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Abstract

The toxic metalloid inorganic arsenic (iAs) is widely distributed in the environment. Chronic 

exposure to iAs from environmental sources has been linked to a variety of human diseases. 

Methylation of iAs is the primary pathway for metabolism of iAs. In humans, methylation of 

iAs is catalyzed by arsenic (+ 3 oxidation state) methyltransferase (AS3MT). Conversion of iAs 

to mono- and di-methylated species (MAs and DMAs) detoxifies iAs by increasing the rate of 

whole body clearance of arsenic. Interindividual differences in iAs metabolism play key roles in 

pathogenesis of and susceptibility to a range of disease outcomes associated with iAs exposure. 

These adverse health effects are in part associated with the production of methylated trivalent 

arsenic species, methylarsonous acid (MAsIII) and dimethylarsinous acid (DMAsIII), during 

AS3MT-catalyzed methylation of iAs. The formation of these metabolites activates iAs to unique 

forms that cause disease initiation and progression. Taken together, the current evidence suggests 

that methylation of iAs is a pathway for detoxification and for activation of the metalloid. Beyond 

this general understanding of the consequences of iAs methylation, many questions remain 

unanswered. Our knowledge of metabolic targets for MAsIII and DMAsIII in human cells and 

mechanisms for interactions between these arsenicals and targets is incomplete. Development of 

novel analytical methods for quantitation of MAsIII and DMAsIII in biological samples promises 

to address some of these gaps. Here, we summarize current knowledge of the enzymatic basis 

of MAsIII and DMAsIII formation, the toxic actions of these metabolites, and methods available 

for their detection and quantification in biomatrices. Major knowledge gaps and future research 

directions are also discussed.
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Introduction

As organisms evolved in the iAs-rich environment of the primordial sea, enzymatically 

catalyzed methylation of inorganic arsenic (iAs) developed as a mechanism to cope with 

the presence of this toxic metalloid (Zhu et al. 2014). Although other mechanisms mediate 

iAs detoxification in other branches of the tree of life, iAs methylation plays a dominant 

role in detoxification of iAs in complex organisms, including mammals. Methylation of 

iAs produces monomethylated (MAs), dimethylated (DMAs) and trimethylated (TMAs) 

arsenicals that contain either pentavalent arsenic (AsV) or trivalent arsenic (AsIII). Thus, 

in humans and many other mammals, exposure to iAs is associated with excretion of 

iAs and methylated arsenicals in urine (Thomas et al. 2001, 2007). Based on studies 

in microorganisms, a pathway for production of pentavalent and trivalent methylated As 

species during iAs methylation was first postulated by Challenger (Challenger 1947). Since 

then, the presence of MAsIII, MAsV, DMAsIII, DMAsV, TMAsIII, and trinethylarsine oxide 

(TMAsVO) has been confirmed in in vitro and animal models used in laboratory studies, as 

well as in urine and tissue samples collected in human cohorts.

The classification of iAs methylation as a process for detoxification of iAs is based on 

the fact that the methylated metabolites of iAs are rapidly excreted from the body and 

that deficiencies in mechanisms responsible for the formation of these metabolites are 

associated with the accumulation of iAs in tissues and with enhanced toxicity (Chen et 

al. 2011; Douillet et al. 2017; Drobna et al. 2009; Huang et al. 2018a, 2018b; Thomas 

et al. 2001; Vahter and Concha 2001; Yokohira et al. 2010, 2011). In addition, the 

methylated pentavalent arsenicals (MAsV, DMAsV, and TMAsVO) are less acutely toxic 

than iAs species that are typically associated with environmental exposures, trivalent 

arsenite (iAsIII) and pentavalent arsenate (iAsV) (Sarkar and Paul 2016; Vahter 2002; Vahter 

and Concha 2001). However, many laboratory studies show that methylated metabolites of 

iAs containing AsIII, specifically MAsIII and DMAsIII, are significantly more toxic than 

their pentavalent counterparts and are also more toxic than either iAsV or iAsIII. The first 

side-by-side comparison of the toxicities of trivalent and pentavalent iAs and methylated 

arsenicals in primary human and animal cells and cell lines derived from tissues that are 

targets for iAs exposure found that MAsIII to be the most toxic arsenical in all cell types 

(Styblo et al. 2000). Furthermore, DMAsIII is as toxic as iAsIII in some of these cell types. 

Additional work from this and other laboratories has identified MAsIII and DMAsIII as 

the most toxic and reactive metabolites in the pathway for iAs methylation, suggesting 

that, although methylation promotes clearance of As from the body, the formation of these 

metabolites also contributes to the adverse effects associated with iAs exposure.

Laboratory research of the metabolism and biological effects of the methylated trivalent 

arsenicals has been historically hampered by limited availability of pure and stable MAsIII 

and DMAsIII. Until recently, these compounds were chemically synthesized only in a few 
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specialized academic laboratories. Among these, the laboratories of Dr. William Cullen 

(University of British Columbia) and Dr. Chris Le (University of Alberta) have been the 

main sources of MAsIII and DMAsIII for research laboratories worldwide. These laboratories 

have played a key role in supporting the toxicological research of MAsIII and DMAsIII. 

The supply of pure methylated trivalent arsenicals from these laboratories also supported 

development of novel methods for chemical analysis of MAsIII and DMAsIII. These methods 

allow for differential, oxidation state specific analysis of iAs and its methylated metabolites 

in many biological matrices. However, the rapid oxidation of MAsIII and DMAsIII to MAsV 

and DMAsV in oxic conditions remains a major challenge in determination of arsenic 

valency in samples collected in laboratory or field studies.

The goals of this review are to summarize information on mechanisms and functions of 

the enzymatic methylation of iAs, to examine evidence on formation and toxic effects of 

MAsIII and DMAsIII in biological systems, and to evaluate methods for the analysis of these 

arsenicals in biological matrices. Knowledge gaps and future research directions are also 

discussed.

Origins and mechanisms of enzymatically catalyzed methylation of iAs

Enzymatically catalyzed methylation of iAs is one of several adaptations that allows cells 

to thrive in environments that contain iAs. The role of iAs methylation is best understood 

in the context of all processes involved in arsenic metabolism at the cellular level. Figure 

1 is a conceptual model for cellular metabolism of arsenic that includes pathways for entry 

and exit of this metalloid from the cell and pathways for chemical transformations of arsenic 

atoms that occur during their residence in the cell (Thomas 2007). Over the past several 

decades, research has characterized the molecular machinery involved in these processes and 

identified the genes that encode relevant transporters and enzymes. Thus, it is now possible 

to relate steps in cellular arsenic metabolism to functions of specific gene products and to 

explore phylogenetic relations among these genes as they appear in organism in all branches 

of the tree of life. As part of our consideration of the roles for arsenic methyltransferases, 

we begin with an overview of the biochemical processes that contribute to the cellular 

metabolism of arsenic.

Origins of iAs methylation

Nearly four billion years ago, primitive organisms in the primordial ocean adapted to 

the presence of iAs by acquisition of an array of genes that encode: (a) transmembrane 

transporters that facilitated arsenic fluxes, (b) oxidases and reductases that catalyzed 

reactions that altered the valence state of arsenic, and (c) methyltransferases that catalyzed 

reactions that coupled methyl groups to an arsenic atom (Zhu et al. 2014). High water 

temperature, low pH, and anoxic conditions produced higher levels of iAsIII in the 

primordial ocean. Primitive cells limited accumulation of iAs through development of 

transmembrane proteins that facilitated iAsIII efflux. Rising atmospheric oxygen levels 

during the Great Oxidation Event starting about 2.4 billion years ago oxidized iAsIII in 

the primordial ocean and increased levels of iAsV. Because transmembrane transporters 

were selective for iAsIII efflux, cells acquired iAsV reductases that catalyzed reduction of 
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iAsV to iAsIII. The integration of existing pathways for detoxification of trivalent arsenicals 

with newly developed processes such as arsenate reduction provided additional protection 

of organisms against arsenic under a wider array of environmental conditions (Chen et al. 

2020). Similarly, the transfer of genes encoding methyltransferases that catalyzed addition 

of methyl groups to an arsenic atom has been interpreted as a critical step in the adaptation 

of organisms to the presence of arsenic in the environment that facilitated the spread of 

organisms into arsenic-rich environments during the late Archean Eon and Proterozoic Eon 

(Chen et al. 2017a, b). In a broader context, repeated independent horizontal gene transfers 

among bacteria and from bacteria to eukaryotes provided organisms with the molecular 

machinery needed for tolerance to iAs present in the environment (Palmgren et al. 2017).

A global survey of soil microbiomes found a high frequency of occurrence of genes 

encoding an arsenic methyltransferase, suggesting an important role for arsenic methylation 

in the biogeochemical cycle for arsenic (Dunivin et al. 2019). Methylation of iAs by soil 

microbes likely fulfills multiple roles in the adaptation of life to environments contaminated 

with this toxic metalloid. For some microorganisms, production of monomethylarsonic 

acid (MAsV) may act as an antibiotic and confer a selective advantage against competing 

microbial species (Li et al. 2016; Chen et al. 2019; Garbinski et al. 2020). In other 

species, formation of trimethylarsine (TMAsIII), a volatile species that is released into the 

environment, not only reduces the celluar burden of arsenic but also contributes to global 

cycling of arsenic (Huang et al. 2016; Chen et al. 2014). The widespread occurrence of 

the capacity to form methylated metabolites of iAs in higher organisms, including humans, 

makes understanding the molecular basis of arsenic methylation central to understanding the 

risk associated with long-term exposure to iAs.

Enzymatic basis of iAs methylation

Studies in microorganisms in the nineteenth century suggested that methylated arsenicals 

were products of iAs metabolism (Cullen 2008). Continuing work on iAs methylation in 

microorganisms by Frederick Challenger and his associates lead to a postulated reaction 

scheme in which reduction of pentavalent arsenic to trivalency is followed by an oxidative 

methylation reaction that produces a methylated product containing pentavalent arsenic 

atom (Challenger 1947, 1951). As shown in Fig. 2, the Challenger scheme is a sequence 

of reactions in which reduction of arsenic from pentavalency to trivalency alternates with 

oxidation methylation of an arsenic atom.

The Challenger scheme for iAs methylation significantly influenced the study of 

biomethylation processes because it made specific predictions about the formation of 

intermediates that contained either AsV or AsIII and focused attention on development of 

analytical methods that used the oxidation state of arsenic as a discriminating factor in 

the separation and quantitation of arsenicals in environmental and biological materials. The 

postulated existence of methylated intermediates containing arsenic in either valence state 

also lead to extensive studies of the effect of arsenic’s valency in methylated arsenicals 

on the toxic potency of these compounds. Finally, the Challenger scheme also served 

as a framework for interpretation of data on putative mechanisms by which arsenic 

methyltransferase catalyzes reactions that methylate arsenic atoms. Evaluating putative 
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mechanisms for enzymatic catalysis in the context of the Challenger scheme also helped to 

identify chemically plausible pathways for methylation (Cullen 2014). As discussed below, 

recent evidence suggests that a pathway for methylation that does not involve obligatory 

oxidation of arsenic may be sufficient to describe the sequence of reactions catalyzed by 

arsenic methyltransferases.

Isolation and characterization of an arsenic methyltransferase from a mammalian source 

originates in early work that demonstrated that methylation of iAs in rat liver cytosol 

in an in vitro system is supported by an addition of glutathione (GSH) and S-adenosyl-

L-methionine (AdoMet) (Buchet and Lauwerys 1985; Hirata et al. 1989). Later studies 

of iAs methylation in rat liver cytosol in an in vitro system characterized concentration 

dependencies for GSH and AdoMet in arsenic methylation reactions and showed that 

inhibitors of other non-DNA methyltransferases did not affect iAs methylation in this in 

vitro system, suggesting the reaction was catalyzed by a novel methyltransferase (Styblo 

et al. 1996). Because a simple in vitro system containing rat liver cytosol rapidly converts 

iAs to methylated species, purification of arsenic methyltransferase used rat liver as the 

starting material (Lin et al. 2002). This effort resulted in the identification of a ~43 kDa 

protein that catalyzed AdoMet-dependent methylation of substrates containing trivalent 

arsenic (iAsIII or MAsIII). This methyltransferase was initially identified as the product 

of the previously annotated cyt19 gene. Following its cloning, the gene was annotated 

as Arsenic (+ 3 oxidation state) MethylTransferase (AS3MT) (Walton et al. 2003; https://

www.genenames.org). Characterization of rat liver As3mt led to identification of genes 

encoding closely related proteins in genomes of higher organisms ranging from sea squirts 

to humans (Thomas et al. 2007). Notably, As3mt orthologs in many higher organisms 

share a suite of conserved cysteine residues and contain sequence motifs that are common 

in methyltransferases that catalyze reactions that methylate proteins or small molecules. 

Early work showed that ArsM genes in microorganisms are orthologs of As3mt gene found 

in higher organisms and that expression of ArsM genes in these organisms is associated 

with capacity to form methylated products from iAs and confers resistance to iAs-induced 

cytotoxicity (Qin et al. 2006).

Common features of arsenic methyltransferases

Our understanding of molecular aspects of enzyme-catalyzed iAs methylation derives from 

studies with products of both the mammalian As3mt and ArsM genes that encode a large 

family of iAsIII methyltransferases in archaea, bacteria, fungi, algae, and plants. From 

studies with these proteins, it has been possible to identify residues critical for catalysis, 

to elucidate the mechanisms used in methylation, and to explore the role of oxidation–

reduction reactions in arsenic methylation.

Function of conserved cysteinyl residues

The predicted amino acid sequences of arsenic methyltransferases from As3mt and ArsM 
gene families contain motifs commonly found in non-DNA methyltransferase (Thomas 

and Rosen 2013). In particular, locations of cysteinyl residues in these protein sequences 

are strongly conserved. The role of the conserved cysteinyl residues in catalytic function 
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has been evaluated by their replacement with other amino acids. In recombinant rat 

As3mt, replacement of the conserved cysteinyl at position 156 (C156) with serine (C156S) 

eliminates its capacity to catalyze iAsIII methylation (Li et al. 2005). Systematic replacement 

of four conserved cysteinyl residues in human AS3MT (C150, C206, C226, C250) with 

serine affects structure and function of the modified proteins (Song et al. 2009). The 

secondary structures of C156S, C206S, and C250S mutant proteins differ from that of 

wild-type protein and are associated with a loss of capacity to catalyze iAsIII methylation. 

In contrast, the secondary structure and catalytic capacity of the C226S mutant do not differ 

from those of the wild-type protein. Functions of other cysteinyl residues in human AS3MT 

have been examined (Song et al. 2011). The C72S mutant protein display structural changes 

and do not catalyze iAsIII methylation. Structural changes in C334S and C360S mutant 

proteins lead slower turnover rates, suggesting that structural modifications affect efficiency 

of methylation reactions. Other cysteine to serine mutants (C32S and C61S) that do not 

catalyze iAsIII methylation could methylate MAsIII (Li et al. 2013a, b). By comparison, 

replacement of C156 or C206 lead to a complete loss of catalytic activity. Altered catalysis 

by these mutants provides evidence on the location and number of cysteinyl residues that 

bind iAsIII and MAsIII acid to the enzyme. Formation of critical disulfide bonds in human 

AS3MT affects its catalytic function (Wang et al. 2014). Reduction of a C250–C32 disulfide 

bond before iAsIII methylation alters the enzyme’s secondary structure. Thus, formation 

and cleavage of disulfide bonds between critical cysteinyl residues affects the binding of 

arsenicals to the active site and changes the secondary structure around the active site.

Additional insights into the role of cysteinyl residues in the structure and function of 

arsenic methyltransferases come from studies with ArsM. In particular, determination of the 

3D structure of CmArsM from the thermophilic eukaryotic alga Cyanidioschyzon merolae 
sp. 5508 (CmArsM) informs our understanding of the relation between enzyme structure 

and function for both ArsM and As3mt arsenic methyltransferases (Ajees et al. 2012). 

Replacement of any of the conserved cysteinyl residues (C72, C174, and C224) in CrArsM 

abolishes capacity to methylate iAsIII; however, the replacement of C72 yields an enzyme 

that can methylate MAsIII (Marapakala et al. 2012). Studies of the binding of aromatic 

organic arsenicals phenylarsenite and reduced roxarsone that contain trivalent arsenic to 

CrArsM show that both bound to thiol moieties in C174 and C224, suggesting that MAsIII 

would also be held in a bidentate structure with these residues. The structure of the enzyme-

organic arsenical complex includes a C44 as a conserved cysteinyl residue that forms a 

disulfide bond with C72 (Marapakala et al. 2015). As discussed below, formation of the 

C44–C72 disulfide bond may play a crucial role in binding of substrates to the enzyme.

The relation between conservation of cysteinyl residues and substrate specificity in arsenic 

methyltransferases has been examined using ArsM from the fungus Aspergillus fumigatus 
(Chen et al. 2017a, b). Although ArsM genes from most organisms encode four conserved 

cysteinyl residues into an enzyme that accepts either iAsIII or MAsIII as a substrate, the 

four arsM genes in the Aspergillus fumigatus genome encode ArsMs that conserves only the 

second, third and fourth cysteinyl residues. This loss affects substrate specificity of the gene 

products. For example, MAsIII but not iAsIII is a substrate for methylation by the fungal 

ArsM1. Existence of arsenic methyltransferases that discriminates among substrates could 

reflect different selective pressures that fine-tune substrate specificity and the central role 
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of cysteinyl residues in control of enzyme function. The search for the minimal number of 

cysteinyl residues required for its function as an arsenic methyltransferase has been extended 

using BlArsM from Bacillus sp. CX-1, an arsenic methyltransferase with low sequence 

similarities (≤ 39%) to other ArsMs (Huang et al. 2018). Only two cysteinyl residues 

in this enzyme must be conserved for catalytic function; replacement of four of the six 

cysteinyl residues produces an enzyme that uses either iAsIII or MAsIII as substrates. The 

availability of these structurally diverse enzymes with similar catalytic functions should aid 

in understanding the role of cysteinyl residues in arsenic methyltransferases.

Mechanisms for arsenic methylation

Evaluating the role of cysteinyl residues in the catalytic function of arsenic 

methyltransferases provides insights into molecular processes involved in binding of 

reactants to the enzyme and transfer of a methyl group from AdoMet to an arsenic atom. 

Early work showed that endogenous reductants (e.g., thioredoxin/thioredoxin reductase/

NADPH) support the activity of recombinant rat As3mt and that addition of GSH to 

reaction mixtures increases the rate of iAsIII methylation (Waters et al. 2004). The same 

effect of GSH on the rate of iAsIII methylation is observed in studies with recombinant 

human AS3MT and the common polymorph AS3MT(M287T) (Ding et al. 2012). Additional 

support for the role of GSH in the AS3MT-catalyzed methylation of iAsIII comes from a 

report that a complex of iAsIII with GSH (i.e., iAsIII-triglutathione) is the preferred substrate 

for this enzyme (Hayakawa et al. 2005). Notably, studies of protein fluorescence found 

that rates of binding of iAsIII or MAsIII to the active site of CmArsM increases in the 

presence of GSH (Marapakala et al. 2012). A role for arsenic-GSH complexes as substrates 

for methylation reactions is consistent with the presence of higher levels of GSH in cellular 

environments and the facile in vivo formation of arsenic-GSH complexes (Delnomdedieu et 

al. 1995).

Analysis of the order of binding of iAsIII and AdoMet to arsenic methyltransferases found 

that AdoMet is the substrate first bound to human AS3MT; this binding is associated with 

conformational changes (Wang et al. 2012). In CmArsM, AdoMet binding also changes 

protein conformation and positions this methyl donor for transfer to arsenic (Ajees et al. 

2012). Mutational analysis of residues in human AS3MT demonstrates that a hydrogen bond 

network around the AdoMet binding site is required for catalytic activity (Li et al. 2013a).

Enzymatic catalysis and oxidation–reduction cycling

Information about the role of critical residues in the binding of substrates, changes in 

protein conformation, and structural data can be integrated to develop a model for enzyme-

catalyzed methyl group transfer from AdoMet to arsenic. The current model builds on a 

scheme proposed less than a decade ago (Dheeman et al. 2014) that has been extended 

by studies with enzymes from diverse sources. Analysis of CmArsM identifies a structure 

in which iAsIII is 3-coordinately bound to conserved cysteinyl residues and the AdoMet 

binding site is occupied (Packianathan et al. 2018a). Here, AdoMet-induced conformational 

changes bring C44 close to C174 and C224 and permits 3-coordinate binding of iAsIII to 

cysteinyl residues. In this state, iAsIII is bound in proximity to AdoMet’s methyl group; this 

conformation facilitates transfer of the methyl group to the trivalent arsenic atom. Notably, 

Stýblo et al. Page 7

Arch Toxicol. Author manuscript; available in PMC 2022 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the bound product of the first methylation step is MAsIII which can be the substrate for 

addition of another methyl group to the trivalent arsenic atom. Kinetic analysis shows that 

the relatively slower rate of the second methylation step reflects the slow reorientation of the 

AdoMet binding site to its initial position (Packianathan et al. 2018b). Upon reorientation, 

binding of AdoMet to this site starts the sequence steps that convert MAsIII to DMAsIII.

The alternate scheme for enzymatically catalyzed methylation of arsenic shown in Fig. 3 

differs materially from the Challenger scheme. It lacks an obligatory cycle of oxidation and 

reduction of arsenic atoms during addition of methyl groups. Current kinetic and structural 

studies with arsenic methyltransferases provide evidence that these enzymes avidly bind 

AsIII and that the addition of a methyl group to bound arsenic does not result in its oxidation. 

Rather, use of a disulfide bond cascade using conserved cysteinyl residues functions to 

maintain bound arsenic as a trivalent species. In this model, the appearance of methylated 

arsenicals containing AsV is a secondary process, requiring the oxidation of the AsIII in 

methylated species that are the intermediates in enzymatically catalyzed methylation. Thus, 

the current model is sufficient to account for products containing AsIII or AsV without redox 

cycling of arsenic required by the Challenger scheme. The lack of redox cycling of arsenic 

during the methylation process eliminates the need for an additional reduction step in the 

pathway. The reduction of AsV had been posited to depend on endogenous reductants (e.g., 

GSH) or unique reductases that catalyze this step (Delnomdedieu et al. 1995; Zakharyan and 

Aposhian 1999; Zakharyan et al. 2001). If catalysis by arsenic methyltransferases does not 

generate intermediates that contain AsV, it is likely that the presence of these species is a 

result of spontaneous oxidation of the trivalent intermediates formed during the enzymatic 

reaction. Post synthesis oxidation of trivalent arsenic present in methylation products could 

account for the occurrence of methylated arsenicals containing either trivalent or pentavalent 

arsenic in tissues and excreta (Currier et al. 2011a, b).

Roles of enzymatic methylation in metabolism and toxicity of iAs

There is a dichotomy at the center at any discussion of the significance of iAs methylation. 

The dichotomy is supported by the well-documented facts that: (a) conversion of iAs into 

methylated metabolites accelerates the rate of whole body clearance of arsenic, and (b) the 

methylated trivalent metabolites, specifically MAsIII and DMAsIII, are more reactive and 

toxic than inorganic arsenic. Thus, promotion of arsenic excretion through formation of 

methylated metabolites can be termed a detoxification process. Conversely, formation of 

more toxic species, MAsIII and DMAsIII, through methylation can be termed an activation 

or toxication process. In the following paragraphs, the dichotomous roles of iAs methylation 

are reviewed.

iAs methylation as a detoxification process

Studies in humans and other species illustrate the role of iAs methylation in the clearance 

of arsenic. Early studies in volunteers and workers who ingested or inhaled iAs found that 

mono- and di-methylated arsenical were quickly excreted in urine (Crecelius 1977; Smith 

et al. 1977). In volunteers who ingested 500 μg of arsenic as iAsIII, MAsV, or DMAsV, the 

urinary excretion rate for arsenic and the cumulative amount of arsenic excreted in urine 
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is affected by the ingested form (MAs > DMAs > iAs) (Buchet et al. 1981). The form of 

arsenic ingested also affects the extent of metabolism. About 75% of arsenic ingested as 

iAsIII is excreted in urine as MAs or DMAs; about 13% of ingested MAsV is excreted as 

DMAs. In contrast, ingested DMAsV is excreted in urine without additional methylation.

Further insights into the role of arsenic methylation in the clearance of arsenic come from 

studies that examined patterns for urinary excretion of arsenic-containing species after oral 

administration of mono- and di-methylated species containing either trivalent or pentavalent 

arsenic to female B6C3F1 mice. Orally administered MAsV is rapidly cleared in urine with 

less than 10% of the administered arsenic converted to a dimethylated metabolite before 

excretion (Hughes et al. 2005). In contrast, MAsIII is highly retained in tissues; more than 

90% of arsenic excreted in urine is a dimethylated metabolite. Related studies in female 

B6C3F1 mice that received single oral doses of DMAsV or DMAsIII found that the oxidation 

state of arsenic affects patterns of metabolism and rates of urinary clearance (Hughes et 

al. 2008). After DMAsV treatment, a rapid rise and fall in arsenic concentrations in tissues 

accompanies appearance of arsenic in urine. Compared to DMAsV, treatment with DMAsIII 

produces higher levels of arsenic in tissues. Notably, treatment with either dimethylated 

arsenical results in the presence of TMAsVO in urine, suggesting that either compound 

was a substrate for addition of a third methyl group. These studies demonstrated that the 

oxidation state of arsenic in methylated arsenicals affects the rate of whole body clearance 

with faster whole body clearance of arsenic after administration of MAsV or DMAsV. In 

addition, the oxidation state of arsenic in a methylated arsenical affects the likelihood that it 

will serve as a substrate for additional methylation reactions. For example, in mice MAsIII 

is readily converted to dimethylated product while MAsV is not extensively metabolized. 

Because the increased rate of clearance of methylated arsenical species, especially those 

containing AsV, has a salutary effect by promoting the excretion of arsenic, methylation of 

iAs can be regarded as a detoxification process. Additional evidence for the detoxification 

function of iAs methylation has been obtained in studies using As3mt knockout mice. 

The metabolism of iAs in these mice is characterized by slow whole body clearance and 

accumulation of iAs in tissues (Drobna et al. 2009; Hughes et al. 2010). The As3mt−/− mice 

are also more susceptible to As-induced toxicity than mice wild-type mice (Yokohira et al. 

2011; Dodmane et al. 2013).

iAs methylation as an activation process

The Challenger scheme for iAs methylation that posits formation of methylated trivalent 

and pentavalent arsenicals has inspired many laboratory studies that compared effects of 

these intermediates on a wide range of biological end-points, using both in vitro and in 

vivo models. Attempts have also been made to assess roles of the methylated arsenicals 

containing AsIII or AsV as potential mediators of adverse effects associated with iAs 

exposure in human populations. The following sections summarizes reports of these studies.

Cytotoxicity of methylated trivalent arsenicals

Studies of the comparative cytotoxicity of methylated arsenicals are based in part on 

studies of the lethality of inorganic and methylated arsenicals in rodents. In acute lethality 
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assays (LD50), both MAsV and DMAsV are less toxic than iAsV and iAsIII (Yamauchi and 

Fowler 1994). Cytotoxicity studies affirm that pentavalent methylated arsenicals, MAsV and 

DMAsV, are much less toxic for cultured cells than inorganic arsenicals. In addition, early 

work showed that oxidation state of arsenic affects toxicity of inorganic arsenicals; iAsIII 

was more cytotoxic than iAsV (Fischer et al. 1985, 1989; Bertolero et al. 1987). One of 

the first side-by-side comparisons of the cytotoxicity of arsenicals containing AsIII or AsV 

used primary and transformed cells derived from liver, a major site for iAs methylation, and 

from skin, lung, and urinary bladder that are targets for arsenic-induced tumors (Styblo et al 

2000). This study found that the methylated trivalent arsenicals (MAsIII and DMAsIII) are 

more cytotoxic than their pentavalent counterparts and that MAsIII is more cytotoxic than 

iAsIII or iAsV. In addition, cytotoxicity of DMAsIII approaches or exceeds those of iAsIII 

and iAsV. Other studies with these cell types also found MAsIII to be more cytotoxic than 

iAsIII (Dodmane et al. 2013; Hirano et al. 2004; Petrick et al. 2000; Vega et al. 2001).

The cytotoxicity of MAsIII has been examined in other cell types, including leukemia 

NB4, Jurkat, and Namalwa cells (Chen et al. 2003), differentiated 3T3-L1 adipocytes 

(Walton et al. 2004), rat insulinoma (INS-1) cells (Dover et al. 2018), isolated murine 

pancreatic islets (Douillet et al. 2013), cultured human neurons, astrocytes, microglia, and 

brain microvascular endothelial cells (Yoshinaga-Sakurai et al. 2020), JEG-3 placental cells 

(Meakin et al. 2020), human monoblastoid (U937), osteosarcoma (HOS) and neuroblastoma 

(SK-N-SH) cells, Chinese hamster lung (V79–4) cells (Styblo et al. 2002). Without 

exception, these studies found MAsIII to be more cytotoxic than iAsIII. Notably, some of 

these studies found DMAsIII to be more cytotoxic than iAsIII.

Genotoxicity of methylated trivalent arsenicals

The genotoxic potential of trivalent methylated arsenicals has been assessed using in vitro 

systems containing naked viral (Phi 174 RF1) DNA and human peripheral lymphocytes 

(Mass et al. 2001). These investigators found that incubation with relatively high 

concentrations of MAsIII and DMAsIII caused nicks in viral DNA. In contrast, DNA nicking 

does not occur after incubation with iAsIII, iAsV or the methylated pentavalent arsenicals. 

Because DNA nicking does not require addition of chemical or enzymatic activation system, 

MAsIII and DMAsIII likely interacts directly with DNA. Both MAsIII and DMAsIII are 

tenfold more potent than iAsIII in causing DNA damage in cultured human lymphocytes. 

Damage to DNA by MAsIII and/or DMAsIII has also been reported in other studies. 

Although micromolar concentrations of MAsIII or DMAsIII induce oxidative DNA damage 

in cultured HeLa cells, DMAsIII alone causes DNA breaks in supercoiled and circular PM2 

DNA (Schwerdtle et al. 2003). MAsIII also significantly increases micronuclei frequency 

in human peripheral lymphocytes, suggesting aneuploidogenic properties (Colognato et al. 

2007).

The potential of methylated trivalent arsenicals to induce chromosomal aberrations, 

mutagenicity, sister chromatid exchange (SCE), and prophage inductions has also been 

examined (Kligerman et al. 2003). Both MAsIII and DMAsIII induce chromosomal 

aberrations and are potent clastogens in human lymphocytes and mutagens in mouse 

lymphoma cells. Neither MAsIII nor DMAsIII are potent SCE or prophage inducer. These 
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findings suggest that DMAsIII and MAsIII act primarily as clastogens and are candidates for 

the ultimate genotoxic form of arsenic. In Chinese Hamster Ovary (CHO-9) cells, DMAsIII 

and MAsIII are also more genotoxic than DMAsV, MAsV, or iAs (Dopp et al. 2004). In 

this study, the high genotoxic potency of DMAsIII and MAsIII has been linked to a higher 

uptake and retention of DMAsIII and MAsIII compared to the methylated pentavalent and 

iAs species.

Cell transformation and carcinogenesis

The potential of methylated arsenicals to induce cell transformation and carcinogenesis 

has also been evaluated. UROtsa cells, a non-tumorigenic cell line derived from human 

urothelial cells, acquire the hallmarks of cancer cells when exposed to a low level of MAsIII 

(0.05 μM) for up to 52 weeks (Bredfeldt et al. 2006). MAsIII-induced changes in DNA 

methylation patterns may contribute to development of the tumorigenic phenotype (Wnek 

et al. 2010). In SV-HUC-1 cells, an immortalized human uroepithelial cell line, treatment 

with iAsIII or MAsIII produces changes in gene expression patterns that may be linked 

cellular transformation (Su et al. 2006). Notably, the concentration for iAsIII that induces 

these changes in gene expression are several-fold higher than the concentration of MAsIII 

that alter gene expression.

Only a few studies have evaluated the carcinogenicity of methylated trivalent arsenicals in 

animals. The transplacental carcinogenicity of MAsIII has been demonstrated in pregnant 

CD-1 mice that drank water-containing MAsIII at 0 (control), 12.5, or 25 parts per million 

(ppm) from gestational days 8 to 18 (Tokar et al. 2012). Mice so exposed in utero were 

evaluated for tumor occurrence up to two years of age. In female offspring, dose-related 

increases in total epithelial uterine tumors, oviduct hyperplasia, adrenal cortical adenoma, 

and total epithelial ovarian tumors were found. Male offspring showed dose-related 

increases in hepatocellular carcinoma, adrenal adenoma, and lung adenocarcinoma. Notably, 

patterns of proliferative lesions in mice exposed to MAsIII during gestation resemble 

those found in mice exposed to iAsIII during gestation (Waalkes et al. 2007). Notably, 

2-year feeding studies with a MAsIII-amended diet identified intestinal tract alterations as 

a common response in male and female Fischer F344 rats and B6C3F1 mice (Arnold et 

al. 2003). However, at the dosage levels tested, neither species show evidence of treatment-

related neoplasia. The low toxic and carcinogenic potency of MAsIII in mice may be related 

to its rapid whole body clearance.

Additional, albeit indirect, evidence on the role of the valence state of arsenic on the toxicity 

of methylated arsenicals comes from studies of toxic and carcinogenic effects of DMAsV in 

the urinary bladder of the rat. High dose levels studies in rats show that DMAsV treatment 

produces a spectrum of changes in the uroepithelium that culminates in carcinogenic 

transformation in this organ (Arnold et al. 2006). Notably, analysis of urine from rats treated 

with dimethylthioarsinic acid identified DMAsIII and TMAsVO as metabolites (Cohen et 

al. 2002; Adair et al. 2007). These findings suggested production of DMAsIII, a toxic and 

reactive species, caused requisite tissue injury needed for cellular transformation.
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Enzyme inhibition

Early work showed that MAsIII or DMAsIII were more potent inhibitors of the purified 

yeast GSH reductase than iAsIII (Styblo et al. 1997). Similarly, MAsIII acid is a more potent 

inhibitor than iAsIII of the DTNB reductase activity of purified thioredoxin reductase or 

in cultured rat hepatocytes (Lin et al. 1999, 2001). Notably, after 3-h incubation, MAsIII 

is methylated by rat hepatocytes to DMAs and thioredoxin reductase activity is almost 

completely recovered, suggesting that the dimethylated product does not inhibit this enzyme. 

iAsIII and MAsIII also inhibit activities of purified bovine glutathione peroxidase and 

equine glutathione S-transferase (Chouchane and Snow 2001). MAsIII is a more potent 

inhibitor of the activity of purified porcine pyruvate dehydrogenase than iAsIII; parenterally 

administered MAsIII also inhibits pyruvate dehydrogenase activity in hamster kidneys 

(Petrick et al. 2001). When the co-factor is reduced, activities of pyruvate dehydrogenase 

and α-ketoglutarate dehydrogenase are inhibited by trivalent arsenicals (Bergquist et al. 

2009). Here, the order of potency of these compounds is MAsIII > iAsIII > > DMAsIII. 

iAsIII inhibits complexes I and II in the inner membrane of isolated mitochondria; this 

inhibits electron transport chain, decreases mitochondrial ATP content, and increases ROS 

formation (Hosseini et al. 2013). A recent study found that MAsIII is more potent than iAsIII 

as an inhibitor of oxygen consumption rate and maximal respiration in INS-1 832/13 β-cell, 

suggesting that MAsIII also inhibits mitochondrial electron transport (Dover et al. 2018).

Disruption of cellular processes and signaling pathways

There is evidence for roles of MAsIII and DMAsIII in disruption of mechanisms involved 

in regulation of cellular processes, including inhibition of key signaling pathways. In a 

human urothelial cells line, trivalent arsenicals have been shown to affect activation of 

AP-1, one of the major transcription factors in mammalian cells (Drobna et al. 2003). 

MAsIII and DMAsIII are more potent than iAsIII in activating AP-1 and inducing its 

binding to DNA. MAsIII is also more potent than iAsIII in inducing the AP-1-dependent 

gene transcription in cells transiently transfected with an AP-1-dependent promoter-reporter 

construct. Because both MAsIII and DMAsIII induce phosphorylation of c-Jun, a component 

of the AP-1-DNA binding complex, and of extracellular signal-regulated kinase (ERK), the 

authors hypothesize that activation of an ERK-dependent signal transduction pathway is 

responsible for AP-1 activation in these cells.

The methylated arsenicals containing trivalent arsenic also disrupt pathways that control 

insulin release and action. A 48-h exposure to low concentrations of either MAsIII or 

DMAsIII (IC50 ≤ 100 nM) inhibits glucose-stimulated insulin release by isolated mouse 

pancreatic islets (Douillet et al. 2013). MAsIII also inhibits insulin secretion by cultured 

rat insulinoma INS-1 832/13 β cells that express human proinsulin (Dover et al. 2018). 

In both cell types, iAsIII is less potent than either MAsIII or DMAsIII as an inhibitor of 

insulin release. ATP production in mitochondria plays a key role in stimulation of glucose-

dependent insulin secretion from β cells (Fu et al 2013). Studies examining mitochondrial 

metabolism in cultured INS-1 832/13 β cells exposed to iAsIII, MAsIII or DMAsIII found 

that oxygen consumption rate, a surrogate for mitochondrial function, is inhibited by 

exposure to 2 μM iAsIII or 0.375–0.5 μM MAsIII. These results suggest that these arsenicals 

inhibit insulin secretion by disrupting mitochondrial metabolism in β cells. Other studies 
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using isolated pancreatic islets show that trivalent arsenicals also inhibit glucose stimulated 

Ca2+ influx, a process that triggers assembly and exocytosis of insulin-containing vesicles 

(Huang et al 2019). Not surprisingly, MAsIII or DMAsIII are more potent inhibitors of Ca2+ 

influx than iAsIII.

In related work, the effects of iAsIII and MAsIII acid on mitochondrial function have been 

examined in cultured rat aortic smooth muscle cells (Pace et al. 2016). In these cells, MAsIII 

acid is more cytotoxic than iAsIII. Treatment of cells with MAsIII decreases basal and 

maximal oxygen consumption rates and increases compensatory extracellular acidification 

rates, a proxy for glycolysis.

The methylated trivalent arsenicals have also been shown to disrupt insulin signaling and 

insulin-dependent processes in cultured cells from tissues that play essential roles in glucose 

metabolism. In cultured mouse hepatocytes stimulated with insulin, short-term exposure to 

iAsIII (0.5 μM) or MAsIII (0.2 μM) decreases cellular glycogen concentrations by inducing 

glycogen phosphorylase activity and inhibits activation of glycogen synthase (Zhang et 

al. 2017). Actions of both arsenicals are mediated through inhibition of insulin-dependent 

phosphorylation of protein kinase B/Akt, a factor involved in insulin-dependent regulation of 

glycogen phosphorylase and glycogen synthase activities. An earlier study found inhibition 

of insulin-dependent phosphorylation of Akt by iAsIII and MAsIII in cultured differentiated 

3T3-L1 adipocytes (Paul et al. 2007a). Here, inhibition of insulin signaling is associated 

with reduction of the insulin-stimulated glucose uptake. DMAsIII also inhibits insulin-

dependent glucose uptake in adipocytes but does not affect Akt phosphorylation or any 

other upstream step in the insulin-activated signaling cascade.

In sum, these studies suggest that methylated arsenicals containing trivalent arsenic are 

potent disruptors of cellular signaling and secretion processes. Disruption of energy 

metabolism through effects on mitochondrial metabolism may be central to these effects 

of arsenic exposure.

Immunotoxicity

Effects of methylated trivalent arsenicals on components of the immune system have been 

reported in several published studies. Exposure to low concentrations of iAsIII, MAsIII or 

DMAsIII stimulates secretion of the growth-promoting and proinflammatory cytokines in 

cultures of normal human keratinocytes (Vega et al 2001). Similarly, in cultured human 

bronchial epithelial cells, secretion of cytokines (e.g., IL-6, IL-8) induced by bacterial 

challenge is increased by concurrent exposure to MAsIII (Notch et al. 2015). MAsIII has 

also been shown to affect the pre-lymphoid development of cells in bone marrow (Ezeh 

et al. 2016). Addition of 50 nM MAsIII to medium of cultured mouse bone marrow pre-B 

cells inhibits phosphorylation of the transcription factor Signal Transducer and Activator of 

Transcription 5 and thereby blocks activation of the IL-7 signaling pathway required for 

pre-B cell maturation. Notably, a tenfold higher concentration of iAsIII in medium is needed 

to attain equivalent inhibition of cell maturation.

The effects of iAsIII, MAsIII, and DMAsIII exposures on inflammatory responses in Caco-2 

cells, a human intestinal epithelial cell line, have also been examined (Calatayud et al. 
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2014). Here, levels of biomarkers of inflammation are measured in cells and media 

after exposure for 2, 4, 6, and 24 h to trivalent arsenicals in presence or absence of 

lipopolysaccharide (LPS). Exposure to each trivalent arsenical alone decreases TNF-α 
mRNA levels and TNF-α levels in media and increases IL-8 mRNA levels and IL-8 levels in 

media. Here the potency of DMAsIII exceeds iAsIII and MAsIII. Co-exposure to LPS further 

enhances effects induced by trivalent arsenicals. A follow-up study has examined effects of 

trivalent arsenicals in co-cultures of Caco-2 cells and peripheral blood mononuclear cells 

with or without LPS treatment (Calatayud et al. 2015). In this co-culture, trivalent arsenicals 

increase IL-6, IL-8, and TNF-α secretion. LPS co-exposure potentiates the proinflammatory 

response compared to that produced by arsenicals alone. Co-exposure to DMAsIII or iAsIII 

and LPS also increases the permeability of intestinal monolayer.

Dysregulation of gene transcription

A large body of evidence generated by laboratory and population studies suggests that iAs 

exposure is associated with a widespread dysregulation of gene transcription. The affected 

genes are linked to a variety of adverse mechanisms and diseases, e.g., oxidative stress 

(Lantz and Hays 2006), cancer (Bailey et al. 2012; Huang et al. 2004; Valko et al. 2006; 

Yang and Frenkel 2002), metabolic disease (Martin et al. 2017; Venkatratnam et al. 2021), or 

inflammation (States et al. 2012). The effects of iAs exposure on gene expression have been 

linked, in part, to dysregulation of epigenetic mechanisms that regulate gene expression, 

e.g., DNA methylation (Bailey et al. 2013; Bailey and Fry 2014; Smeester et al. 2011), 

histone modification (Barr et al. 2009; Costa 2019; Eckstein et al. 2017), or changes in 

chromatin structure (Riedmann et al. 2015). However, the extent to which the methylated 

trivalent arsenicals contribute to these outcomes remains unclear. Design of most of the 

published studies carried out in in vitro or in vivo systems in which iAs is methylated, 

including human studies, cannot differentiate between effects of the parent compound and 

effects of its methylated metabolites.

Only few studies have been able to link dysregulation of gene transcription to specific 

arsenic species. Distinctive gene expression profiles have been reported in immortalized 

human uroepithelial cells SV-HUC-1 cells exposed to iAsIII or the methylated trivalent 

arsenicals (Su et al 2006). Gene expression profiles in iAsIII or MAsIII-exposed cells differ 

significantly from those in DMAsIII-exposed cells. Notably, profiles in iAsIII or MAsIII-

exposed cells resemble gene expression profiles in a tumorigenic uroepithelial cell line. 

These arsenicals appear to have distinctive effects on different epigenetic mechanisms. 

MAsIII has been found to be more potent than iAsIII in suppressing gene expression 

and protein level of Xeroderma pigmentosum complementation group C, a DNA damage 

recognition protein, in normal human skin fibroblast (Nollen et al. 2009). Suppression 

of phosphatase and tensin homolog protein (PTEN) in MAsIII-exposed normal human 

urothelial (UROtsa) cells may be a potential mechanism for malignant transformation of 

cells by this arsenical (Oliva-González et al. 2017). MAsIII also downregulates expression 

and activity of cytochrome P450 1A1 in human hepatocellular carcinoma (HepG2) cells 

(Elshenawy et al. 2017) which methylate arsenic (Drobna et al. 2006). Finally, exposure of 

K6/ODC mice to MAsIII in drinking water alters expression of multiple genes in the mouse 

skin; notably, an increased transcript abundance of Fosl1, Myc, and Rac1 oncogenes was 

Stýblo et al. Page 14

Arch Toxicol. Author manuscript; available in PMC 2022 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



detected (Delker et al. 2009). However, it is unclear if methylation of MAsIII contributes to 

gene transcription dysregulation in this mouse model.

Expression of microRNAs, short, non-coding RNAs that negatively regulate gene expression 

at the post-transcriptional level, can be altered by exposure to iAs (Beck et al. 2017, 2018; 

Cardoso et al. 2018; Ferragut Cardoso et al. 2020; Sollome et al. 2016). Inhibition of 

glucose-stimulated insulin secretion in iAsIII-exposed INS-1 832/13 cells alters expression 

of several microRNAs, including microRNA-146a, which is involved in regulation of beta-

cell function (Beck et al. 2019). Interestingly, MAsIII which is more potent than iAsIII as 

inhibitor of insulin secretion by INS-1 832/13 cells (Dover et al. 2018), does not alter 

microRNA-146a expression.

Methylated trivalent arsenicals as indicators of disease risk in humans cohorts

The efficiency of iAs methylation is one of the key factors that affect susceptibility to 

adverse effects of iAs exposure (Gamboa-Loira et al. 2017; Kuo et al. 2017; Tseng 2007). 

In humans exposed to iAs, risks of developing iAs-associated diseases have been linked to 

proportions of iAs and its methylated metabolites in urine, which are thought to reflect the 

efficiency of iAs methylation. The evaluation of the roles of MAsIII and DMAsIII in disease 

initiation and progression is difficult. These species can be easily oxidized to MAsV and 

DMAsV (Gong et al. 2001). Thus, it is unclear whether measurement of stable arsenicals 

in urine (iAsIII, iAsV, MAsV and DMAsV) provides germane information about levels of 

MAsIII and DMAsIII in tissues or excreta. As a consequence, most population-based studies 

report total MAs and DMAs levels in urine and do not attempt to determine the oxidation 

state of As in methylated metabolites.

MAsIII and DMAsIII levels have been determined in some studies that analyzed freshly 

collected urines. Results from these studies has made it possible to examine associations 

between levels of these arsenicals in urine and disease phenotypes. In 2005, Valenzuela 

and associates reported presence of MAsIII and DMAsIII in urine of residents of Zimapan, 

Hidalgo state, Mexico, who were chronically exposed to iAs (Valenzuela et al. 2005). In this 

cohort, AS3MT (Met287Thr) variant was associated with a higher risk of premalignant skin 

lesions, a common indicator of chronic iAs toxicity (Valenzuela et al. 2009). Notably, the 

fraction of urinary As present as MAs is higher in individuals carrying this polymorphism 

than in other participants. In affected individuals, MAsIII accounts for a significant portion 

of urinary MAs, suggesting that this trivalent arsenical contributes to the cancer risk 

associated with iAs exposure. Later studies in Zimapan and Lagunera link urinary DMAsIII 

concentration to prevalence of diabetes mellitus (Drobna et al. 2013), another disease 

associated with chronic exposure to iAs (Kuo et al. 2017; Maull et al. 2012). In this 

cohort, carriers of AS3MT (Met287Thr) variant had higher concentrations of DMAsIII in 

urine and a higher likelihood of a diagnosis of diabetes (Drobna et al. 2013). Presence 

of MAsIII and/or DMAsIII in human urine has also been reported in several other studies 

(Le et al. 2000a, b; Aposhian et al. 2000). To date, only one population-based study has 

examined associations between a disease risk and concentrations of tri- and pentavalent 

arsenicals in cells originated from a tissue targeted by iAs exposure, specifically urinary 

bladder. This study found positive associations between risk of diabetes and concentrations 
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of trivalent, but not pentavalent, arsenicals in exfoliated urothelial cells isolated from urine 

of the individuals exposed to iAs in drinking water (Currier et al. 2014).

Oxidation state-specific analysis of arsenic species in biological matrices

Understanding dose–response relations for toxic actions of iAs and its methylated 

metabolites depends upon the ability to accurately measure the levels of these compounds 

in complex biological matrices. Methods used for analysis of arsenic species in biological 

matrices have been reviewed (Francesconi and Kuehnelt 2004; Gong et al. 2002a; Hsu et al. 

2011; Reid et al. 2020). This section focuses on oxidation-state specific methods designed 

to differentiate among inorganic and methylated arsenic species that contain AsIII or AsV. In 

broad terms, these methods involve two steps: (a) separation of As species based on arsenic 

oxidation-state and methylation status and (b) quantification of elemental arsenic in the 

separated fractions using established optical spectroscopic techniques or mass spectrometry. 

Differences in the approaches used to separate arsenic species influence the sensitivity and 

specificity of these methods and the requirement for sample processing and/or extraction 

before analysis. Two widely used analytical approaches are: (a) liquid chromatographic (LC) 

separation of arsenic species on the basis of charge or size of analytes and (b) hydride 

generation (HG) in which arsenicals are reduced to volatile arsines, cryogenically trapped, 

and separated by boiling points. For both approaches, separated arsenicals can be detected 

by various mass-dependent or spectrophotometric methods. The following paragraphs 

describe advantages and limitations associated with LC- and HG-based techniques in context 

of studies in which these techniques were used.

HG-based techniques

Analysis of arsenic species using HG is carried out in several steps. In the first step, 

samples are treated with a strong reductant, typically sodium borohydride. This treatment 

converts iAs and mono-, di- and tri-methylated arsenic species to their respective volatile 

arsines which are characterized by different boiling points (b.p.): arsine (AsH3, b.p. − 

55 °C), methylarsine (CH3AsH2, b.p. 2 °C), dimethylarsine [(CH3)2AsH, b.p. 36 °C] and 

trimethylarsine [(CH3)3As, b.p. 52 °C]. The HG reaction mixture is passed through a 

gas–liquid separator and the gaseous phase containing arsines is carried in a stream of 

an inert gas (e.g., helium) into a cryogenic trap (CT), typically a U-tube filled with a 

chromatographic sorbent, that is submerged in liquid nitrogen. Cold-trapped arsines are 

sequentially volatized from the U-tube by controlled heating. Released arsines are then 

carried as separate fractions to an appropriate detector (Crecelius 1977). As summarized 

in Table 1, both optical and mass spectrometers have been used to detect and quantify 

elemental arsenic present in the arsines produced by HG.

The original method for As speciation by HG used a strongly acidic solution (pH ~ 1) to 

generate arsines from both tri- and pentavalent iAs, MAs, and DMAs (Ng et al. 1998). 

Two methods are currently used for oxidation-state specific analysis. Both methods require 

two aliquots of a single sample for complete analysis. In the first method, arsines from 

both tri- and pentavalent arsenicals are generated from one sample aliquot at pH 1. The 

second aliquot undergoes HG at pH 6. Under these conditions, arsines are generated only 
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from trivalent arsenicals. Concentrations of pentavalent arsenicals are then determined as 

the difference between the first and second measurement (Del Razo et al. 2001; Devesa et 

al. 2004). In the second method, trivalent arsenicals are measured in one sample aliquot 

after HG at pH 6. The second aliquot is treated with 2% cysteine prior to HG at pH 

6. Cysteine reduces pentavalent arsenicals to trivalency. The concentrations of pentavalent 

arsenicals are again calculated as the differences between the concentrations measured in the 

cysteine-treated and in the untreated samples (Matoušek et al. 2008). The latter method is 

more convenient because the calibration is carried out using one HG condition (pH 6) and 

because the HG efficiencies for iAsIII, MAsIII and DMAsIII are almost identical, allowing 

calibration with a single arsenic standard, typically iAsIII (Matoušek et al. 2008). Although 

TMAsVO can be measured by this method, lower efficiency for hydride generation for this 

species may require a separate calibration using an authentic standard.

Advantages of the HG-based techniques

HG-CT methods were developed specifically for detection of iAs and the methylated 

arsenicals formed during enzymatically catalyzed iAs methylation. Although published 

methods are typically designed for analysis of samples with volumes between 0.1 and 

0.5 ml, the HG procedure can easily be scaled-up to use much larger sample volumes. In 

addition, the HG-CT step can be repeated before release of arsines to a detector, which 

allows quantification of arsenicals present at very low concentrations. In particular, very 

low detection limits have been achieved by methods that coupled the HG-CT steps with 

arsenic detection by inductively coupled plasma-mass spectrometry (ICP-MS) (Matoušek 

et al. 2013). Notably, the HG-CT-based techniques can be used for quantitative analysis of 

AsIII and AsV-containing species in complex biological matrices without sample extraction. 

Elimination of sample processing before analysis minimizes the chance of conversion of 

AsIII to AsV during extraction. HG-CT techniques, specifically HG-CT-atomic absorption 

spectrometry (AAS) or HG-CT-atomic fluorescence spectrometry (AFS), provide nearly 

complete recoveries of As when used for analysis of complex matrices (tissue homogenates 

or cell lysates) (Currier et al. 2011a, b, 2013, 2014, 2016; Matoušek et al. 2013; Musil et al. 

2014; Paul et al. 2007b, 2008). Finally, the relatively low cost of instrumentation needed for 

As speciation analysis by HG-CT as well as very low detection limits that can be attained 

makes this technique an attractive alternative to more costly LC-based techniques for As 

speciation.

Limitations of the HG-based techniques

A major limitation is the lack of commercial automated HG-CT systems that directly 

interface with existing detectors. Thus, a typical setup requires assembly of an online system 

consisting of individual, often custom-made, parts that support HG reaction, separation of 

gas phase from the reaction mixture, delivery of the gas phase into a cryotrap, heating the 

cryotrap, and delivery of the volatile arsine fractions into a detector. The HG and CT steps, 

including controlled heating of the U-tube, are typically carried out on-line and are fully 

automated. The flow of the reagents and timing of each step are controlled by a programable 

flow injection system. Although automated release of arsines from the cryotrap has been 

attempted (Matoušek et al. 2013), application of this method typically requires manual 

operations, including sample injection and removing the U-tube from liquid nitrogen prior to 
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heating. Because all critical steps cannot be easily automated, autosamplers cannot be used 

and presence of an operator is required during the entire procedure. Analysis of a sample 

takes approximately 6 min, using a well-tuned-up system.

The HG-CT techniques can be used only for analysis or arsenic species that form hydrides. 

Some arsenicals that are commonly found in food and biological systems cannot be detected 

by these techniques. Published studies have shown that arsenobetaine and arsenocholine, 

two arsenicals found in urine of individuals-consuming seafood, do not generate arsines 

under conditions typically used for HG-CT-based analyses of arsenic species (Currier et al. 

2013). Similarly, generation of dimethyl arsine from dimethylthioarsinic acid, a product of 

arsenic metabolism by microbiota, is much less efficient than from DMAsV or DMAsIII 

(Hernández-Zavala et al. 2008). Generation of hydrides from arsenosugars, arsenic species 

found in seaweed and some marine organisms, have been achieved only in a modified, 

strongly acidic HG reaction mixture (Marschner et al. 2018). Although viewed as a 

major limitation, the inability of HG-CT-based methods to detect arsenicals that do not 

form hydrides represents an advantage for analyses focusing on iAs and products of its 

methylation by AS3MT. It limits the possibility of false-positive signals caused by other 

arsenic species present in analyzed samples.

LC-based techniques

The LC techniques have been widely used for separation of arsenic species in aqueous and 

biological matrices. The most common methods involved separation of arsenic species by 

high-performance liquid chromatography (HPLC) coupled with an arsenic detector, typically 

ICP-MS. Several types of HPLC techniques have been used for separation of arsenicals, 

including anion exchange, cation exchange, reversed-phase, ion pair, or size exclusion 

chromatography (Francesconi and Kuehnelt 2004; Reid et al. 2020). In earlier studies 

focusing on iAs methylation, HPLC techniques were applied for analysis of iAsIII, iAsV, 

and the pentavalent methylated arsenicals. After recent optimizations, these techniques have 

also been utilized for analysis of MAsIII and DMAsIII (Gong et al. 2002a) (Table 2). These 

methods are discussed in the following sections.

Advantages of the LC-based techniques

The instruments required for LC-based speciation analysis of arsenic, including HPLC 

instruments and chromatographic columns, as well as spectrometers, are commercially 

available and can easily be configured for a high-throughput analysis. Software for operating 

these instruments and for data analysis is also available. For optimized HPLC techniques, all 

tri- and pentavalent arsenic species formed in the AS3MT-catalyzed reactions can be quickly 

separated on a single column (Reid et al. 2020; Currier et al. 2013). Separation of other 

biologically relevant arsenicals can also be achieved on a single column or by combining 

several LC techniques (Reid et al. 2020). In principle, negatively charged arsenic compounds 

can be separated using anion-exchange chromatography while positively charged arsenicals 

are best separated using cation-exchange chromatography (Francesconi and Kuehnelt 2004; 

Reid et al. 2020). In addition, using ICP-MS in tandem with an electrospray ionization 

mass spectrometer (ESI–MS) can provide information about molecular structures of arsenic 
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species in chromatographic fractions (Reid et al. 2020). This is particularly important during 

analysis of biological samples in which arsenicals may be present in complexes with 

endogenous compounds, e.g., GSH (Raab et al. 2004). ICP-MS in tandem with ESI–MS 

can be also used to identify multiple arsenic species that are eluted with the same retention 

times (Reid et al. 2020). Thus, the LC-based techniques are suitable for routine analysis of 

known arsenic species, as well as for discovery of previously unidentified arsenic species.

Limitations of the LC-based techniques

Minimizing oxidation of unstable MAsIII and DMAsIII during sample preparation and 

chromatographic separation is the major challenge for LC-based techniques (Feldman et 

al. 1999; Gong et al. 2001). For example, bulk filtration of urine samples to remove 

particulates before sample injection to a chromatographic column or use of an in-line 

guard column between injector and the analytical column may promote the oxidation of 

MAsIII or DMAsIII. Analysis of more complex biological matrices requires liquid-phase 

extraction of arsenic species. A variety of solvents have been used with varied extraction 

efficiencies (Francesconi and Kuehnelt 2004; Luvonga et al. 2020). Sample extraction can 

lead to analyte dilution and adversely affect detection or quantification after LC separation. 

More importantly, MAsIII and/or DMAsIII may oxidize during extraction if an oxidizing 

solvent is used or if prolonged exposure to oxygen occurs. Notably, effects of the extraction 

by different solvents on oxidation states of arsenic in biological matrices have never been 

systematically studied.

Another challenge is associated with a potential loss of MAsIII and DMAsIII due to 

interaction with a mobile phase or a stationary phase of the column. A loss of DMAsIII 

on a Phenomenex Prodigy column with a tetrabutylammonium hydroxide-malonic acid–

methanol mobile phase has been documented (Currier et al. 2013). However, no systematic 

research of the interaction between methylated trivalent arsenical and sorbents or solvents 

commonly used in LC techniques has been published. Thus, the oxidation state-specific 

analysis of arsenic species using LC techniques requires careful consideration and testing 

of chromatographic columns and mobile phases to minimize the oxidation of MAsIII and 

DMAsIII and to ensure a complete recovery of arsenic species during chromatography.

Knowledge gaps and future directions

Transport of arsenic species

The formation of methylated metabolites that contain either AsIII or AsV in the course of 

iAs metabolism is supported by results of the oxidation-specific analyses of arsenic species 

in a variety of biological systems. Overwhelming evidence also suggests that AS3MT is the 

primary catalyst for arsenic methylation in cells. Recent studies on the protein structure of 

AS3MT and the molecular processes involved in AS3MT-catalyzed reactions support the 

production of MAsIII and DMAsIII at the catalytical center of this enzyme (Marapakala 

et al. 2012). DMAsV and MAsV are likely formed by a rapid oxidation of the unstable 

trivalent species in oxygen-rich environment. The efficiency of iAs metabolism has been 

linked to susceptibility to iAs toxicity in human population studies using the proportions of 

arsenic metabolites in urine as indicators of the capacity to convert iAs to MAs and MAs to 
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DMAs. However, it is reasonable to assume that the capacity to methylate iAs is not the only 

factor that determines the profiles of arsenic species in urine and the overall efficiency of 

iAs metabolism. For example, arsenic transporters that carry arsenic species from tissues to 

blood, bile or urine likely play a role. Several transporters have been proposed to participate 

in these processes, e.g., aquaglyceroporins, glucose (GLUT) transporters, organic anion 

transporters, or ATP-cassette transporters (Drobna et al. 2010; Garbinski et al. 2019; Leslie 

2012; Liu 2010; Maciaszczyk-Dziubinska et al. 2012; Roggenbeck et al. 2016; Rosen 

and Liu 2009; Zangi and Filella 2012). However, a little is known about the specificity 

and affinity of these transporters for methylated arsenic species, specifically MAsIII and 

DMAsIII, and about contributions of these transporters to the whole-body metabolism and 

detoxification of iAs.

Protein binding of arsenicals

Another understudied issue is the binding of iAs and its metabolites to proteins in 

various cellular compartments. Binding to protein targets affects intracellular retention 

and distribution of arsenicals and the availability of these arsenicals for AS3MT-catalyzed 

reactions and for membrane transport. Although several studies have described subcellular 

distribution of arsenicals in mammalian cells (Dopp et al. 2008, 2010) and examined 

interactions between common protein motifs and arsenic (Kitchin and Wallace 2008; Lu 

et al. 2004; Shen et al. 2013; Yan et al. 2009, 2016; Zhang et al. 2015), these data are not 

sufficient to develop a comprehensive model for the role of protein–As interactions.

Data on binding of arsenicals, specifically MAsIII and DMAsIII, to cellular components 

would provide insights into the mechanistic basis of adverse effects associated with iAs 

exposure. Although reactions between iAs and protein and peptide thiol groups have been 

well-documented, our understanding of thiol interactions with MAsIII and DMAsIII are less 

complete.

Interactions between MAsIII and Zn finger motifs in the DNA-binding domain of the 

glucocorticoid receptor suggest a basis for some adverse effects of exposure to this arsenical 

(Spuches and Wilcox 2008). Similarly, identification of cysteinyl residues in alpha chain of 

rat hemoglobin as a high-affinity and high-capacity target for DMAsIII binding provides 

a molecular basis for the anomalous retention of DMAsIII in rat erythrocytes (Lu et 

al. 2007). Some studies have provided an indirect evidence for binding of methylated 

trivalent arsenicals to specific proteins. For example, MAsIII-dependent inhibition of insulin-

stimulated phosphorylation of Akt by phosphoinositide-dependent protein kinase-1 (PDK-1) 

(Paul et al. 2007a; b) may involve an interaction with two closely spaced cysteines (Cys21 

and Cys23) in the N-terminus of PDPK1 (Alessi et al. 1997; Dong et al. 1999). The 

availability of MAsIII and DMAsIII should permit additional studies to identify proteins that 

bind these arsenicals and to elucidate the functions of these protein-arsenical complexes.

Analysis of MAsIII and DMAsIII in samples collected in human studies

The ultimate evidence linking the formation of MAsIII and DMAsIII to adverse health effects 

associated with iAs exposure will likely come from human population-based or clinical 

studies. A major obstacle to obtaining such evidence is associated with the low stability of 
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MAsIII and DMAsIII, as well as with limitations associated with non-invasive collection of 

biological samples from human cohorts. In addition, many of the current analytical methods 

are not optimized or validated for the oxidation-state specific analysis of arsenic species 

in biological matrices. Attempts have been made to overcome these obstacles. One study 

measured tri- and pentavalent arsenicals in human urine within 1 to 6 h after collection; 

these urine samples were frozen in dry ice immediately after collection (Del Razo et al. 

2011). Using this approach, only small fraction of DMAsIII spiked into the urine samples 

was oxidized to DMAsV. Another approach to stabilize trivalent arsenicals in urine involves 

treatment of the donor with an arsenic chelator, 2,3-dimercapto-1-propane sulfonate (DMPS) 

(Gong et al. 2002b). Individuals in Romania who were exposed to high levels of iAs in 

their water supply received single oral doses of DMPS and urine was collected before and 

for up to 8 h post DMPS treatment. The presence of a MAsIII-DMPS complex in urines 

collected after DMPS treatment suggests that it is possible to use chelation to stabilize the 

oxidation state of As. However, it is probably not feasible to use this approach in population-

based studies. In addition, treatment with a chelator is likely to modify the pattern of iAs 

metabolism, thus confounding evaluation of the associations between iAs metabolism and 

disease risk. Direct addition of an AsIII-complexing agent to freshly collected urine may be 

an alternative approach for stabilization of arsenic oxidation state before analysis. However, 

the capacity of some dithiols to reduce pentavalent arsenicals to trivalency may be an 

important caveat for this approach (Delnomdedieu et al. 1993, 1994).

Analysis of arsenic species in samples other than urine represents a conceptually different 

and challenging problem. Concentrations of tri- and pentavalent arsenicals in exfoliated 

urothelial cells isolated from urine of individuals exposed to iAs in drinking water have been 

measured (Currier et al. 2014). In this study, concentrations of iAsIII, MAsIII and DMAsIII 

in exfoliated cells positively correlated with indicators of the diabetogenic effects of iAs 

exposure. A similar approach could be used to analyze tri- and pentavalent arsenic species 

in other types of samples that can be collected using non-invasive procedures, e.g., buccal 

cells or nasal epithelial cells. In addition to providing information about the exposure to iAs 

and the disposition of arsenic species in tissues, this type of analyses may also help link the 

presence of individual arsenicals in tissues to adverse events related to iAs exposure.

Summary/conclusion

Although research has greatly expanded our knowledge of arsenic metabolism at the 

molecular, cellular, and organismic level, there are still lacunae to be explored. In particular, 

our understanding of linkages among genotypic variation in AS3MT, interindividual 

variation in capacity for arsenic methylation, and interindividual variation in susceptibility 

to arsenic-induced diseases is incomplete. As discussed above, current evidence suggests 

that polymorphisms in the human AS3MT gene affects the pattern of methylated arsenicals 

in urine and that these changes in absolute and relative contributions of MAs or DMAs to 

the yield of arsenic metabolites are linked to increased incidences of a variety of diseases 

associated with exposure to iAs. However, it is unclear how relatively modest changes in 

the excretion of MAs and DMAs related to AS3MT genotype can account for differences 

in disease incidence. It is possible that these differences reflect genotype-dependent changes 

in relative proportions of MAsIII and MAsV produced during AS3MT-catalyzed methylation. 
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Notably, other factors unrelated to AS3MT polymorphism, e.g., sex or diet have also been 

shown to modulate urinary profiles of iAs and its methylated metabolites with possible 

links to disease risks. The roles of these factors in formation of the methylated trivalent 

metabolites remains unclear. Development and application of oxidation state-selective 

analytical methods may permit detailed study of formation of tri- and pentavalent MAs 

and DMAs in cellular systems and provide a fuller understanding of the role of MAsIII and 

DMAsIII in disease initiation and progression.
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Fig. 1. 
A conceptual model for the cellular metabolism of arsenic, including formation of the 

methylated trivalent and pentavalent arsenic metabolites. This model posits methylation 

without a change in oxidation state of arsenic and the ready interconversion of arsenic 

oxidation state in the cellular environment
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Fig. 2. 
The Challenger scheme for the methylation of arsenic
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Fig. 3. 
Alternate scheme for methylation of arsenic
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