectin–Glycan Interactions

To develop a model to predict and analyze protein–glycan inter-
actions, we reasoned a setup was necessary that considered both
protein and glycan information to arrive at a binding prediction.
This was based on our vision to use the resulting model to
extrapolate to interactions of new lectins as well as new glycans.
We used protein sequences as inputs for our model rather
than protein structures, as the amount of data available for the
former far surpasses the latter. Importantly, sequence-based
data contain evidence for glycans and proteins that do not
interact, a crucial type of data that is lacking from protein–glycan
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co-crystallizations, which only depict successful interactions.
Further, protein–glycan co-crystallizations typically contain only
very short glycan fragments, represent nonquantitative data, and,
due to the molar excess of glycan fragments during crystalliza-
tion and the absence of competing glycans, might not constitute
physiologically relevant interactions. Finally, working with se-
quences also ensured that our model can readily be extended to
uncharacterized lectins, as sequences are substantially easier to
acquire than structures. To train such a model, we constructed
a comprehensive data set of 564647 unique protein–glycan
interactions from 3328 glycan microarray experiments (Tables
S1 and S2, Supporting Information), from the Consortium for
Functional Glycomics as well as the Carbohydrate Microarray Fa-
cility of Imperial College London. Our data set consisted of 1392
lectins, including plant, fungal, bacterial, viral, and animal lectins
(Figure 1B), as well as 927 glycans (Figure 1C). On these data, we
trained deep learning-based models, predicting Z-score trans-
formed relative fluorescence units (representing binding) based
on protein and glycan sequences.

To analyze glycan sequences, we used the state-of-the-art
SweetNet architecture, as it has been shown to generally out-
perform alternative methods and to efficiently scale with gly-
can diversity.[8] SweetNet comprises a graph convolutional neural
network that was designed to accommodate the branching struc-
tures of glycans. In general, a deep learning-based glycan anal-
ysis module learns similarities between glycan motifs and can
more easily generalize to new motifs than a discretized, motif
counting-based approach that is more suited to data analysis than
prediction.[17]

For analyzing protein sequences, we evaluated different ap-
proaches. Previous work used recurrent neural networks (RNNs),
a type of language model, to predict the interaction of viral
hemagglutinin proteins with glycans,[8] analyzing receptors for
influenza virus. Yet the analysis of protein sequences via deep
learning has greatly progressed and transformer-based models
have been shown to outpace RNNs for purposes such as pre-
dicting protein function.[16,22] Therefore, we chose protein repre-
sentations learned by ESM-1b,[16] a 650 million parameter model
trained on the entirety of UniRef50, as the input for our model,
so that this rich representation could be further fine-tuned for the
task presented here.

After processing both protein and glycan sequences, our
model concatenated representations learned for both interaction
partners and used this information to predict protein–glycan
binding via a fully connected neural network module. We evalu-
ated different variations of this model scheme (Table 1) and con-
cluded that the variant with a fine-tuned ESM-1b module for pro-
tein sequences, a SweetNet-based module for glycan sequences,
and a subsequent fully connected neural network with multi-
sample dropout and sigmoid output scaling resulted in the best
empirical performance. We therefore based all further analyses
on this model, which we have named LectinOracle (Figure 1A),
that has been trained on a wide range of different lectin classes
(Figure 1B).

Next to predicting protein–glycan interactions, a trained Lecti-
nOracle model can also be used to retrieve representations—
learned similarities—for both proteins and glycans. These rep-
resentations can be used to cluster sequences, such as the glycan
sequences in our data set (Figure 1C). Importantly, “similarities”

are task-dependent and therefore should, in this case, reflect sim-
ilarities in binding behavior. While tasks such as predicting the
taxonomic origin of a glycan typically result in glycan represen-
tations clustered by class (N-linked, O-linked, etc.),[8,17] here we
observe a clustering that spans classes and is largely influenced
by terminal glycan motifs (e.g., 𝛼2-3 linked Neu5Ac, 𝛼2-6 linked
Neu5Ac, terminal GalNAc). As these terminal motifs are crucial
for determining lectin-binding,[24] we concluded that LectinOra-
cle seemed to have learned to extract relevant information from
glycans to predict protein–glycan interactions.

We then evaluated the performance of a trained LectinOra-
cle model by analyzing predictions for well-characterized lectins.
First, we chose the lectin Sambucus nigra agglutinin (SNA), as it
has a well-defined binding specificity for 𝛼2-6 linked Neu5Ac.[25]

For a range of 1578 glycan motifs occurring in our data set (see
the Experimental Section for details), we retrieved binding pre-
dictions for SNA from LectinOracle (Figure 1D). Among the
predictions, we observed a striking enrichment for 𝛼2-6 linked
Neu5Ac-containing motifs, which was highly significant based
on a Wilcoxon signed-rank test (p = 5.38 × 10−9). In contrast to
the highly specific binding specificity of SNA, we investigated
the binding behavior of Aleuria aurantia lectin (AAL) and con-
firmed the broad recognition of fucose residues[26] in various
linkages (Figure S1A, Supporting Information). We additionally
analyzed the lectins soybean agglutinin (SBA), from Glycine max,
and Helix pomatia agglutinin (HPA) and demonstrated that Lecti-
nOracle correctly learned their preference for terminal GalNAc
residues[27,28] (Figure S1B,C, Supporting Information).

Next, we analyzed Concanavalin A (ConA), from the jack-bean
Canavalia ensiformis, which is known to bind to mannose-rich
glycans.[29] We observed an overwhelming enrichment of high-
mannose structures in motifs that were predicted to be bound by
ConA (Figure 1E), again confirming its literature-annotated bind-
ing specificity. Additionally, we identified a weaker binding pref-
erence for glucan motifs, which is consistent with reports that
ConA can bind glucose-rich sequences,[30] such as from fungi.
This clear separation between dominant (mannose-rich) and sec-
ondary (glucose-rich) binding motif that we observed for ConA
suggested that the absolute predicted binding by LectinOracle
scales, to a certain extent, with affinity or binding strength, which
we also explored further in later sections. We indeed observed
that, for both SNA and ConA, the binding prediction, on aver-
age, increased with a higher number of binding motifs in a gly-
can (Figure S2, Supporting Information).

We also leveraged the generalizability of LectinOracle to inves-
tigate predicted binding motifs for lectins that are only coarsely
characterized, or even entirely uncharacterized. One example for
this is the lectin PSE41-5, identified by reverse vaccinology from
Pseudomonas aeruginosa,[31] which has been shown to bind to
terminal beta-linked galactose. With LectinOracle, we confirmed
that type II LacNAc structures, with a terminal beta-linked galac-
tose, were strongly enriched among the predicted binding motifs
(Figure 1F). Applied to the relatively uncharacterized jacalin-
related domain from OsJAC1, a lectin from the important food
crop Oryza sativa (Asian rice), LectinOracle predicted binding
predominantly to mannose-containing motifs, yet also secondary
binding to glucose and, specifically, Neu5Ac(𝛼2-6)-containing
motifs (Figure 1G). Recent studies with mono- and disaccha-
rides have indeed shown binding to mannose and glucose for
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Table 1. Selecting an architecture for a model predicting protein–glycan interactions. For the task of predicting protein–glycan interactions, we trained
deep learning models with varying architectures to identify a suitable model for this study. In this table, we note the differences in the various models in
three modules, the arm analyzing protein sequences, the arm analyzing glycan sequences, and the downstream module combining protein and glycan
information for binding prediction. Mean values from five independent training runs (Table S3, Supporting Information, n = 5) are provided for the
mean squared error (MSE) and mean absolute error (MAE) on a separate test set. For each metric, the best value is shown in bold.

Protein arm Glycan arm Combined head MSE MAE

RNN SweetNet Fully connected + Multi-sample dropout + Sigmoid 0.9925 0.501

ESM-1b SweetNet Fully connected + Multi-sample dropout + Sigmoid 0.7475 0.4276

ESM-1b + fine-tune SweetNet Fully connected + Sigmoid 0.7375 0.4238

ESM-1b + fine-tune SweetNet Fully connected + Multi-sample dropout 0.7415 0.4301

ESM-1b + fine-tune SweetNet Fully connected + Multi-sample dropout + Sigmoid 0.7283 0.4137

this domain,[32] whereas sialic acid was not tested for binding.
Interestingly, the original jacalin, derived from jackfruit, has
been shown to be capable of binding to Neu5Ac,[33] lending
further support to our analyses.

We also predicted the binding specificity of OTV1_139, a hy-
pothetical protein from Ostreococcus tauri virus 1[34] that con-
tains a carbohydrate-binding module 47 (CBM47) domain, which
has been shown to bind fucose.[35] LectinOracle, applied to
OTV1_139, also revealed a preference for binding fucose (Figure
S1D, Supporting Information). We next investigated two more
lectins, Arundo donax lectin (ADL) and hypothetical cytosolic pro-
tein 031524 from Bacillus subtilis (YesU). For ADL, LectinOracle
correctly inferred the activity of its chitin-binding domain[36] and
predicted motifs such as chitotriose as the top binders (Figure
S1E, Supporting Information). YesU has been characterized to
prefer fucosylated glycans[37] and LectinOracle also predicted fu-
cosylated glycan motifs to be strongly enriched for binding (Fig-
ure S1F, Supporting Information), including fucosylated motifs
such as Lewis X. These case studies involving lectins outside our
data set emphasize that LectinOracle can be used generally to fur-
ther probe the glycan-binding specificity of lectins, both already
characterized as well as uncharacterized.

We next engaged in a more comprehensive validation of lectin
specificity prediction. For this, we compared LectinOracle predic-
tions to the in-depth lectin annotations recently made via a com-
bination of machine learning and manual expert annotation of 57
commonly used lectins.[38] For the 51 lectins for which we could
retrieve an amino acid sequence, LectinOracle identified the cor-
rect binding motif in over 90% of lectins (Figure S3A, Support-
ing Information), even though 19/51 lectins were not part of our
training set and therefore entirely new to LectinOracle.

We then compared LectinOracle to other existing approaches
that, at least in part, have a similar goal related to understand-

ing lectin–glycan binding, such as GlyNet.[21] Testing GlyNet on
these 51 lectins revealed an accurate prediction for 40/51 lectins
(≈78%; Figure S3B, Supporting Information). This lower result,
despite the fact that GlyNet was trained on all tested lectins,
indicates that LectinOracle has a higher accuracy in predicting
lectin binding specificity. Additionally, other approaches, such
as GlyNet, cannot use protein information provided by, for in-
stance, the ESM-1b representations in this study. This consti-
tutes a unique feature and definite advantage of LectinOracle,
both in terms of performance as well as generalizability. It also
enabled the large-scale applications with uncharacterized lectins
described below that would be impossible with existing meth-
ods. Further, compared to approaches predicting monosaccha-
ride specificity based on lectin classes or folds, LectinOracle can
predict the binding of any lectin to glycan motifs of arbitrary com-
plexity, making our approach qualitatively different from existing
approaches.

2.2. Analyzing Lectins with LectinOracle Reveals Lectin Clusters
with Shared Binding Patterns

The categorization of lectins into different classes, such as
galectins[39] or LysM-like lectins,[40] has aided the understand-
ing of lectin interactions on a systematic level. Often, lectins
are categorized based on shared structural characteristics, such
as a common fold.[11,41] However, structural similarity does
not always lead to similar overall binding preferences and dis-
tinct protein folds, with shared binding specificity, have evolved
independently.[6] We hypothesized that a lectin classification that
also factored in (predicted) binding specificity would improve on
this structural approach and lead to classes that would be imme-
diately useful to researchers who use lectins in their work and
rely on their binding specificity rather than their structure.

Figure 1. Predicting lectin binding specificity with deep learning. A) Scheme of the deep learning model LectinOracle, which analyzes protein sequences
via a pre-trained transformer-based model (ESM-1b) that is further fine-tuned, and glycan sequences via a graph convolutional neural network (Sweet-
Net). Results from both arms of the model are concatenated and used to predict lectin–glycan binding. B) Data set composition. Shown is the composi-
tion of our lectin–glycan data set for training LectinOracle, with the frequency of each lectin class depicted. Siglecs have been highlighted separately from
other I-type lectins due to their biological relevance. C) Glycan clusters in data set. The diversity and relatedness of glycans in our data set is shown via
a dendrogram obtained by neighbor joining of the representations learned by the SweetNet component of LectinOracle. The dendrogram is visualized
via the Interactive Tree of Life v5.5 software[23] and annotated with glycan groups. D,E) Analysis of known lectins via LectinOracle, with the example of
SNA and ConA, respectively. For a range of glycan motifs, a trained LectinOracle model was used to predict their binding to the lectins SNA (D) or ConA
(E), with their literature-annotated binding motifs colored. Analysis of uncharacterized lectins, with the example of F) PSE41-5 and G) the jacalin-related
domain from OsJAC1. Motifs which were identified to be enriched in predicted bound glycans are colored. Motif enrichment was tested via one-sided
Wilcoxon signed-rank tests, with the p-value shown in each panel. Glycans predicted to be bound were also visualized via dendrograms similar to (C).
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When coloring lectins based on the disaccharide that is the top
prediction from LectinOracle, we overall did not observe mean-
ingful binding specificity clustering in the ESM-1b representa-
tion, that solely relies on sequence similarity (Figure 2A). Possi-
ble exceptions to this were Neu5Ac-binding lectins that exhibited
high sequence similarity and were prevalent in our data set, such
as the influenza virus hemagglutinins.[42] However, once we plot-
ted the lectin representations learned by LectinOracle (sequence
similarity + binding specificity), we immediately noticed several
distinct lectin clusters that seemed to share binding patterns (Fig-
ure 2B). Clustering by lectin characteristics other than sequence
similarity might also result in informative clusters. However,
lectin annotation and documentation are incomplete, which is
the reason for the existence and relevance of UniLectin3D.[43] To
partially overcome this, we used NetGO 2.0[44] to predict GO term
annotations for all our lectins and used this for clustering (Figure
S4, Supporting Information). Similar to sequence similarity, pre-
dicted GO terms did not lead to an overall meaningful clustering
in terms of binding behavior, re-emphasizing the added value of
representations learned by LectinOracle for this purpose.

Most strikingly, we observed a mannose-binding lectin clus-
ter that was not apparent in the clustering based on sequence
similarity. This cluster contained well-known mannose-binding
lectins, such as plant-derived ConA and the Banana lectin from
Musa acuminata as well as mammalian lectins, such as the hu-
man Mannose Binding Lectin 2 (MBL2). While most clusters ex-
hibited a dominant disaccharide that characterized cluster bind-
ing, fucose-binding lectins demonstrated a pronounced diversity
in their exact fucose specificity between lectins, with no single
overarching disaccharide despite forming a cluster in our repre-
sentation. With regards to sialic acid-binding, we could annotate
multiple clusters, with specificity for 𝛼2-3 linked Neu5Ac, 𝛼2-6
linked Neu5Ac, and Neu5Ac without linkage-preference, respec-
tively. These clusters contained the expected avian (𝛼2-3 linked
Neu5Ac) as well as mammalian influenza virus hemagglutinins
(𝛼2-6 linked Neu5Ac).[47] Yet we also identified other lectins in
these clusters that were less obvious via sequence similarity, such
as Staphylococcus aureus superantigen-like 6 (SSL6) or Escherichia
coli heat-labile enterotoxin for the 𝛼2-3 linked Neu5Ac cluster
and SNA or Polyporus squamosus lectin (PSL) in the 𝛼2-6 linked
Neu5Ac cluster. This clustering beyond mere sequence similar-
ity, which was enabled by LectinOracle, holds promise for re-
classifying existing lectins as well as annotating and discovering
new lectins that could be used as research probes or shed light
on biological phenomena.

Next, we sought to further characterize the clusters unveiled
by the similarities learned by LectinOracle (Figure 2B) and
thereby propose a more useful characterization of lectins, not
only informed by sequence similarity but additionally by bind-
ing specificity. We first analyzed the cluster containing mannose-
binding lectins, which not only cleanly separated different classes
of mannose-containing glycans based on their predicted bind-
ing but also revealed lectin subgroups in this cluster that ex-
hibited slightly different binding preferences (Figure 2C). One
cluster, containing cyanovirin-like lectins, such as microvirin or
cyanovirin, as well as the jacalin-like banana lectin, was predicted
to bind especially well to oligo- and high-mannose glycans. Simi-
lar to a dose-response relationship, lectins with a higher predicted
binding to oligo-/high-mannose structures also exhibited, albeit

lower, residual predicted binding to pauci-mannose structures
(3–4 mannoses). This high-level characterization might serve as
a guideline for researchers choosing a lectin that is best suited to
their experimental needs.

Analogously, we analyzed fucose-binding lectins, based on
widely known fucose-containing motifs from the academic liter-
ature (Figure 2D). Our first observation was that, while galectin 7
and siglec 8 were filtered together with the fucose-binding lectins,
the motif heatmap revealed that they were only predicted to sub-
stantially bind to sialylated/sulfated motifs (siglec 8) or motifs
containing LacNAc structures (galectin 7), not to other fucosy-
lated structures. The remaining block of lectins represented the
“true” fucose-specific lectins. Here, we also observed a dose re-
sponse, in that difucosylated motifs (Lewis B, Lewis Y, difucosy-
lated N-glycan cores, etc.) were, on average, predicted to be bound
stronger than monofucosylated motifs. With analyses such as
these, our platform constitutes a rapid means to characterize and
compare a large set of lectins with regards to their binding speci-
ficity to identify subclusters as well as the most appropriate lectin
reagents for detecting glycan motifs.

We were also intrigued to observe two distinct clusters for
lectins predicted to bind the N-acetyllactosamine (LacNAc) mo-
tif that is near-ubiquitous in animals (Figure 2B; light brown
and dark brown). We therefore decided to identify what distin-
guished lectins from both clusters. As type I and type II Lac-
NAc can occur in multiple forms (LacNAc, OligoLacNAc, Poly-
LacNAc), we used our trained LectinOracle model to predict the
binding of all lectins in our data set to one, two, or three repeats
of type II LacNAc (Gal(𝛽1-4)GlcNAc(𝛽1-3); Figure S5, Supporting
Information). When coloring all lectins according to their pre-
dicted binding, we observed that one of the two clusters started
out with strong predicted binding to 1xLacNAc yet seemed to
lose predicted binding with 3xLacNAc. This cluster was enriched
in epithelial adhesins from the fungus Candida glabrata.[48] The
other cluster, however, increased in predicted binding with in-
creasing number of LacNAc repeats. Here, we found an enrich-
ment for galectins from various species. This led us to the con-
clusion that the first cluster constituted LacNAc-binders while the
second cluster was rather characterized by oligoLacNAc-binding.
This also implied that LectinOracle was sensitive to the number
of repeats for a glycan motif, which we already indicated with the
example of SNA and ConA above (Figure S2, Supporting Infor-
mation).

Beyond short di- or trisaccharide motifs, many larger motifs,
such as the Lewis structures,[49] are widely known and relevant
in various biological contexts. We therefore engaged in an analy-
sis to find out whether we could identify clusters of lectins bind-
ing to these motifs (Figure S6, Supporting Information). While
we could pinpoint distinct regions for many motifs in the lectin
space learned by LectinOracle, clustering in most cases could
be explained by smaller motifs within larger motifs such as the
Lewis series. The presence of fucose in Lewis structures and
blood group epitopes led to activity in the fucose-binding clus-
ter, motifs such as SialylLewis X added predicted binding from
Neu5Ac-binding lectins, and the blood group A antigen included
activity from the terminal GalNAc-binding cluster. Antibodies
with high specificity for a defined large motif notwithstanding,
most lectins in our data set seem to be well-characterized on the
disaccharide level.
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Having established the sensitivity of LectinOracle to minute,
monosaccharide-level changes in glycans, we then set out to ana-
lyze model sensitivity toward the lectin sequence. In other words,
did LectinOracle learn a broader domain—motif relationship or
a more fine-grained sequence/binding pocket—motif associa-
tion? For this, we turned to E. coli Subtilase cytotoxin subunit
B (SubB), a protein outside our data set and part of a bacte-
rial AB5 toxin that binds sialic acids with two key amino acid
residues, S12 and Y78.[50] We analyzed the glycan binding of
SubB with LectinOracle and indeed observed significant enrich-
ment of Neu5Gc- and Neu5Ac-containing moieties among the
predicted binding glycans (Figure 2E and Figure S7, Supporting
Information). We note that, while we did observe a statistically
significant binding prediction for Neu5Gc binding (Figure S7,
Supporting Information), due to a relative scarcity of Neu5Gc-
containing glycan motifs on the arrays used for training Lecti-
nOracle we were unable to quantify any differential preference
of Neu5Gc over Neu5Ac. Interestingly, we found that the bind-
ing predictions for SubB are highly sensitive toward amino acid
substitutions in the glycan-interacting region of the protein, with
Neu5Ac/Gc enrichment being completely abolished upon substi-
tuting five residues around each key amino acid with alanine (Fig-
ure 2E and Figure S7, Supporting Information), while the substi-
tutions did not substantially impact the protein structure as pre-
dicted by AlphaFold2.[14] Overall, these results demonstrate that
LectinOracle, without any prior knowledge or being trained for
this, is sensitive toward mutations of amino acids in the ligand
binding pocket of SubB. However, it is still unclear how sensitive
LectinOracle is to single point mutations versus critical sequence
stretches, as the mutation of the two key binding residues itself
did not lead to an abrogation of predicted binding. In fact, even
large-scale models such as AlphaFold2 were recently shown to
be not sensitive toward single point mutations,[51] indicating that
this might require dedicated training.

Having established the sensitivity of LectinOracle to critical
amino acid stretches for binding predictions, we next set out to
investigate whether our model could be used in the context of
lectin directed evolution. Screening a large set of mutants can
be used to shift lectin binding specificity, for instance, demon-
strated in a study evolving the C-terminal domain of the EW29
lectin (EW29Ch) from the earthworm Lumbricus terrestris toward
a 6′-sulfo-galactose binding lectin.[52] Predictions from LectinO-
racle for the mutants from this experiment matched experimen-
tal results, where mutants with a higher predicted binding also
showed higher binding to 6′-sulfo-LacNAc (Gal6S(𝛽1-4)GlcNAc)
and neutral mutants having no change in their predicted bind-
ing (Figure S8, Supporting Information). This proof-of-concept

analysis demonstrates the potential of LectinOracle to be used to
accelerate lectin directed evolution approaches.

2.3. LectinOracle Predictions Match Independent Experimental
Observations Qualitatively and Quantitatively

The gold standard for validating machine learning models is to
compare their predictions to independent experimental observa-
tions. Not only does this procedure allow for the evaluation of the
quality of a model but it also showcases the range of scenarios
where a model can be applied with sufficient accuracy, as model
predictions typically deteriorate the further a scenario is removed
from the training data.

As a first validation, we compared our predictions to co-
crystallized lectin–glycan structures found in UniLectin3D.[43]

For this, we used the lectin and the glycan in the complex as in-
put to LectinOracle to see whether this binding would have been
predicted. For lectins that were part of our training set, LectinO-
racle achieved good predictive accuracy for lectins from all taxo-
nomic groups (Figure S9A, Supporting Information) and nearly
all lectin classes (Figure S9B, Supporting Information). When in-
cluding all lectins, we did observe lower performance for archaeal
lectins (absent from our data set) and viral lectins (Figure S9C,D,
Supporting Information). As mentioned before, while offering
valuable mechanistic insights into protein–glycan interactions,
co-crystallized lectin–glycan structures should not be seen as the
gold standard of predicting lectin–glycan binding due to poten-
tial limitations. We were nonetheless satisfied that LectinOracle,
on average, predicted the interactions of the majority of lectins
on UniLectin3D.

To circumvent potential issues of crystal structures, we also
used experimental data from a range of customized glycan ar-
rays that were not part of the CFG or Imperial College database
to validate LectinOracle. These arrays contained glycans as well as
lectins that were new to LectinOracle and offered a rich source for
validating our predictions. First, we used the recently published
oligomannose array for this purpose.[53] Here, investigators as-
sayed a variety of subtly different oligomannose glycans for their
binding to various lectins. The slight changes in glycan structure,
which nonetheless led to appreciable differences in their binding
behavior, made this a particularly challenging case study for our
model. When thresholding our predictions and the observed rela-
tive fluorescence units (i.e., separating glycans into “bound”/“not
bound” for a given lectin), we achieved predictive accuracies of
≈70–90% for plant and bacterial lectins using LectinOracle (Fig-
ure 3A and Figure S10A, Supporting Information). With the

Figure 2. Clustering lectins based on learned binding motifs. A,B) Lectins clustered based on sequence similarity or binding specificity. Learned repre-
sentations from the pre-trained ESM-1b model (A) or a trained LectinOracle model (B) were extracted for each lectin and are shown via t-SNE,[45] colored
by the top predicted disaccharide binding motif. Cluster binding specificities are annotated and representative lectins are labeled. C) Characterization
of mannose-binding lectins. We selected the group of lectins with “Man(𝛼1-2)Man” as the top-predicted disaccharide and used LectinOracle to pre-
dict their binding to a range of mannose-containing glycans. Then, we performed hierarchical clustering using Ward’s method.[46] D) Characterization
of fucose-binding lectins. After selecting lectins with fucose within their top predicted disaccharide, we predicted their binding to a range of fucose-
containing motifs from the academic literature and filtered out lectins which did not have at least a predicted binding of one to any of these motifs,
depicting the rest as a hierarchical clustering based on Ward’s method. E) LectinOracle predictions are sensitive to amino acid substitutions in the lectin
binding pocket. For SubB and various alanine-substitution mutants, we predicted their glycan-binding behavior with a range of glycan motifs. One-sided
Wilcoxon signed-rank tests were used to ascertain significant enrichment for predicted Neu5Ac binding in each case. Protein structure predictions made
with AlphaFold2 are shown for the wild-type protein and each mutant.
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Figure 3. LectinOracle predicts binding of lectins to a wide range of different glycan arrays. A) Accuracy of LectinOracle predictions for lectins tested on
the oligomannose array. For each lectin–glycan pair, we assigned it the label “bound” or “predicted bound” if the observed relative fluorescence units
(RFU) were at least 10% of the maximum RFU or if the predicted binding was at least 0.5, respectively. The agreement of experiment and prediction
is shown in terms of accuracy (precision can be found in Figure S10A, Supporting Information). Correlating experimentally observed binding with
predictions for the B) lectins ConA and C) FimH tested on the oligomannose array. D–F) Correlating experimentally observed binding with predictions
for the lectins AAL, STL, and UEA-I, respectively, on the mucin O-glycan array. G–I) Correlating experimentally observed binding with predictions for
the lectins RCA-I, DC-SIGN, and BC2L-A, respectively, on the microbe-focused array. J–L) Correlating experimentally observed binding with predictions
for the lectins hPIV2, A/Oklahoma/447/2008 (H1N1), and RCA-I, respectively, on the sialic acid array. All correlations between experimental data and
predictions were done via fitting a linear regression and r represents Pearson’s correlation coefficient.
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exception of Dectin-2, we observed similar results for mam-
malian lectins on this array (Figure S9B–D, Supporting Informa-
tion). We note that for the antibodies tested on this array, LectinO-
racle did not yield correct predictions (Figure S10C,D, Support-
ing Information). This is likely due to two factors: i) the antibod-
ies are highly specific, with a low single-digit number of bound
glycans on the oligomannose array that are easier to miss entirely
and ii) our training set lacks data for antibodies, so LectinOracle
was never trained to be able to predict antibody-glycan binding
and should not be used for this purpose.

Encouraged by these results, we hypothesized that the rela-
tive predicted binding from LectinOracle could be informative
beyond classifying glycans into “bound”/“not bound,” as Lecti-
nOracle was trained on quantitative binding data. Therefore, for
each glycan, we correlated predicted binding and experimentally
measured binding for a range of lectins (Figure 3B,C and Figure
S10B, Supporting Information), to see whether we could predict
quantitative binding, a substantially more challenging task. For
lectins on the oligomannose array, we indeed achieved moder-
ate correlations (defined as a Pearson’s correlation coefficient be-
tween 0.5 and 0.7) between our predictions and the experimental
results, demonstrating that our predictions contain quantitative
information about protein–glycan interactions, even in a differ-
ent array setting than LectinOracle was trained on.

To show that this constitutes a general property of LectinOra-
cle and to test the generalizability of its predictions in different
contexts, we then went on to validate our predictions on other gly-
can arrays. First, we tested the recently reported mucin O-glycan
array,[54] in which 83 O-linked glycans with various modifications
were tested against several lectins. In this context, with very dif-
ferent glycans compared to the oligomannose array, LectinOra-
cle again achieved a quantitative correlation to independent ex-
perimental data (Figure 3D–F), with some lectins, such as AAL
and UEA-I, even showing a strong correlation between predic-
tions and experimental observations (Pearson’s correlation coef-
ficient > 0.7). We extended this to two additional array types, the
microbe-focused glycan array[55] (Figure 3G–I) and the sialic acid
array[56] (Figure 3J–L). In both cases, we observed moderate to
strong correlations between the predicted binding values from
LectinOracle and the experimentally measured binding.

In some cases, such as DC-SIGN on the microbe-focused
array (Figure 3H), LectinOracle correctly predicted the binding
to one cluster of glycan sequences (mannose-rich glycans) yet
missed another cluster of glycans in its predictions that was
measured to bind (Lewis X-type structures[57]). To better un-
derstand this misprediction of Lewis X-type (LeX) structures,
we investigated the binding behavior of DC-SIGN in depth
(Figure S11, Supporting Information). To our surprise, we
found more non-binding than binding LeX-containing gly-
cans in the DC-SIGN glycan array data. From our analyses,
it seemed that only terminal LeX structures, with Fuc(𝛼1-2)
as the only permitted extension, had a chance to be bound
by DC-SIGN and, even in those cases, sialylation (even on a
different antenna) strongly inhibited binding, such as in the case
of Fuc(𝛼1-2)Gal(𝛽1-4)[Fuc(𝛼1-3)]GlcNAc(𝛽1-3)[Neu5Ac(𝛼2-
6)Gal(𝛽1-4)GlcNAc(𝛽1-6)]Gal(𝛽1-4)Glc, which showed
absolutely no binding to DC-SIGN, while Fuc(𝛼1-
2)Gal(𝛽1-4)[Fuc(𝛼1-3)]GlcNAc(𝛽1-3)Gal(𝛽1-4)[Fuc(𝛼1-3)]GlcNAc
represented the strongest binder on the array. Overall, this

suggests a complex binding behavior between DC-SIGN and
LeX, that, to our knowledge, seems to have even been overlooked
by in-depth expert annotation until now. We assume that this
also makes it more challenging for models such as LectinOracle
to learn these somewhat conflicting relationships.

This complexity suggests that, with more data from more di-
verse glycan arrays, LectinOracle could be further improved to
detect all binding specificities of a lectin. Overall, the example
of DC-SIGN and the high precision of our predictions (Figure
S10A,D, Supporting Information) implies that errors in LectinO-
racle predictions are more likely to be false negatives than false
positives, raising the confidence in binding predictions. These
validations across multiple independent arrays included bacte-
rial, viral, plant, fungal, and mammalian lectins. Additionally, the
majority of glycans in these custom arrays were not present in the
CFG and Imperial College arrays used for training LectinOracle.
We therefore concluded that LectinOracle can generalize to new
lectins, new glycans, and new contexts (e.g., different linkers), as
long as they are not too far removed from the training set, such
as the antibodies mentioned above.

2.4. Investigating Lectomes in Host–Microbe Interactions with
LectinOracle Uncovers Shifting Binding Repertoires

Lectins are widespread throughout all kingdoms of life and
carry out a panoply of essential functions, from combating
pathogens[58] to distinguishing self and foreign tissue.[59] Yet
the set of lectins that have been experimentally characterized
to a sufficient degree only represents a sliver of the total set of
lectins in nature. Genome annotation efforts, based on sequence
similarity to known lectins, have resulted in databases such as
LectomeXplore,[11] where predicted lectins from thousands of
species, as well as their lectin class, are catalogued.

Seeking to better understand these predicted lectins, we used
our LectinOracle platform to analyze lectins in LectomeXplore
with a prediction score of 0.5 or above (i.e., at least 50% simi-
larity to known lectins). This corresponded to 120,523 putative
lectins from 7753 species, which in turn represented 113,573
unique protein sequences. We calculated ESM-1b representa-
tions for these sequences and observed that, while many assigned
lectin classes clustered together based on sequence similarity
(Figure 4A), classes such as ficolin-like lectins or l-rhamnose
binding lectins demonstrated a fragmented cluster behavior, sug-
gesting a sequence diversity or sub-classes within these cate-
gories. It should be noted that broad classes such as ficolin-like
lectins, defined by containing fibrinogen-like domains, could also
contain non-lectin proteins.

Next, we visualized the learned lectin representations after
training LectinOracle (Figure 4B). These representations, factor-
ing in learned glycan-binding specificity in addition to sequence
similarity, yielded an improved clustering, with a lower cluster
variance for most lectin classes (Figure S12A, Supporting Infor-
mation). Classes such as foot-and-mouth disease virus (FMDV)
receptor lectins, which showed two distinct clusters when clus-
tering by ESM-1b representations, were unified when clustering
on both sequence similarity and binding specificity. We also note
that the sequences in a cluster often corresponded to very uni-
form LectomeXplore score values (Figure S12B,C, Supporting
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Figure 4. Analyzing lectomes and their role in biology with LectinOracle. A,B) Lectins from LectomeXplore clustered based on sequence similarity or
binding specificity. Learned representations from the pre-trained ESM-1b model (A) or a trained LectinOracle model (B) were extracted for all 120,523
putative lectins in LectomeXplore with a similarity score higher than 0.5. Lectin classes with at least 400 examples are annotated in both (A) and (B).
C) Predicted glycan-binding specificity for hemagglutinins on LectomeXplore. For 9752 hemagglutinin sequences from LectomeXplore, we plotted their
learned representation from a trained LectinOracle model and colored them based on their predicted glycan-binding specificity. Motifs were colored if
they showed a significant enrichment in predicted binding, according to motif-based one-tailed Welch’s t-tests and a Holm–Šídák correction for multiple
testing. D) Pathobionts in the vaginal microbiome have a larger predicted binding repertoire than commensals. For all strains in the data set, we used
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Information), implying that they form pools of sequences that
are similar to each other, with a comparable similarity to the
profile used for searching for the lectin class in genomes. Some
classes, such as endoplasmic reticulum golgi intermediate com-
partment/vesicular integral proteins (ERGIC VIP) l-type lectins,
formed distinct clusters with different score distributions, sug-
gesting that these clusters correspond to different pools of lectins
from the ERGIC VIP l-type class. This could pave the way for a
more fine-grained classification of lectins that may differ in im-
portant aspects.

We then further analyzed additional lectin classes on Lec-
tomeXplore. One example of broad interest are hemagglutinin
proteins, which are crucial for influenza virus cell entry, as
the glycan-binding specificity of hemagglutinin can determine
host range.[4] Classically, hemagglutinins are split between bind-
ing 𝛼2-3-linked Neu5Ac (avian host) and 𝛼2-6-linked Neu5Ac
(mammalian host), with additional reports that sulfated[60] and
phosphorylated[61] glycans may be bound. When analyzing the
9752 hemagglutinin sequences from LectomeXplore with a score
above 0.5 via LectinOracle, we could clearly separate hemagglu-
tinins into three broad clusters, corresponding to Neu5Ac(𝛼2-3),
Neu5Ac(𝛼2-6), and sulfated glycans as their major binding epi-
tope (Figure 4C). We additionally noted the occurrence of smaller
clusters that seemed to prefer binding to phosphorylated glycans
or O-acetylated Neu5Ac (Neu4,5Ac2).

Considering the segregation of hemagglutinin sequences by
LectinOracle, we next investigated whether our influenza-related
predictions corresponded to epidemiological outcomes. For this,
we gathered hemagglutinin sequences from 212 H3N2 influenza
strains from Taiwan between 1999 and 2007 which have been
shown to vary in their preference for binding to human-like
Neu5Ac(𝛼2-6)-containing motifs.[42] Predicting their binding to
this motif via LectinOracle, we also observed variation in pre-
dicted binding to Neu5Ac(𝛼2-6)-containing glycans across the
years (Figure S13, Supporting Information). Importantly, the
fluctuations in predicted Neu5Ac(𝛼2-6) binding closely matched
the trajectory of excess deaths due to H3N2 in Taiwan from 2002
to 2006.[62] This correspondence suggests that stronger binding
to human-like Neu5Ac(𝛼2-6) predicted by our model could pre-
dict epidemiological outcomes such as excess deaths, showcasing
another important use case for LectinOracle.

Further analyses into other LectomeXplore classes, such as
clustering staphylococcal superantigen-like lectins or F-type
lectins into subgroups with different glycan-binding preferences
supported the ability of LectinOracle to further characterize these
putative lectins at scale (Figure S14, Supporting Information).
These results demonstrate that the lectin annotation pipeline
could be extended to also include predicted binding specificity
for further insight.

Recent work has focused on analyzing the lectomes of patho-
bionts and commensals in the vaginal microbiome, finding a
higher number of lectins in pathobionts than in commensals.[63]

Analyzing the respective lectin classes resulted in showing that
lectomes from pathobionts seemed to bind to a higher diversity
of glycan motifs. Using LectinOracle, we arrived at a similar re-
sult in that lectomes from pathobionts were predicted to bind to
more glycan motifs than those from commensals (Figure 4D),
which might aid pathobionts in adhering more robustly to mu-
cosal surfaces.[64]

We then set out to capitalize on the predictive capabilities of
LectinOracle to investigate which glycan motifs were targeted
by pathobionts and commensals, respectively (Figure 4E). Based
on our predictions, lectins from both pathobionts and commen-
sals seemed to be particularly enriched in binding to fucose-
containing motifs. In accordance with our earlier analysis (Fig-
ure 4A), pathobionts exhibited a greater diversity of highly en-
riched binding motifs, including various fucosylated motifs that
are prevalent in human glycans (Lewis X, Lewis A, H type 1, etc.)
and that are known to mediate adhesion of other pathobionts
such as Helicobacter pylori.[65] These structures could thus also be
used by the pathobionts of the vaginal microbiome to adhere to
mucosal surfaces, showcasing the utility of LectinOracle to yield
further insight into biological contexts involving lectins.

3. Discussion

If glycosyltransferases and related enzymes could be construed as
the “writers” in glycobiology, lectins would represent the “read-
ers” of the glycocode.[66] Because glycans dominate the surface
area of most cells, protein-mediated interactions between cells or
organisms typically rely on lectins that recognize specific glycan
motifs. Yet lectins typically do not follow a strict one protein—
one motif correspondence such as zinc finger proteins in DNA
recognition.[67] Mostly, lectins span the whole range, from a nar-
rowly defined binding specificity, such as SNA, to a broader, more
relaxed binding specificity that is still well-defined, such as in the
case of ConA. Knowing which glycan motifs are bound by any
given lectin is a nontrivial endeavor and usually entails months
or even years of dedicated study. This is a problem both for timely
issues, such as ascertaining the glycan-binding specificity of a
pandemic-causing pathogen,[68] as well as for systematic issues,
as the high-throughput characterization of whole lectomes[11] is
currently infeasible. We view LectinOracle as a means to alleviate
these bottlenecks, as well as to further characterize and cluster
well-studied lectins, by obtaining binding predictions for lectin
sequences in a rapid and scalable manner.

LectinOracle can be extended to both new lectins and new gly-
cans, paving the way for its integration into the routine study
and usage of lectins. Potential applications, as shown here, span
the range from in-depth characterization of the binding profile
of individual lectins to the analysis of whole lectomes and their
binding profile in health and disease, with potential mechanistic
and biomedical implications. In future work, approaches such as

a trained LectinOracle model to predict the binding motifs of their lectins. The number of motifs with a predicted binding above zero is shown for both
pathobionts and commensals as mean ± s.e.m. Statistical significance between groups (pathobionts n = 55, commensals n = 35) was established
with a two-tailed Welch’s t-test. ***p < 0.001. E) Enriched predicted binding motifs for lectins from pathobionts and commensals. For all lectins from
pathobionts and commensals, we predicted their binding to a range of glycan motifs and analyzed enriched binding motifs via one-tailed Welch’s t-tests
and a Holm-Šídák correction for multiple testing. The resulting p-values per motif are shown as −log(p-value), with representative motifs annotated.
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presented here could also be combined with the tissue-specific
glycome of a host species[69] to identify specific glycan recep-
tors that could be physiologically relevant for the adhesion of a
pathogen.

A potential limitation of our work could lie in extreme general-
izability. We already mentioned that distinct protein subgroups,
such as antibodies, might not be amenable to be used as inputs
for LectinOracle if they are currently not represented in the train-
ing data. In general, lectins that exhibit multiple binding sites
with distinct specificities and/or more heterogeneous binding
properties might also be harder to learn for models such as Lecti-
nOracle, as for instance seen with DC-SIGN. Further, while new
glycans can be readily used as inputs for LectinOracle, we are cur-
rently limited to glycans composed of the monosaccharides used
for training LectinOracle. Unseen monosaccharides would not
have a learned representation and could, at this stage, not be in-
terpreted by LectinOracle. Fortunately, LectinOracle was trained
with a large set of 80 monosaccharides and linkages, which will
enable researchers to work with most glycans. The integration of
future glycan arrays with even more diverse glycans will further
improve this type of generalizability. Once these additional data
become available in sufficient quantity, we also anticipate further
increases in robustness and performance of a re-trained version
of LectinOracle. One example for this can be seen in the case of
Dectin2 that shows only binding to oligomannose glycans (e.g.,
Man(𝛼1-2)Man(𝛼1-2)Man(𝛼1-6)[Man(𝛼1-3)]Man) on our training
set arrays but binds to both oligomannose and N-linked oligo-
mannose glycans (e.g., Man(𝛼1-2)Man(𝛼1-2)Man(𝛼1-3)[Man(𝛼1-
3)Man(𝛼1-6)]Man(𝛽1-4)GlcNAc(𝛽1-4)GlcNAc) on the oligoman-
nose array, resulting in poor prediction performance due to ar-
ray discrepancies (Figure S10C, Supporting Information). Future
versions of LectinOracle that are also trained on arrays such as the
oligomannose array should improve on these results.

Recent research has shed light on the differences between
binding conditions on glycan arrays and physiological presenta-
tion of glycans on cells and tissues,[70–73] including issues such
as crowding, diversity, and linker properties. Additionally, most
glycan arrays currently are biased towards mammalian-like gly-
cans. For some lectins, binding preferences that were found on
glycan arrays could not be recapitulated on tissues and vice versa.
As LectinOracle was trained on glycan array data, these limita-
tions could extend to its predictions as well. Another important
point to note here is that LectinOracle was trained on glycan ar-
ray data, which are only semi-quantitative. Future work should
therefore explore training such a model on quantitative binding
measurements, such as frontal affinity chromatography,[74] once
enough data of this type become available. Yet, at this stage, there
is by far not enough physiological binding data available to train
any kind of model. Further, current expert inferences of bind-
ing specificity are also informed by array data and typically do
not deviate extensively from physiological behavior. By extension,
predictions made with LectinOracle should thus also yield phys-
iologically relevant predictions on average. Additionally, as more
structural data of lectin–glycan complexes become available, this
type of information could eventually be added as a “third arm” of
LectinOracle, further improving prediction results and offering
a more direct path to mechanistic interpretation. However, this
step should ideally be present as an optional input, to not impede
generalizability.

In general, learning protein–glycan interactions from se-
quences instead of structures allowed us to leverage a vastly larger
amount of data. Drawbacks with protein–glycan co-crystallization
data, apart from data scarcity, include the lack of available quanti-
tative binding data and the absence of negative examples. While
every co-crystal represents a positive example of protein–glycan
interaction, structural information alone does not provide data
as to whether a lectin will conclusively not bind a certain gly-
can. The array data, which we used here, contains an abundance
of true negative examples, of lectins not binding to certain gly-
cans, and is exclusively composed of quantitative binding data.
In contrast to treating lectins as essentially black boxes,[21] our
sequence-based approach further allows us to extract informa-
tion from amino acid sequences and extrapolate to new lectins.
This middle ground approach allowed us to combine the best of
both worlds and construct a highly generalizable model that en-
ables in-depth analyses of lectin binding behavior. We therefore
envision that LectinOracle will be a versatile platform to advance
glycobiology as well as the many other life science disciplines in
which lectins exercise an important role.

4. Experimental Section
Data Set Construction: For the lectin–glycan data set, data from 3228

glycan arrays were manually curated from the Consortium for Functional
Glycomics database, using a custom script to extract the data from the Ex-
cel files. A hundred glycan arrays were also added from the Carbohydrate
Microarray Facility of Imperial College London to this data set. For all gly-
can arrays, glycan descriptions were converted to IUPAC-condensed via
a mapping table (Table S4, Supporting Information). Wherever possible,
meta-data was also collected about the sample, such as protein sequence,
database identifiers, and expression system (Table S2, Supporting Infor-
mation).

Data Processing: First, columns that were mapped to the same gly-
can sequence in IUPAC-condensed nomenclature were averaged. Then,
the subset of data was selected from array experiments where the protein
sequences were available to us. This resulted in a final set of 2709 glycan ar-
ray experiments for training LectinOracle. All array experiments were then
normalized by Z-score transformation. Then, data from experiments were
averaged using the same protein sequence in different concentrations or
under different buffer conditions. Data from glycans attached to the array
via different linker sequences were also averaged. These procedures were
carried out to enable an interaction prediction of a protein sequence to
a glycan without special consideration to environmental conditions, en-
abling generalizability. This resulted in 564,647 unique protein–glycan in-
teractions which were used to train and evaluate LectinOracle. Mathemati-
cally, Z-score transformation also resulted in negative values, which would
correspond to binding below the assumed background. While this may
not be relevant information, it was still chosen to supply the model with
all available information to facilitate learning all relevant relationships and
associations. For the purpose of interpretation, negative Z-scores can be
viewed as “non-binding.”

Model Training: For model training, the data set was split into a train-
ing (90%) and a test set (10%), ensuring that no proteins were present
in both the training and the test set. Then, the data in both sets were
converted into the format (protein sequence, glycan sequence, binding
Z-score). For the protein sequence, the 1280-dimensional representation
was retrieved from the trained ESM-1b model. For the glycan sequence, the
Python package glycowork[19] was used to convert the IUPAC-condensed
sequence into a graph object, as described previously.[8]

LectinOracle comprised a fully connected neural network that used the
ESM-1b representations as input and a SweetNet-based graph convolu-
tional neural network with node embeddings to analyze glycan graphs.
Results from these two arms were concatenated and used in another fully
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connected part, which resulted in a multisample dropout scheme[75] prior
to the binding prediction. Immediately before the final output, a sigmoid
layer was used to scale the output to range between the maximum and
minimum Z-scores observed in the overall data set. Fully connected parts
of LectinOracle constituted linear layers interspersed with leaky ReLUs,
dropout layers, and batch normalization layers. All linear layers were ini-
tialized via Xavier initialization.[76]

All models were trained with PyTorch 1.8[77] and PyTorch Geometric
1.8,[78] using a single NVIDIA Tesla P100 GPU. Batch sizes of 128 were
used for both training and test sets. Final hyperparameters after opti-
mizing via cross-validation were a starting learning rate of 0.0005, using
ADAM as an optimizer, that was decayed over 80 epochs according to a
cosine function. LectinOracle was trained for 100 epochs, with an early
stopping criterion of 20 epochs without further improvement. For train-
ing, a mean squared error loss function was used.

Obtaining Learned Glycan and Protein Representations: To visualize
protein similarities, either ESM-1b representations or fine-tuned represen-
tations after training LectinOracle were used. For ESM-1b representations,
protein sequences were truncated to a maximum of 1000 amino acids,
as ESM-1b does not support substantially longer submissions. Then, this
was used as an input to the trained ESM-1b model, and the learned 1280-
dimensional representation was extracted from the final layer. For fine-
tuned protein representations, this ESM-1b representation, together with
an arbitrary dummy glycan sequence, was used as an input to LectinOra-
cle, and the 128-dimensional protein representation immediately prior to
concatenating protein and glycan representations was extracted (i.e., after
the fully connected module that fine-tunes the ESM-1b representation to
the task of predicting protein–glycan binding).

For obtaining glycan representations, glycan sequences together with
an arbitrary dummy protein ESM-1b representation were analogously used
as inputs to LectinOracle. Then, the 256-dimensional glycan representa-
tion immediately prior to concatenating protein and glycan representa-
tions was extracted (i.e., after the pooling operations of the graph convo-
lutional neural network). To visualize glycan clusters for Figure 1C, these
glycan representations were then used to construct a cosine distance ma-
trix. Subsequently, neighbor joining was applied to this matrix to obtain a
dendrogram based on agglomerative clustering.

Identifying Lectin Binding Specificity: To determine the binding speci-
ficity of a lectin, a library of disaccharides, trisaccharides, and n−1 motifs
(motifs differing by one monosaccharide from full sequences in the data
set) that were observed in the glycan set in this study was constructed. This
choice of motifs was motivated by a compromise between interpretability
and computational efficiency. Then, using a trained LectinOracle model,
the ESM-1b representation for the lectin was retrieved, and this was
used as input together with all motifs to receive predicted binding scores
for all motifs. Then, the background prediction value was subtracted to
arrive at the final predicted binding score. For the background prediction
correction, predicted binding scores were calculated for all lectins with
all glycan motifs. Then, the median prediction for each motif across all
lectins was calculated, and this was considered the prediction background
(Table S5, Supporting Information), with the assumption that no motif
should be bound by all or the majority of lectins in the data set used in
this study.

Statistical Analysis: Continuous data were depicted as mean ± s.e.m.
For cases in which ranking was important, for instance, ranking of pre-
dicted motifs, Wilcoxon signed-ranked tests were used to test for signifi-
cance. Comparing two groups was done via two-tailed Welch’s t-tests. For
testing the equality of two variances, an F-test was used. Linear regres-
sions were assessed by Pearson’s correlation coefficient. In all cases, sig-
nificance was defined as p ≤ 0.05. All multiple testing was corrected with a
Holm–Šídák correction. All statistical testing was done in Python 3.8 using
the statsmodels package (v0.13.0) and the scipy package (v1.7.1).
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