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Abstract

An increasing number of identified Parkinson’s disease (PD) risk loci contain genes highly 

expressed in innate immune cells, yet their role in pathology is not understood. We hypothesize 

that PD susceptibility genes modulate disease risk by influencing gene expression within 

immune cells. To address this, we have generated transcriptomic profiles of monocytes from 230 

individuals with sporadic PD and healthy subjects. We observed a dysregulation of mitochondrial 

and proteasomal pathways. We also generated transcriptomic profiles of primary microglia 

from brains of 55 subjects and observed discordant transcriptomic signatures of mitochondrial 

genes in PD monocytes and microglia. We further identified 17 PD susceptibility genes whose 

expression, relative to each risk allele, is altered in monocytes. These findings reveal widespread 

transcriptomic alterations in PD monocytes, with some being distinct from microglia, and facilitate 

efforts to understand the roles of myeloid cells in PD as well as the development of biomarkers.

Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disorder of aging that affects 

motor, cognitive and other functions 1. Familial cases of PD account for a minority of cases 

and are inherited in a mendelian form 2. Nevertheless, recent Genome Wide Association 

Studies (GWAS) have also established that sporadic forms of PD are highly heritable, 

and several variants have been identified that greatly increase one’s risk for developing 

sporadic PD 2. Understanding the function of these genes is a necessary step toward 

designing new and effective treatments. Recent genetic studies have identified over 78 
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PD risk loci 3, and many of these loci contain genes involved in immune function. While 

these and other findings suggest that the immune system plays an important role in PD, the 

underlying mechanisms of immune dysfunction are largely unknown. Genomic analysis has 

demonstrated that PD-associated susceptibility alleles alter the expression of nearby genes 

in peripheral monocytes 4-6 and that there is significant enrichment of PD-heritability in 

gene sets highly expressed in microglia 7. As of yet, it is unclear whether these peripheral 

monocytes, brain resident microglia, or both, influence disease risk and progression.

Several studies have identified altered myeloid functions in PD. Healthy microglia are 

essential for clearing of debris, such as α-synuclein 8,9 and for maintaining brain 

homeostasis. In addition, α-synuclein can activate microglia, releasing neurotoxic factors 

that may lead to death of dopaminergic neurons 10-13. Peripheral monocytes from PD 

patients have been shown to be hyperactive in response to α- synuclein stimulation 14. 

Monocytes have also been found to be capable of entering and interacting with the central 

nervous system (CNS) via the meninges 15-17 and may be involved in the phagocytosis 

of protein aggregates of debris from degenerating neurons 18,19. The Braak hypothesis, 

which proposes that α-synuclein pathology starts in the periphery 20, and the gut-origin 

hypothesis of PD 21-23 also postulates that peripheral immune cells might be exposed to 

PD-pathology early during the disease. Collectively, these studies support the importance 

of non-neuronal cell types including peripheral immune cells and brain resident glial cells 

in PD pathophysiology. However, there are critical gaps in our understanding of how these 

cells contribute to PD, in part due to the challenge of accessing patient-derived samples, and 

while some studies have characterized monocytes or microglia in PD 24,25, they were limited 

in sample size.

The Myeloid cells in Neurodegenerative Diseases (MyND) initiative is a collaborative effort 

with the goal of creating a multi-omic atlas of myeloid cells from the periphery and from 

autopsied brains of subjects with PD, Alzheimer’s disease (AD), and age-matched controls. 

This study reports the first phase of this initiative, which profiles the transcriptome of 

CD14+ monocytes and microglia from PD subjects and age-matched controls. Peripheral 

blood cells such as monocytes perform many of the fundamental cellular processes that are 

perturbed in PD 26, and we hypothesize that they may recapitulate some of the cellular 

pathology observed in the PD brain. As a source of patient tissue in which to study early 

disease processes, blood samples are easily accessible, cost- efficient, and can be obtained 

with minimal risk to the patients. Here, we performed large-scale, unbiased, systematic 

analysis incorporating genomic, and bulk and single-cell transcriptomic data to identify 

genes and co-expression networks that are dysregulated in PD myeloid cells. We observed 

that PD monocytes exhibited profound alterations for genes involved in mitochondrial and 

proteasomal function. Through single-cell RNA-sequencing (scRNA-seq) we found that 

these genes were highly expressed in the proinflammatory intermediate subpopulation. 

We further performed expression quantitative trait loci (eQTL) analysis of monocytes and 

identified 17 variants driving variation in mRNA abundance and PD susceptibility. Finally, 

we report that the mitochondrial transcriptome signature is discordant in the microglia 

and macrophages compared to monocytes, with the expression of mitochondrial genes 

downregulated in PD microglia and upregulated in PD monocytes.
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Results

Participant recruitment and sample collection

Participants have been recruited from five clinical sites in New York City (see Methods). 

For each participant we have isolated CD14+ monocytes from 230 participants, including 

135 with a diagnosis of sporadic idiopathic PD (“cases”) and 95 age-matched participants 

(“controls”) with no reported neurological or auto-immune diseases (Fig. 1; Extended Data 

Fig. 1A). Participants have a mean age of 67 years old. Sex, age and other demographic 

information can be found in supplemental material (Extended Data Fig. 1B, Table S1). The 

average age of onset (considered as age of diagnosis) in the PD group is 57.3 years old, 

with a disease duration of 8.3 years and Hoehn & Yahr (H&R)27 scale of 1.8 (see additional 

clinical information in Extended Data Fig. 1C, D).

Primary human microglia have been isolated from postmortem brain tissues from 

independent donors. For this study, microglia from up to six different brain regions from 

13 PD donors (22 samples) and 42 age-matched control donors (106 samples) have been 

used for RNA sequencing and downstream analysis (Table S2). The average age of death is 

80.22 years old and 78.5 years old for control and PD cases, respectively. Disease duration 

in the PD group is 13.5 years, and sex is balanced (see Methods)

PD monocytes show mitochondrial and proteasomal alterations

We isolated human fresh monocytes from patient-derived blood using CD14+ beads. After 

rigorous quality control, we retained RNA-sequencing (RNA-seq) data from monocytes of 

230 subjects for all downstream analyses. RNA-seq data were normalized and corrected 

to account for the effect of known biological and technical covariates (see methods; Fig. 

S1-S4). RNA-seq based quantifications enabled assessment of coding and non-coding 

differential gene expression, differential isoform expression, and differential splicing 

analyses (Fig. S1). A total of 300 differentially expressed genes (DEGs) were identified 

when comparing PD-derived monocytes to controls (False Discovery Rate [FDR] < 0.05). 

Of these, 162 identified DEGs were upregulated while 138 DEGs were downregulated 

(Fig. 2A, Table S3). The effect sizes for most of the DEGs were small (∣log2 fold change 

(FC)∣ < 0.5). The DEGs were not driven by LRRK2 or GBA mutation carriers, or by 

individuals of Ashkenazi Jewish (AJ) ancestry (Fig. S3C, D). Additionally, sex contributed 

small proportion of total variation in gene expression (mean variance 0.25% and standard 

deviation of 2.1%) (Fig. S3A). As the majority of PD cases were taking dopaminergic 

medication, Levodopa (L-dopa), we tested if gene expression was correlated with L-dopa 

equivalent daily dose (LEDD) on a subset of individuals (n=110). We found no significant 

correlation for any genes at FDR < 0.05, and of the DEGs, only four genes were significant 

at a nominal P-value < 0.05 threshold (Fig. S3E).

We performed gene set enrichment analysis (GSEA) to evaluate which biological processes 

were enriched for DEGs. The upregulated DEGs were significantly enriched for a number 

of Gene Ontology (GO) biological processes (BP) including mitochondrial function, antigen 

presentation, and RNA splicing (Fig. 2B, Table S4). The most significant BP were related to 

mitochondrial oxidative phosphorylation (OXPHOS), which includes essential components 
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of respiratory chain complexes such as NADH dehydrogenase (NDUFA1 and B1) and 

Cytochrome C Oxidase (COX5A, 6B1, 7A2 and 7B) (FDR q-value < 0.05) (Fig. 2B, C, 

Table S4). Using a curated mitochondrial gene list 28, we found significant enrichment for 

OXPHOS genes (P-value = 0.00015, Fisher’s exact test), but not for other mitochondrial 

processes such as dynamics or mito-nuclear crosstalk (P-value = 0.80, Fisher’s exact test) 

and quality control (P-value = 0.66, Fisher’s exact test). The downregulated DEGs were 

overrepresented for functions including proteolysis, protein modification, differentiation 

and activation of innate immunity , and metabolic processes (FDR q-value < 0.05). Some 

of the genes in the proteolysis process are involved in proteasomal structure (PSMC5, 
PSMD5, and PSMD11) (Fig. 2B, C), ubiquitin (USP10), and autophagy-related function 

(GSK3B, PIK3R4, STAM). While most DEGs were part of a coherent biological function, 

we identified many that were not part of any processes including members encoding for the 

S100 proteins (S100A4, S100A6, S100P), which play an important role in inflammatory 

responses and function as damage-associated molecular pattern (DAMP) molecules 29,30. 

The S100 proteins have been shown to be upregulated in the substantia nigra and 

cerebrospinal fluid (CSF) of patients with PD as well as in a mouse model following MPTP 

(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), a toxin that causes parkinsonism in treated 

mice 31.

We next expanded these analyses to isoform transcript-level and local splicing (using 

intronic excision ratios) to identify transcriptomic dysregulation due to alternative splicing. 

We observed 1020 differentially expressed transcripts (DETs) and 161 differential splicing 

events (DS) at FDR < 0.05, corresponding to 939 and 158 unique genes, respectively 

(Extended Data Fig. 2 and 3, Table S5, S6). With the exception of mitochondrial function, 

the pathway analysis of DET and DS identified the same biological processes as the DEGs 

and expanded the list of genes involved in the protein degradation machinery including 

autophagy-related, proteasome, and lysosomal functions (Extended Data Fig. 2 and 3; Table 

S7, S8). These include the transmembrane protein 175 (TMEM175), which encodes a 

lysosomal K+ channel, and is in a PD GWAS locus that has been shown to play a critical 

role in lysosomal and mitochondrial function and PD pathogenesis 32. Also, two members 

(MTOR and RICTOR) of the rapamycin (mTOR) signaling pathway, a central regulator 

of the autophagy process 33, were identified in the DS analysis. Interestingly, some genes 

show significant alterations at the expression, transcript and splicing level (i.e.: NDUFV3, 
RICTOR). Together, these results highlight key genes involved in the machinery of protein 

degradation that have aberrant RNA splicing in PD monocytes.

With respect to the reproducibility of our results, we have performed two separate analyses 

to replicate our findings. First, we incorporated whole blood (WB) transcriptomic data 

from 780 PD cases and 504 controls from the Parkinson's Progression Markers Initiative 

(PPMI) (one of the cohorts of the Accelerating Medicines Partnership: Parkinson's Disease 

[AMP-PD]). Although not a direct replication since the AMP-PD transcriptome is from 

WB but given the large sample size, we expected to capture some of the monocyte-specific 

effects in blood. After QC (Fig. S5), we found 4484 genes at FDR < 0.01 (Table S9). 

We observed a significant overlap of the DEGs in the monocyte dataset and AMP-PD 

(P-Value = 0.041, Fisher-exact test). For the majority (6 out of 8 genes) of the mitochondrial 

DEGs in monocytes, we observed a concordant direction of effect in WB (Fig. 2D, 6C, 
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S5F). However, the effect size in AMP-PD WB was weaker than in monocytes (mean FC 

= 0.09 in WB; mean FC = 0.27 in monocytes; for genes with FDR < 0.05; P-value < 

2x10−16, independent-sample t-test) despite the large sample size (n = 1284) in AMP-PD. 

These results demonstrate the improved power of purified cell populations over mixtures 

of cell types such as whole blood, which may result in failure to properly capture the 

activity of cell-type-specific effects. Finally, we also validated our bulk RNA-seq findings in 

scRNA-seq of CD14+ monocytes by multiplexing 10 independent monocyte samples (seven 

PD, three controls; see below for further details). The effect size (normalized effect) 34 of 

DEGs from across-clusters gene expression from scRNA-seq were highly correlated with 

effect size from bulk RNA-seq DEGs (Spearman ρ =0.59, P-value = 5.04x10−6, Spearman 

rank correlation) (Fig. 2E, Table S10). For example, S100P and S100A6 were significant in 

both datasets (adjusted P-value < 0.05), and the majority (9 of 11) of the other members of 

the S100 gene family shared the same directionality in both datasets.

To place the transcriptome changes in a systems-level framework, we performed Weighted 

Gene Co-expression Network Analysis (WGCNA) with the protein-coding genes of the 230 

monocyte samples. We identified 65 modules of strongly co-expressed groups of genes, 

ranging from turquoise (largest, 2541 genes) to orangered3 (smallest, 30 genes), 6 of which 

were enriched for DEGs (Fig. S6, Extended Data Fig. 4, Table S11). We used LD score 

regression (LDSC) 35 to partition PD GWAS heritability into bins of correlated SNPs 

located within genes from each module. We found that 16 out of 65 modules showed 

enrichment for PD heritability (FDR < 0.05) including green, salmon, and red modules 

involving mitochondrial, lysosomal, and immune function, respectively (Extended Data 

Fig. 4A). Next, we correlated the module eigengene, the first principal component (PC) 

of the module gene expression level, with PD diagnosis. We observed three modules that 

were significantly correlated with PD diagnosis (FDR < 0.05, Two sided Wilcoxon signed-

rank test), including turquoise (ubiquitin-related activity), antiquewhite4 (proteasome), and 

darkseagreen4 (Extended Data Fig. 4B). Given that multiple modules are associated with 

mitochondrial or lysosomal function, we considered taking the eigengene of all genes in 

either mitochondrial (n = 1302) or lysosomal (n = 526) GO categories. We found that the 

mitochondrial and lysosomal eigengenes were significantly upregulated and downregulated 

in PD, respectively (Fig. 3A, B). Taken together, these results illustrate that several co-

expression gene modules in monocytes are enriched for PD heritability and further suggest 

subtle disruption of gene expression in specific biological networks including those with 

mitochondrial and proteo-lysosomal function.

scRNA-seq profiling of PD CD14+ monocytes

Human monocytes are subdivided into at least three different subpopulations (classical, 

intermediate, and non-classical) according to their surface expression of the receptor 

CD14 and the Fc receptor CD16 36. The three monocyte subsets are phenotypically and 

functionally different 37,38. To investigate whether the composition and gene expression 

profiles of monocyte subpopulations are altered in PD, we used flow cytometry (FACS) and 

scRNA-seq analysis to characterize different monocyte subpopulations from PD patients and 

age-matched healthy controls. First, we performed FACS analysis to assess differences in 

proportion of monocyte subsets between PD and controls. Using FACS, we did not observe 
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any differences in the proportions of monocyte subpopulations in a subset of PD (n = 11) 

and control (n = 11) samples (P-value > 0.05, unpaired t-test) (Extended Data Fig. 5A), 

contrary to previous reports 39,40. Secondly, we performed scRNA-seq of CD14+ monocytes 

by multiplexing 10 individuals (seven PD, three controls, Table S12) on the 10x Chromium 

system with an expected yield of 20,000 single-cells. We identified six clusters including 

two main subpopulations that were detected corresponding to classical (CD14++/CD16−) 

and a CD16+ population that corresponds to intermediate (CD14++/CD16+) monocytes (Fig. 

4A). The non-classical (CD14−/CD16++) monocyte subpopulation was not captured in the 

scRNA-seq due to the use of CD14+ selection method. Similar to our findings with FACS, 

we found no differences in proportions of monocyte subpopulations in PD vs controls 

(P-value > 0.05; Two sided Wilcoxon signed-rank test) (Extended Data Fig. 5B). After QC 

(Fig. S7, Extended Data Fig. 5C-F), we performed differential gene expression between 

the subpopulations (classical and intermediate, without considering diagnosis) and observed 

that 927 total genes were differentially expressed at FDR < 0.05 (Table S13). As expected 

many of the DEGs between clusters were marker genes for classical monocytes (CD14) or 

for intermediate populations (FCGR3A). We found that genes implicated in mitochondrial 

and proteasomal function, pathways enriched for DEGs in PD bulk monocytes, were highly 

expressed in the intermediate population relative to the classical population, showing that 

this subpopulation is enriched for genes related to PD pathophysiology. Specifically, genes 

that are members of the mitochondrial cytochrome c oxidase and NADH dehydrogenase 

families and proteasomal genes were highly expressed in the intermediate monocytes (Fig. 

4B). We did observe some disease-related genes to be highly expressed in the classical 

subpopulation as well (e.g., S100A8). Finally, we performed differential expression analysis 

within each subpopulation and identified several DEGs that were only detected within the 

intermediate subpopulation but not in the bulk analysis. These included genes from several 

members of the complement component (C1QA), interferons (IFITM2), and chemokine 

(CXCL16) in the intermediate monocytes (Fig. 4C, Table S14). In summary, our scRNA-seq 

data enables the evaluation of molecular aspects of monocyte heterogeneity. Overall, these 

results suggest that intermediate monocytes, which comprise about ~8% of circulating 

monocytes and are involved in the production of reactive oxygen species (ROS) and 

inflammatory responses, are affected at the transcriptional level in PD.

Monocyte signature in PD is distinct from microglia

We next sought to determine whether PD monocyte signatures are recapitulated in primary 

microglia. To address this question, we isolated CD11b+ primary microglia from fresh post 

mortem autopsied brains of 13 donors with PD and 42 controls (Extended Data Fig. 6A, 

B, Table S2). For comparison, we also isolated microglia from patients with other brain 

disorders, including depression (n = 72 samples), and neuropsychiatric disorders such as 

Schizophrenia [SCZ] and Bipolar disorder (n = 115 samples). The microglia samples were 

isolated from multiple brain regions based on the availability of high-quality tissues from 

the brain banks (Extended Data Fig. 6A, B) and subjected to RNA-seq. After rigorous 

QC and controlling for biological and technical covariates (Extended Data Fig. 6C-F), we 

performed differential gene expression between 22 PD and 106 control samples using a 

statistical method that accounts for repeated measures (in this case multiple brain regions 

from the same donor) while properly controlling the false discovery rate 41. Given the small 
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sample size, we did not find any DEGs at FDR 0.05 in microglia but identified 222 DEGs 

at a suggestive threshold (FDR < 0.10) (Extended Data Fig. 6G, Table S16). In terms of 

reproducibility, we compared the results with an external dataset performed by single nuclei 

in sporadic cases of PD 42, where the authors described 29 genes significantly associated 

with microglial activation in PD. Comparing both datasets we found a significant overlap 

with our DEGs at FDR 0.1 (Fisher's exact test, P-value = 0.041, OR = 6.56).

A key finding is that OXPHOS gene signature is discordant compared to what we observed 

in peripheral monocytes, showing a downregulation in PD microglia (Fig. 5A, Extended 

Data Fig. 6H), signature specific to PD but not other brain disorders (Fig. 5B). In order 

to understand if the discordant gene expression is not due to cells being derived from 

the periphery and the CNS, we differentiated peripheral monocytes to monocyte-derived 

macrophages (MDMs) and performed qPCR of targeted OXPHOS genes. We observed that 

PD monocytes show higher expression of OXPHOS genes (COX7B, NDUFA1, PET100) in 

line with what we observed in Fig. 2. However, when monocytes from the same donors were 

differentiated to MDMs the directionality of OXPHOS genes was flipped (Fig 5C), opposite 

to the effect in monocytes from the same donors and the same directionality as microglia. 

These results demonstrate that directionality is cell-specific rather than CNS vs periphery, 

pointing to some alteration at the differentiation level.

Apart from the OXPHOS genes, we also identified genes involved in proteasomal function 

(PSMB5, PSMG2, PSMB2), complement component (C1QA, C1QB, and C1QC), and S100 

calcium-binding proteins (S100A4 and S100A6) (nominal P-value < 0.05) in PD microglia. 

(Fig. 5A). The discordant gene expression signature between monocytes and microglia is 

consistent across most nuclear-encoded mitochondrial genes, whereas proteasomal genes 

and S100 family share a consistent directionality in monocytes and microglia (Fig. 5A). 

We accessed an independent dataset obtained from meta-analysis of 8 studies with gene 

expression profiles from bulk brain substantia nigra (SN) 43. 20 out of 151 OXPHOS 

genes were significant at FDR < 0.05 in the meta-analysis DEG of SN and all 20 genes 

were downregulated in PD. Although this is not a direct replication, it highlights the 

downregulation of OXPHOS genes in post-mortem PD brains (Fig. 5A). Taken together, 

our results show a reproducible discordant pattern of gene expression for mitochondrial 

OXPHOS genes in the monocytes and macrophages of PD subjects.

PD common variants alter gene expression in monocytes

The majority of PD risk-associated variants are located in non-coding regions of the 

genome. It is reasonable to hypothesize that a subset of these may cause disease by altering 

gene regulatory mechanisms as either expression (eQTL) or splicing (sQTL) quantitative 

trait loci. Here, we performed cis-eQTL analysis using monocytes from 180 subjects of 

European ancestry (Fig. S8) to systematically interrogate PD risk loci from the most recent 

GWAS 3 to uncover putative PD-dysregulated genes based on gene expression and splicing 

regulation. We identified 4,030 and 1,786 genes with cis-eQTLs and sQTLs at FDR < 0.05, 

respectively (Table S17, S18). Using a mediated expression score regression (MESC) 44, we 

estimate 26% (S.E.10%) of PD disease heritability is mediated by the cis-genetic component 

of monocyte gene expression levels (Fig. 6A). This estimate in monocytes is similar to 
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what we observed in primary microglia (23%; S.E. 16%) 45 but lower than in prefrontal 

cortex (40%; S.E. 11%) 46, suggesting that a substantial proportion of PD heritability 

can be attributed to other CNS cells. Nevertheless, given that a large proportion of PD 

disease heritability is mediated by eQTLs in myeloid cells 4, we performed colocalization 

analysis 47 to determine whether a shared variant is responsible for both GWAS and QTL 

signal in a locus. We found that GWAS and eQTL signals colocalized in 15 out of 78 

PD loci, suggesting that the disease-associated SNP (or one in very high LD to it) drove 

variation in expression in monocytes (Fig. 6B, Table S19). We observed suggestive levels 

of colocalization (PPH4 > 0.5) of GWAS and eQTL at three additional loci, including at 

the NOD2 locus (Fig. 6C), where the PD risk allele rs34559912-A decreases expression of 

NOD2. At the LRRK2 locus, we observe that the PD risk allele rs76904798-T increases 

LRRK2 expression in monocytes, consistent with what has previously been reported 4. 

We validate a previously identified eQTL at the cathepsin B (CTSB) locus, where the PD 

risk allele rs2740595-C decreases expression of CTSB (Fig. 6C). We found that the PD 

risk rs34559912-T allele, located within an intron of BST1, was strongly associated with 

lower expression of BST1 (Fig. 6C). The genetic analysis suggests that decreased expression 

of BST1 in monocytes is associated with increased risk for PD. Using a functional fine-

mapping approach (see Methods), we found that the lead eQTL SNP (rs34559912) is also 

the top fine-mapped SNP (the SNP with the highest posterior probability of being causal 

within the 95% credible set) at the BST1 locus (Fig. 6D) and is within a monocyte-specific 

enhancer (Table S19). Notably, 60% (9 of 15 colocalized loci) of the lead eQTL SNP (or 

the lead GWAS SNP) are within CD14+ monocytes histone acetylation marks (H3K27ac) 

associated with enhancer activity, with one (rs34559912-BST1) specific to monocytes. 

Additionally, 27% (4 of 15 colocalized loci) of these lead eQTL SNPs (or the lead GWAS 

SNPs) are within microglia histone marks (H3K27ac), with two (rs6658353-B4GALT3 
and rs1293298-CTSB) specific to microglia 48. Of these four, all are within chromatin 

accessibility (ATAC-seq) peaks in microglia 48, and of which three and one are within 

a PU.1 enhancer and promoter, respectively (Table S19). In a companion study, we have 

additionally fine-mapped all the PD GWAS loci and show that variants within the 95% 

credible sets for CTSB, LRRK2, RAB29, and GPNMB loci are located within microglia-

specific enhancers (Schilder et al. in prep). In addition to expression, we performed sQTL 

analysis to identify local genetic effects that drive variation in RNA splicing in monocytes. 

We observed six PD risk alleles affecting the splicing of nearby genes (Fig. 6B). An example 

is PD risk allele rs2306528-T associated with an exon skipping event in FAM49B (Fig. 

6E), a novel regulator of mitochondrial function 49. These results suggest that PD risk 

alleles modulate disease susceptibility by regulating the expression or splicing of genes in 

peripheral monocytes.

Discussion

Multiple lines of evidence implicate alterations in the immune system in PD 26, but 

the contribution of specific immune cells and their mechanisms in PD remains unclear. 

Here, we present a population-scale transcriptomic study of peripheral monocytes and 

primary microglia from subjects with PD. Our findings suggest widespread gene expression 

alterations in the PD myeloid cells, some of which are shared between the periphery and 
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the CNS, while others have discordant effects. A key finding of our work is that peripheral 

monocytes derived from PD patients show widespread dysregulation in mitochondria and 

proteo-lysosomal pathways. We further show that mitochondrial genes are upregulated in 

peripheral monocytes but are downregulated in CNS microglia and peripheral MDMs, 

pointing to a cell specific effect. Our single-cell-resolution analysis further suggests that 

these transcriptional alterations are specific to the intermediate monocyte subpopulation. By 

intersecting transcriptomics and genetics, we also demonstrate a large proportion (~22%) of 

PD risk alleles alter the expression or splicing of genes in monocytes.

Although dysregulation of mitochondrial homeostasis in PD has been previously reported, 

these studies were mostly restricted to studying dopaminergic neurons, fibroblasts or 

whole blood from individuals with PD 40,50-56. Our work provides a unique view of 

monocyte transcriptome alterations associated with PD pathophysiology. We report that 

proteo-lysosomal signature is downregulated in PD monocytes, which could be in line 

with the accumulation of aberrant proteins associated with the disease. However, contrary 

to most published results, we also report an unexpected finding that OXPHOS genes are 

upregulated in peripheral monocytes from individuals with sporadic PD. The increased 

expression of OXPHOS genes in PD is a finding that has only been shown for two 

genes (SDHB and ATP5A) in lymphoblasts 57. A plausible explanation could be that PD 

monocytes reflect a hyperactive state with increased OXPHOS activity 57, and may be 

responsible for the elevated oxidative stress in PD. Another possibility is that the increased 

OXPHOS activity in PD monocytes is a compensatory effect of dysfunctional mitochondria 

due to the rapid turnover of monocytes. Due to monocyte heterogeneity, we further 

investigated the contribution of different subclusters at the single cell level and showed 

that OXPHOS and proteo-lysosomal genes are highly expressed in the proinflammatory 

intermediate CD14++/CD16+ subpopulation. We also generate the first (to our knowledge) 

unbiased transcriptomic dataset of freshly isolated microglia from PD and controls, where 

we observed the opposite effect, as the OXPHOS genes are downregulated in PD microglia. 

The data from microglia was replicated with SN data, although it is not a direct replication 

due to the absence of independent and sufficiently large microglia dataset from PD subjects. 

The results presented in this study are consistent and confirm previous observations showing 

reduction of OXPHOS gene expression in post-mortem brains of individuals with PD 
50,51. When we differentiated peripheral monocytes (where OXPHOS genes are upregulated 

in PD) to MDMs upon M-CSF treatment we observed that the monocyte signature is 

discordant, showing that PD MDMs have lower expression of OXPHOS genes compared to 

controls. What these results reveal is a dysfunctional differentiation towards the macrophage 

phenotype in PD and points out that the discordant effects are due to cell specific 

differences. Taken all together, we hypothesize that the upregulation in OXPHOS genes in 

monocytes could be due to a compensatory effect to counteract the dysregulation observed 

in the macrophages. This work also improves our understanding of the PD-associated 

genetic risk factors influencing innate-immune mechanisms. Although a large proportion 

of PD heritability is mediated by the cis-genetic component of gene expression in neuronal 

tissues, our findings provide evidence that about ~25% of PD heritability is estimated 

to be mediated by myeloid cell-specific cis-eQTLs. This estimate is consistent with our 

observation that in at least 17 loci, the PD risk variants are likely to modify disease 
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susceptibility, at least in part, by modulating gene expression or splicing in peripheral 

monocytes. However, given that many of the monocyte lead eQTL SNPs (or fine-mapped 

credible set of SNPs) are also within microglia enhancers, it is plausible that the observed 

genetic effect on monocyte gene expression may be a proxy for infiltrating macrophages 

and/or resident microglia found at the sites of neuropathology. Given the current data, 

it is difficult to discern the exact cellular context in which these variants may act. It is 

also plausible that many of these eQTL-PD GWAS colocalizations may be identified in 

other CNS cell types (e.g., neurons, astrocytes or oligodendrocytes), where some of these 

genes are also expressed. Future studies incorporating eQTL datasets from primary human 

microglia, or from scRNA-seq will be an important resource in pinpointing the cellular 

contexts in which PD-causing genetic variants affect gene expression.

Our work has major implications for discovering novel blood-based biomarkers for 

differentiating individuals with PD from control individuals. To date, biomarker studies 

in PD have largely focused on candidate approaches, with an emphasis on protein measures 

obtained in the CSF or brain imaging 1,58,59 which is considerably more difficult to obtain 

than blood. The use of monocyte gene expression to discover novel biomarkers of the 

disease state has several advantages. Firstly, monocytes isolated from peripheral blood are 

highly accessible human tissue, unlike the brain. While peripheral blood may be more easily 

obtained than primary monocytes, our results suggest that the magnitude of effects for DEGs 

was two-fold higher in monocytes compared to whole blood despite the smaller sample 

size (n = 230 in monocytes compared to 1,284 for whole blood from AMP-PD cohort). 

These results emphasize the power of purified cell populations that are not mixtures of cell 

types such as whole blood, which may result in the failure to properly capture the activity 

of cell-type-specific effects. Secondly, our study shows that peripheral monocytes from PD 

cases differ from those of control subjects. To this end, we identified several genes whose 

expression is altered not only in PD monocytes but also exhibit altered expression levels in 

microglia and SN of individuals with PD. For example, the S100 family of genes whose 

upregulation is reproducible in all four datasets that we have compared (monocytes, whole 

blood, microglia, and SN) and which have also been shown to be upregulated in CSF of 

patients with PD 31 are excellent candidates for potential blood-based biomarkers. Further 

longitudinal studies are necessary to assess whether transcriptional changes in monocytes 

are predictive of disease progression.

In summary, by defining the transcriptional signatures of peripheral monocytes from 

sporadic PD patients, we have uncovered PD-associated alterations of mitochondrial 

and proteo-lysosomal genes in peripheral cells. We demonstrate that although the same 

mitochondrial processes are altered in PD monocytes and microglia, the direction of effect 

of altered genes are distinct. Building on our data, future research should assess the 

functional bioenergetic properties of the CNS and peripheral cells in sporadic PD to unravel 

potential mechanisms leading to the dysregulation described here. Overall, these results 

provide support for the utility of monocyte gene expression profiles as potent tools for 

understanding molecular mechanisms, for the identification of novel therapeutic targets, and 

for the development of blood-based biomarkers.
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Methods

See Supplementary information for demographics and clinical overview of study cohorts.

PBMC, monocyte isolation, and MDM differentiation

A maximum of 30 ml of blood was collected in Vacutainer blood collection tubes with acid 

citrate dextrose (ACD) (BD Biosciences). Fresh blood was shipped to the Raj laboratory and 

processed within 2-3 hours. First, blood was centrifuged at 1,500 g for 15 mins, and aliquots 

of whole blood and plasma were stored at −80 °C. Subsequently, blood was diluted in 2-fold 

PBS (Gibco) and PBMCs were isolated using SepMate tubes (StemCell Technologies) 

filled with 15 ml of Ficoll-Plaque PLUS (GE Healthcare) through a 15 mins centrifugation 

at 1,200 g. After washing with PBS, 5 million PBMCs were sorted to monocytes using 

CD14+ magnetic beads (Miltenyi) in the AutoMacs sorter and following manufacturer’s 

instructions. PBMCs and monocyte viability was assessed using Countess II Automated Cell 

counter (Thermo Fisher). After sorting, monocytes were stored in RLT buffer (Qiagen) + 1% 

2-Mercaptoethanol (Sigma Aldrich) at −80 °C. Purity of the monocyte sorting was assessed 

via FACS and expression markers (RNA-seq). Remaining PBMCs were cryopreserved in 

90% FBS (Germini) + 10% DMSO (Sigma Aldrich) at a concentration of 10 million cells/ml 

in Nalgene cryogenic vials (ThermoScientific). Vials were placed in NalGene CryoFreezing 

containers at −80 °C during 24-72 hours, and subsequently placed at liquid nitrogen for 

storage long-term.

For MDM differentiation, 0.5 million monocytes were plated at a concentration of 1 million 

cells/ml in 24 well/plate and differentiated to MDMs upon treatment with 50 ng/ml of 

M-CSF during 6 days, changing media every 3 days. Day 6 M-CSF was removed from 

media and cells were collected 24 h later in RLT.

DNA isolation and genotyping

DNA isolation and genotyping—When isolating DNA from blood, an aliquot of 1 

ml was used. We used the QiAamp DNA Blood Midi kit (Qiagen) and followed the 

manufacturer's instructions. DNA quality and concentration was assessed using a Nanodrop. 

Samples were genotyped using the Illumina Infinium Global Screening Array (GSA), which 

contains a genome-wide backbone of 642,824 common variants plus custom disease SNP 

content (~ 60,000 SNPs). Additionally, we performed targeted genotyping for specific 

regions associated with neurodegenerative diseases (LRRK2, GBA and APOE). LRRK2 

and GBA genotyping was outsourced to the Dr. William Nichols’ laboratory at the 

Cincinnati Children’s Hospital. SNP genotyping was performed for the G2019S variant 

in LRRK2 and the 11 most common variants in GBA (84GG, IVS2+1, E326K, T369M, 

N370S, V394L, D409G, L444P, A456P, RecNcil, R496H). The three major APOE isoforms 

(APOE 2, APOE 3, APOE 4) were assessed in the laboratory using Taqman assays for 

both rs429358 (C___3084793_20) and rs7412 (C___904973_10) from ThermoScientific 

following manufacturer’s instructions. 10 ng of DNA were added to the SNP reaction 

mix in a 96-well plate. Fluorescence reading of the Taqman assays was performed using 

QuantStudio 7 Flex (Applied Biosystems). See Supplementary information for genotype 

quality control and imputation.
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Transcriptomic analysis

RNA isolation, library preparation and sequencing—RNA was isolated from 

monocyte samples stored in RLT buffer. After thawing on ice, RNA was isolated using 

RNeasy Mini kit (Qiagen) following the manufacturer's instructions including the DNase 

I optional step. Once RNA was isolated, samples were stored at −80 °C upon library 

preparation. Prior to library preparation, RNA concentration was assessed using Qubit and 

the RNA integrity number (RIN) by TapeStation using Agilent RNA ScreenTape System 

(Agilent Technologies). The median for the RIN values across the cohort is 9.7. Only 

8 samples showed RIN < 5 and removing these samples did not alter results. Library 

preparations were done either in-house or at Genewiz Inc. using in both cases ribo-depletion 

strategy to remove rRNA. For in-house library preparation, we used the TruSeq Stranded 

Total RNA Sample Preparation kit (Illumina), with the Low Sample (LS) protocol and 

followed the manufacturer’s instructions. For samples prepared at Genewiz, we shipped the 

RNA and samples were processed using the Standard RNA-seq protocol. Samples were 

sequenced in 3 independent batches at Genewiz Inc. with a depth of 60 million 150-bp 

paired-end reads using Illumina HiSeq 4000 platform.

RNA-seq data processing, quality control, and normalization—To process 

FASTQ files, we utilized RAPiD-nf, an efficient RNA-seq processing pipeline implemented 

in the NextFlow framework 65. Following adapter trimming with trimmomatic (v0.36) 66, 

all samples were aligned to the hg38 build (GRCh38.primary_assembly) of the human 

reference genome using STAR (2.7.2a) 67 with indexes created from GENCODE (v30) 68. 

Gene expression was quantified using RSEM (1.3.1) 69; splice junction reads were extracted 

and quantified using Regtools (0.5.1) 70. Sequencing quality and technical metrics were 

assessed both before alignment with FASTQC (0.11.8) 71 and after alignment with Picard 

(2.20) 72 and Samtools (v1.9) 73.

As part of the RAPiD 3.0 pipeline, FASTQC was run for all samples and MultiQC was 

used to visualize and interpret the results. No samples were removed based on FASTQC 

metrics. Post alignment quality control of RNA-seq data was performed using Picard. 

Initial inclusion criteria consisted of at least 20 million passed reads, at least 20% of reads 

mapping to coding regions, and ribosomal rate < 30%. Additional QC was completed 

analyzing estimated counts, Transcripts Per Million (TPM), Counts Per Million (CPM), 

and TMM-voom (trimmed means of M-values) normalizations. Samples were removed if 

they were determined to be sex mismatches based on the expression of genes UTY and 

XIST compared to reported sex (Fig. S2D). Four samples were removed based on sex 

mismatches. Based on immune cell marker gene expression no samples were removed for 

having cell type contamination. Outliers were also removed after adjusting for covariates 

using dimensionality reduction through principal component analysis (PCA) and MDS that 

were selected to be used in differential analyses (Fig. S2E). Seven samples were removed 

after PCA and MDS analysis.

Individual gene and transcript level counts and TPM used for downstream analyses were 

generated using RSEM and assembled to a matrix via the tximport R package. Then, CPM 

were calculated using cpm() function from the edgeR packing in R. Lowly expressed genes 
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were filtered out, which were defined as having less than one count per million in at least 

30% of the samples leading to a total of 13,667 genes.

Understanding sources of expression variation and covariate selection—To 

understand major sources of variation in the gene expression data, we used the R package 

variancePartition 74, which uses a linear mixed model to attribute a percentage of variation 

in expression based on selected covariates on a per gene basis. This package was used 

with each of the datasets that were analyzed and treated separately. This way, we could 

identify the sources of variation for each dataset and thus regress out the specific covariates 

in each of the analyses. After extensive QC (see Supplementary information), we decided 

to use a design which includes those covariates that explained the most variance in 

gene expression (on average across genes) according to variancePartition results, which 

is as follows: expression ~ rna_batch + age + sex + RIN + PCT_USABLE_BASES + 
PCT_RIBOSOMAL_RNA + MDS1 + MDS2 + MDS3 + MDS4.

Differential Expression Analysis—Differential expression analysis was performed 

between PD cases and controls through a linear model using the R package limma version 

3.38.3 75. These data were normalized using TMM values calculated from edgeR and 

voom transformed (Fig. S4A). Limma fits a linear model, and then runs a Bayesian 

moderated t-test which provides a P-value. P-values were then adjusted for multiple testing 

correction using the Benjamini-Hochberg FDR correction, which is implemented in the 

limma package. Differential isoform expression was performed following the same protocol.

Pathway and Gene Set Enrichment analysis—(i) Pathway analysis: we performed 

pathway analysis independently using the following input gene sets: upregulated DEGs 

(162), downregulated DEGs (138), differential splicing events (161) and DE transcripts 

(939) at FDR < 0.05. We used GSEA 76, focusing on Biological processes from Gene 

Ontology and limiting to gene sets between 10-500 genes. We show the 20 most 

significantly enriched pathways with at least five genes that overlap. (ii) Gene set 
enrichment analysis: to test specific pathways we used curated gene sets and tested statistical 

enrichment using Fisher exact test. The pathway lists were arranged as follows: (1) All gene 

ontology gene sets were downloaded from the amigo.geneontology.org resource searching 

for the specific pathways: mitochondria (315 genes), proteasome (450), lysosome (682), 

inflammatory response (694). (2) Mitochondrial curated list: 315 genes 28. From this gene 

list, we separated the different specific mitochondrial pathways (OXPHOS, Mitonuclear 

cross-talk and mitochondrial dynamics) following the paper specifications. (3) Proteasomal 

curated list: 39 genes 77. (4) Ubiquitin-related curated list: 428 genes combined from 

ubiquitin-like modifier activating enzymes (HGNC dataset), ubiquitin conjugating enzymes 

E2 (HGNC dataset) and ubiquitin ligase E3. (5) Lysosomal curated list: 435 genes from The 

Human Lysosome Gene Dataset.

qPCR validation—Briefly, RNA was reversed transcribed to cDNA and qPCR was 

performed using Taqman assays (ThermoScientific) for targeted genes. Fluorescence reading 

of the Taqman assays was performed using QuantStudio 7 Flex (Applied Biosystems). 
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Results were analyzed using the comparative threshold cycle (Ct) and expressed as fold-

change.

Splicing analysis

See Supplementary information for splicing analysis.

Parkinson’s Disease Progressive Marker Initiative (PPMI) RNA-seq data analysis

See Supplementary information for whole blood PPMI transcriptomic analysis.

Co-expression Network Analysis

Expressed genes were filtered by protein-coding according to GENCODE annotation 

version 30 (n = 11,475 protein-coding genes), and expression data was transformed using 

voom. To minimize the effect of confounders we used the “num.sv” function in the 

Bioconductor package sva embedded with the permutation-based approach algorithm “be” 
78, 79, to get the number of surrogate variables (SVs) which estimated 12 SVs to be 

regressed from the whole matrix (n=230 samples). Then, using the sva_network package, 

we computed the SV loadings of the standardized expression matrix with singular value 

decomposition (SVD), and computed the residuals after regressing the top 12 SVs. Linear 

regression between the SVs and the covariates showed correlation mostly with technical 

covariates, including lane, batch, percentage of ribosomal bases and other sequencing 

metrics such as % of mRNA and intergenic bases (Fig. S6A).

The co-expression network analysis was performed using the R package of Weighted 

Gene Correlation Network Analysis (WGCNA) 80 following the standard pipeline to fit 

a scale-free topology (R2 > 0.8) and applying a Soft Threshold power of 5 into a signed 

network model (Fig. S6B). The adjacency matrices were constructed using the average 

linkage hierarchical clustering of the topological overlap dissimilarity matrix (1-TOM). 

Coexpression modules were defined using a dynamic tree cut method with minimum 

module size of 20 genes and deep split parameter of 4. Modules highly correlated with 

each other, corresponding to a module eigengene (ME) correlation of 0.75 were merged, 

resulting in a total of 65 modules (Fig S6D). The genes were prioritized based on their 

module membership value, also known as eigengene-based connectivity (kME). The top 

hub genes for each module are shown in Table S11. calculated the Pearson correlation 

between the MEs and disease diagnosis, and prioritized those modules with FDR adjusted 

P-value from a Wilcoxon rank-signed test. Network visualization was done using the 

“exportNetworkToCytoscape” function from WGCNA R package to export the lists of nodes 

and edges, and the ggraph R package 81 to create the figures. See extended information for 

Heritability analysis.

Single-cell RNA-seq data generation and processing

Using cryopreserved PBMCs, monocytes were isolated for scRNA-seq following the same 

protocol as previously described 82. scRNA-seq with multiplexed cell hashing 82 was 

performed at the New York Genome Center (NYGC) on purified monocytes from 10 donors, 

including three controls and seven PD patients (two with GBA mutations and one with a 

LRRK2 mutation).
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See Supplementary information for extensive QC in scRNA-seq. After QC, we used the 

R package Seurat (v3.1.0) 83, 84 to remove non-protein-coding genes identified through 

biomaRt 85, keeping 14,827 protein-coding genes out of a total 24,914 genes. We also 

filtered-out low-quality cells that expressed less than 200 genes or over 2,500 genes, 

and cells that expressed greater than 5% mitochondrial genes using the “FilterCells” 

function in Seurat, reducing the total number of cells to 19,144. Lastly, expression counts 

were normalized using the “preprocess_cds” function in monocle3 with unique molecular 

identifier (UMI) count and % mitochondrial genes as covariates. Dimensionality reduction 

was then performed using Uniform Manifold Approximation and Projection (UMAP) 86, 87 

via the “reduce_dimension” function in monocle3 34. To identify cell subpopulations, 

we applied Louvain clustering via the “cluster_cells” function in monocle3 using only 

the top 2000 most variable genes (identified with the “FindVariableGenes” function in 

Seurat) (Extended Data Fig. 5C). This yielded 6 discrete clusters, of which the largest 

two were identified as Classical (Cluster 1; CD14++/CD16−) and Intermediate (Cluster 2; 

CD14++/CD16+) monocytes based on the expression of cell-type markers. We performed 

differential expression between PD and controls without considering the independent 

subclusters (“across-clusters”) as replication of the bulk RNA-seq. We also identified 

differentially expressed genes between Classical and Intermediate monocyte clusters with 

the “fit_models” function in monocle3, which by default fits a generalized linear model for 

each gene with a quasi-Poisson expression response function, calculates coefficients under 

the Wald test, and corrects for multiple hypothesis testing using false discovery rate 88.

Human microglia isolation and transcriptome data generation

Fresh isolation of human microglia: Post-mortem brain samples were obtained from 

the Netherlands Brain Bank (NBB) and the Neuropathology Brain Bank and Research 

CoRE at Mount Sinai Hospital. The permission to obtain brain material was obtained from 

the Ethical Committees and the project was approved by the IRB from both institutions. 

Written informed consent for autopsy and necessary clinical data was previously obtained. 

Controls were donors with non-neurological diagnoses and including various causes of 

death such as euthanasia, cardio-respiratory disease or cancer. For PD we included samples 

with confirmed clinical diagnosis without neuropathological confirmation. Brain tissue was 

stored in Hibernate media (Gibco) at 4 °C upon processing, which happened within 24 

hours after autopsy (Extended Data Fig. 6). Microglia were isolated from the following 

regions, all of which have been linked to PD 89-92: corpus callosum (CC; 13 samples), 

medial frontal gyrus (MFG; 40 samples), superior temporal gyrus (STG; 30 samples), 

thalamus (THA; 23 samples), sub-ventricular zone (SVZ; 18 samples) and substantia nigra 

(SN; 1 sample). Microglia were isolated as previously described before 93 with minor 

modifications. In brief, tissue was first mechanically homogenized with the help of cell 

strainer and pipetting following enzymatic digestion with 0.33 mg/ml of DNase I (Sigma 

Aldrich) and 0.2% of Trypsin (Invitrogen) in a shaking incubator (140 rpm, 37 °C) for 30 

minutes. After washing the tissue in GKN/BSA buffer (PBS + 2 g/L d-(1)-glucose + 0.3% 

bovine serum albumin (BSA), pH 7.4), cells were resuspended in 20 ml of GKN/BSA and 

10 ml of Percoll (GE Healthcare) was added to the top drop-wise. The Percoll gradient was 

generated with 40 minutes of centrifugation at 4000 rpm 4 °C with no brake. The top myelin 

phase was discarded and the second layer, mainly containing astrocytes and microglia, 
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was transferred to a new tube. Microglia were purified using human CD11b+ magnetic 

beads (Miltenyi) following the manufacturer’s instructions and the manual magnetic sorter. 

Microglia samples were stored in RLT buffer + 1% 2-Mercaptoethanol. RNA was isolated 

as previously described. Library preparation was performed at Genewiz using the Ultra-low 

input system which uses Poly-A selection to remove the rRNA. Purity of microglia was 

confirmed by qPCR comparing the homogenate, positive and negative fraction.

Microglia transcriptomic analysis—RNA-seq data were processed using the RAPiD 

pipeline, with the same configuration as MyND analysis. RNA-seq QC was performed 

by applying three filters to remove samples (considering the whole cohort): (i) less than 

10 million reads aligned to the reference genome (GRCh38) using the STAR aligner; (ii) 

samples with more than 20% of the reads aligned to ribosomal regions; (iii) samples with 

less than 10% of the reads mapping to coding bases. Gene counts were generated by 

RSEM and tximport. Genes with more than 1 cpm in 30% of the samples were kept for 

downstream analysis. Differential expression was performed using the DREAM method 41 

from variancePartition R package 74 to account for repeated measures. Since each donor 

can contribute multiple samples from different brain regions (Extended Data Fig. 6B), 

we modeled the donor as a random effect and added selected covariates to adjust for 

possible technical and biological confounders. In order to determine the covariates to add 

to the model we ran variancePartition (Extended Data Fig. 6E). The final model used was 

expression ~ donor_id + tissue + sex + age + fastqc_percent_gc + featurecounts_assigned 
+ picard_pct_mrna_bases + picard_pct_pf_reads_aligned + picard_pct_ribosomal_bases + 
lane.

Quantitative Trait Loci Analysis

To perform eQTL mapping, following the GTEx pipeline 94 we converted gene expression 

matrices to BED format, performed TMM normalization, filtered for lowly expressed genes, 

removing any gene with less than one TPM in 20% of samples and at least 6 counts in 20% 

of samples, and inverse normal transformed each gene across samples. We tested 18,430 

genes. Then, PEER 95 factors were calculated to estimate hidden confounders within our 

expression data. We created a combined covariate matrix that included the PEER factors 

and the first four genotyping ancestry MDS values. We used 15 PEER factors as covariates 

in our QTL model (Fig. S9A). To confirm that our DNA and RNA samples were from 

the same donor, we used mbv from QTLtools 96. Based on this, we removed 7 samples. 

To test for cis-eQTLs, linear regression was performed using the QTLtools nominal pass 

for each SNP-gene pair using a one megabase window within the transcription start site 

(TSS) of a gene. To test for association between gene expression and the top variant in cis, 
we used the QTLtools permutation pass which performs gene-based permutation with 1000 

permutations. To identify eGenes, we performed FDR correction (using a threshold of ≤ 

0.05) on the P-value of association adjusted for the number of variants tested in cis given 

by the fitted beta distribution. We estimated replication of MyND monocyte cis-eQTLs 

(discovery) using CD14+ eQTL data set from Fairfax et al. (replication)97 using the q-value 

R package to estimate π1 (Fig. S9C).
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To perform splicing quantitative trait loci analysis (sQTLs), we used junction counts 

generated from regtools. All junction files were clustered using the Leafcutter script, 

specifying for each junction in a cluster a maximum length of 100kb. Following GTEx, 

introns without read counts in at least 50% of samples or with fewer than 10 read counts 

in at least 10% of samples were removed. Introns with insufficient variability across 

samples based on the thresholds provided by GTEx consortium 98 leaving us with a final 

set of 107,838 junctions within 35,056 clusters. Filtered counts were normalized using 

prepare_phenotype_table.py from leafcutter, merged, and converted to BED format, with the 

start/end positions from the gene to which an intron was mapped. We created a combined 

covariate matrix that includes 15 PEER factors and the first 4 genotyping ancestry MDS 

values as input to the analysis (Fig. S9B). QTL mapping was performed with QTLtools, 

testing all variants within 1 megabase of the transcription start site, with 1000 permutations, 

grouping SNPs by gene. Genes with splicing QTLs were identified by FDR correction 

(<0.05) of the permutation P-values.

Colocalization analysis

GWAS Data: we used the latest PD GWAS full summary statistics 3. Liftover of the full 

summary statistics from hg19 to hg38 was performed using GWAS harmonization 99. To 

perform the colocalization analysis between GWAS and eQTL data, we used the coloc.abf 

function from the coloc package 47 with default parameters. Our criteria for considering a 

signal to be colocalized was PPH3 + PPH4 > 0.8, PPH4/PPH3 > 2. All SNPs tested within 1 

Mb either side of each GWAS locus were considered for colocalization analysis. To annotate 

SNPs, we incorporated CD14+ monocyte H3K27ac marks from HaploReg v4.1 100 and 

microglia H3K27ac marks, ATAC-seq peaks, and PU.1 annotations from Nott et al. 48 data 

on the UCSC genome browser.

Fine-mapping

The echolocatoR R-based pipeline101 was employed to functionally fine-map PD GWAS 

loci. Specifically, we used PolyFun+SuSiE 102,103 which computes SNP-wise heritability-

derived prior probabilities using a L2-regularized extension of stratified LD SCore (S-

LDSC) regression 35,104,105. A UK Biobank baseline model composed of 187 binarized 

epigenomic and genomic annotations was used as the annotation input 106. We applied 

PolyFun+SuSiE to PD GWAS summary statistics and LD reference generated from 337K 

UK Biobank individuals of white British ancestry.

Statistics and reproducibility

We have generated genotyping (GWAS chip) and RNA-seq (bulk and single-cell) data from 

human CD14+ monocytes, and bulk RNA-seq data from human CD11b+ microglia. Samples 

were age and sex matched between case and control groups. Statistical significance was 

determined by the statistical tests, and/or R packages, indicated in the methods section 

and/or figure and table legends corresponding to each analysis. Sample size for each 

analysis is indicated in both the methods section and figure and table legends. Data were 

excluded from each analysis based only on criteria that was outlined in the methods section 

corresponding to each analysis. Researchers were not blind to disease group when assigning 

samples to sequencing batches or when performing statistical analysis of sequencing data. 
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Further information on statistics and reproducibility is available in the corresponding 

sections of the methods and in the Reporting Summary.

Data availability

Processed read counts and full eQTL summary statistics are available from 

Zenodo online data sharing portal at https://zenodo.org/record/4715907. Raw RNA-

seq data and genotypes from the MyND cohort are made available via dbGAP 

(study accession ID: phs002400.v1.p1) at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs002400.v1.p1. RNA-seq data and genotypes of Parkinson's 

Progression Markers Initiative (PPMI) cohort were obtained from the Accelerating 

Medicines Partnership program for Parkinson's disease (AMP-PD) Knowledge Platform. 

For up-to-date information on the study, https://www.amp-pd.org.

Code availability

The code used for the primary analysis is available on GitHub at https://github.com/

RajLabMSSM/MyND-Analysis. Any additional code used for analysis is available upon 

request from the corresponding author.
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Extended Data

Extended Data Fig. 1. Experimental flow outline and demographic/clinical information for 
subjects for monocytes isolation
(A) Blood was collected from five independent clinics across New York City (ADRC, CCH, 

MSMD, BIMD, and NYUMD; details described in Methods) and transferred to the Icahn 

School of Medicine at Mount Sinai for monocyte sorting and RNA/DNA isolation. Samples 

were genotyped for common SNPs using Global Screening Array (GSA) and LRRK2, GBA 

and APOE were independently genotyped. RNA-seq was performed at Genewiz Inc. in 

three independent and randomized batches. DNA and RNA data was subjected to stringent 

QC, DNA data was imputed and ancestry was calculated. DNA and RNA were compared 

to the identification of miss-matches prior outlier identification. After QC, a total of 230 

samples were used for subsequent analysis. (B) Demographic, (C) genotype and (D) clinical 

variables describing the 230 samples included in the study.
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Extended Data Fig. 2. Differential expression analysis at the transcript level in PD and controls 
derived monocytes.
(A) MA plot showing the fold-change (log2 scale) at the transcript level in the y-axis 

and the mean of log2counts (x-axis), highlighting the DETs at FDR < 0.05 in red. (B) 

Volcano plot showing the fold-change (log2 scale) of transcripts between PD-monocytes (n 

= 135) and controls (n = 95) (x-axis) and their significance in the y-axis −log10 P-value 

scale). DETs at FDR < 0.05 are highlighted in red (upregulated) and blue (downregulated). 

Moderated t-statistic (two sided) is used for statistical test (see R package limma). (C) 

Pathway enrichment analysis for the upregulated (n=230 independent samples) and (D) 

downregulated DETs using Biological processes from GSEA. Significance is represented 

in the x-axis (−log10 P-value scale of the q-value). Only the 20 most significant pathways 

(q-value < 0.05) with a minimum overlap of 5 genes are shown. Pathways are grouped and 

colored by biological related processes. n=230 independent samples
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Extended Data Fig. 3. Differential expression analysis at the splicing level in PD and controls 
derived monocytes
(A) Histogram reflecting the counts (y-axis) and the % of missingness (x-axis). (B) Volcano 

plot showing the delta PSI of genes with splicing events in PD-monocytes (n = 135) and 

controls (n = 95) (x-axis) and their significance in the y-axis (−log10 P-value scale). DSs at 

FDR < 0.05 are highlighted in red (delta PSI > 0) and blue (delta PSI < 0). Positive delta-PSI 

indicates that the long isoform is favored whereas negative delta-PSI indicates preference for 

the short isoform. Chi-squared is used for statistical test (C) Pathway enrichment analysis 

for the DSs at FDR < 0.0.5 (left panel) DSs + DEGs at FDR < 0.05 (right panel) using 

Biological processes from GSEA. Significance is represented in the x-axis (−log10 P-value 

scale of the q-value). Only the 20 most significant pathways (q-value < 0.05) with a 

minimum overlap of 5 genes are shown. Pathways are grouped and colored by biological 

related processes. n=230 independent samples. (D) Examples of genes showing significant 

splicing events.
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Extended Data Fig. 4. Module enrichment for biological pathways
(A) Enrichment of modules (x-axis) containing co-expressed genes for specific biological 

pathways and curated gene sets (y-axis). Modules are represented by color names and 

are ordered by size. Enrichment for selected gene sets and GO biological processes (top 

panel). The size and color of the circles indicate the significance level (−log10 P-value). 

Enrichments for PD heritability, using stratified LD score regression (bottom panel). The 

size and color of circles indicate the enrichment value (from LD score) and significance 

level (−log10 P-value) of enrichment, respectively. Only modules that were significant 

at a nominal P-value < 0.05 are shown here. (B) Barchart showing Pearson correlation 

coefficient (r) (x-axis) of three modules (y-axis) significantly associated with PD (FDR < 

0.05) determined by the module eigengene analysis. Numbers on the plot represent adjusted 

P-values, Two-sided Wilcoxon rank-signed test. n=230 independent samples.
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Extended Data Fig. 5. Monocyte subcluster characterization by single-cell analysis
(A) Proportions of the 3 main monocyte sub-clusters using FACS (n = 11 controls and 11 

PD). No statistical differences were obtained between groups. (B) Cell proportions of the 

6 sub-clusters obtained by unsupervised clustering with monocle3 in scRNA-seq (n = 3 

controls and 7 PD). No statistical differences were obtained between cases and controls in 

cell proportions. Cluster 1 corresponds to classical monocytes and cluster 2 to intermediate 

monocytes. (C) Top: UMAP colored by diagnosis (green = controls, yellow = PD). Bottom: 

UMAP colored by CD14 and FCGR3A (CD16) marker genes expression. (D) Histogram 

showing the variance (y-axis) explained by the 20 first PCA components (x-axis). (E) 

Histogram showing the frequency of the genes colored by diagnosis (green = control, yellow 

= PD). (F) Expression of mitochondrial genes by each cluster and divided by diagnosis. 

Boxplots: the line represents the median. The boxes extend from the 25th - 75th percentile 

and the lines extend 1.5 times the interquartile range. n=10 independent donors.
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Extended Data Fig. 6. Fresh microglia transcriptome analysis
Microglia transcriptomic profiling was performed from 22 samples from 13 PD donors 

and 106 samples from 42 control donors. (A) Experimental workflow for the generation of 

human microglial transcriptomic profiles (B) Tables describing the samples included in the 

study (top: demographic information, middle: clinical information, bottom: brain regions). 

CC: Corpus Callosum; MFG: medial frontal gyrus; STG: Superior temporal gyrus; THA: 

thalamus; SVZ: subventricular zone; SN: substantia nigra (C) Heatmap for the expression 

of marker genes of different brain cell types (red: microglia, dark blue: astrocytes, green: 

neurons, light blue: oligodendrocytes). (D) Microglial isolation purity assessed by qPCR 

comparing the brain homogenate, and the positive and negative fractions after CD11b 

magnetic beads comparing microglial markers (P2RY12, CXCR1, TREM2) and astrocytic 

markers (GFAP, FGFR3). (E) Violin plot showing the % of variance (y-axis) explained by 

known covariates (x-axis) by variancePartition. Each dot represents a gene. (F) PCA after 

regressing out covariates colored by diagnosis (left panel), brain region (middle panel), 

postmortem interval (right panel). n=128 samples from 55 independent donors. (G) Volcano 

plot showing the fold-change of genes (log2 scale) between PD-microglia (22 samples 

from 13 donors) and controls (106 samples from 42 donors) (x-axis) and their significance 
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(y-axis, −log10 scale). Moderated t-statistic (two sided) is used for statistical test (see R 

package DREAM).(H) Expression of selected mitochondria-specific genes in microglia. 

Adjusted gene expression levels after normalization are shown. Boxplots: the line represents 

the median. The boxes extend from the 25th - 75th percentile and the lines extend 1.5 times 

the interquartile range. n=128 samples from 55 independent donors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview of the study design.
Parkinson’s disease and age-matched control subjects were recruited from five clinical sites: 

Movement Disorder Center at Mount Sinai Beth Israel (MSBI), Bendheim Parkinson and 

Movement Disorders Center at Mount Sinai (BPMD), Fresco Institute for Parkinson’s and 

Movement Disorders at New York University (NYUMD), and the Alzheimer’s Research 

Center (ADRC) and Center for Cognitive Health (CCH) at Mount Sinai Hospital. Fresh 

blood samples from PD and age-matched healthy subjects were collected following a 

rigorous, standardized set of procedures and used to isolate peripheral blood mononuclear 

cells (PBMCs). From the PBMCs, CD14+ monocytes were isolated using magnetic beads. 

Primary microglia were isolated from independent autopsied brains from two brain banks: 

Netherlands Brain Bank (NBB) and the Neuropathology Brain Bank and Research CoRE 

at Mount Sinai Hospital. Primary human microglia were isolated using CD11b+ beads. 

mRNAs from these cells were profiled using RNA-seq and single-cell RNA-Seq. Genome-

wide genotyping was performed using DNA isolated from these samples. The data 

generated enabled to (from left to right) (i) description of the transcriptomic profiling of 

PD-monocytes at the gene, transcript and splicing levels (n=230), (ii) understanding of the 

contribution of the different monocyte subpopulation to the disease (n=10), (iii) integration 

of genomic and expression data to identify monocyte eQTLs (n=180) and (iv) comparison of 

the transcriptome signatures of PD peripheral monocytes to CNS microglia (n, samples=128, 

N, donors=55).
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Figure 2. Transcriptomic analysis of PD-derived monocytes and age-matched controls.
(A) Volcano plot showing the fold-change (FC) of genes (log2 scale) between PD-monocytes 

(n=135) and controls (n=95) (x-axis) and their P-values significance (y-axis, −log10 scale). 

DEGs at FDR < 0.05 are highlighted in red (upregulated genes) and blue (downregulated 

genes). Moderated t-statistic (two-sided) is used for statistical test. (B) Pathway analysis 

for the upregulated (left panel) and downregulated (right panel) DEGs. Significance is 

represented in the x-axis (−log10 scale of the q-value). Only the 20 most significant 

pathways (FDR q-value < 0.05) with a minimum of 5 genes overlap are shown. Pathways 

are grouped and colored by biologically-related processes. n=230 independent samples (C) 
Examples of selected mitochondrial (top panel) and proteasomal (bottom panel) DEGs. 

Adjusted expression of the voom normalized counts after regressing covariates is shown. 

Boxplots: the line represents the median. The boxes extend from the 25th - 75th percentile 

and the lines extend 1.5 times the interquartile range. n=230 (D) Fold-change (log2 scale) 

correlation of DEGs between MyND monocytes (x-axis) and AMP-PD whole blood (y-

axis). Genes are colored by significance, considering significant DEGs at FDR < 0.05. 

(E) Fold-change (log2 scale) correlation of DEGs between bulk monocytes (x-axis) and 

single-cell across-clusters analysis (y-axis). Four outlier genes were removed for easier 

visualization. Genes are colored by significance, considering significant DEGs at q-value < 

0.05.
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Figure 3. Co-expression networks in monocytes capture PD-specific processes.
(A) Eigengene analysis of all genes in the “mitochondrial” GO category (n = 1302) 

between PD and controls (Left panel; Two sided Wilcoxon rank-signed test, P-value = 

0.0012). Example of a module (green) enriched for PD heritability, mitochondrial genes, 

and upregulated DEGs (Right panel). Edges represent co-expression connectivity. Nodes 

in orange are upregulated DEGs at FDR < 0.05; yellow triangles are genes in PD GWAS 

loci. (B) Eigengene analysis of all genes in the “lysosome” GO category (n = 526) between 

PD and controls (Two sided Wilcoxon rank sum test, P-value = 0.0013) (Left panel). 

Example of a module (salmon) enriched for PD heritability, proteo-lysosomal genes, and 

downregulated DEGs. Nodes in orange are upregulated DEGs at FDR < 0.05; grey are 

selected proteo-lysosomal genes; and yellow triangles are genes in PD GWAS loci (Right 

panel). Boxplots: the line represents the median. The boxes extend from the 25th - 75th 

percentile and the lines extend 1.5 times the interquartile range.
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Figure 4. Single-cell profiling of CD14+ monocytes from PD and control subjects.
(A) Generation of scRNA-seq from seven PD and three controls yielded 19,144 cells. 

Uniform Manifold Approximation and Projection (UMAP) visualization representing 

the six clusters including CD14++/CD16− classical monocytes (purple) CD14++/CD16+ 

intermediate cluster (green). (B) Comparison of the relative levels of expression of 

mitochondrial and proteasomal genes in the classical vs. intermediate monocytes using 

normalized effect (without considering diagnosis) 34,60. n=10 independent samples (C) 
Volcano plot showing the normalized effect within CD14++/CD16+ intermediate cluster of 

PD-monocytes and controls (x-axis) and their significance (y-axis, −log10 P-value). DEGs at 

q-value < 0.05 are highlighted in red (upregulated genes) and in blue (downregulated genes). 

Wald statistic is used for statistical test.
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Figure 5. Comparing the transcriptome profiles of PD monocytes and primary microglia
(A) Effect size (log2[FC]) barplots of PD vs control differential expression in different 

datasets: substantia nigra (SN; light purple) 43, human microglia from MyND (dark purple), 

monocytes from MyND (dark green) and whole blood from AMP-PD (light green). Left 

panel: nuclear mitochondrial genes and proteasomal genes which are DEGs at FDR < 0.05 

in monocytes from MyND. Right panel: All S100 genes tested across datasets. Bars indicate 

+/− SEM. Corrected P-value: *FDR < 0.05 in all datasets; *FDR < 0.15 for microglia 

MyND. Moderated t-statistic (two-sided) is used for statistical test. (B) Heatmap showing 

the fold-change (log2 scale) of disease vs controls of OXPHOS genes (y-axis) across 

different diseases (PD, Depression or Psychiatric disorders [Bipolar and Schizophrenia]). 

Blue represents log2(FC) < 0 (downregulated genes) and red represents log2(FC) > 0 

(upregulated genes) when comparing disease vs. controls. Selected mitochondrial genes 

are shown. Nominal P-value: * P-value < 0.05; ** P-value < 0.01 for disease vs control 

differential expression. (C) qPCR validating the top differentially expressed OXPHOS genes 

(COXB, NDUFA1 and PET100) in monocytes and MDMs of controls (n = 11) and PD 

patients (n = 12). Graphs represent the fold change expression compared to controls. P-value 
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was calculated via t-test. Boxplots: the line represents the median. The boxes extend from 

the 25th - 75th percentile and the lines extend 1.5 times the interquartile range.
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Figure 6. Parkinson’s disease susceptibility alleles alter gene expression in monocytes.
(A) Estimated proportion of heritability mediated by cis-genetic component of expression 

(h 2med/h 2g) in monocytes, DLPFC 46, and microglia 45 for AD 61, PD 3, Schizophrenia 62 

and Height 63 GWAS. Bars indicate +/− SEM. (B) Colocalization of PD GWAS loci and 

monocyte cis expression or splicing QTLs. Shown in the bar plots are Posterior Probability 

(PPH4) from coloc 47 that supports the hypothesis (PPH4) that both eQTL (or sQTL) and 

PD GWAS share the same single variant. PD loci with suggestive colocalization (PPH4 

> 0.5) are shown along with the eGene and the lead eQTL SNP (in LD with the lead 

GWAS SNP; r2 > 0.8). Genes in bold indicate reliable evidence in favor of a colocalized 

signal (defined as PPH3 + PPH4 > 0.8, PPH4/PPH3 > 2). n=180 independent samples. (C) 
Boxplot of selected eQTLs with gene expression (PEER adjusted) per individual stratified 

by genotype. The eQTL P-value and effect size (linear regression, see QTLtools) are listed 

on top. The PD GWAS effect allele is in bold. Boxplots: the line represents the median. The 

boxes extend from the 25th - 75th percentile and the lines extend 1.5 times the interquartile 

range. n=180 independent samples. (D) Fine-mapping of the BST1 locus. Colocalization 

of monocyte eQTL (top panel) and PD GWAS association (middle panel). Fine-mapping 

of BST1 using PolyFun 64 prioritizes two variants within the 95% credible set (bottom 

panel), one of which is a lead eQTL SNP (rs34559912). (E) Example of an sQTL within 

FAM49B showing intronic ratios stratified by genotypes (left panel). The PD effect allele 

and most significant intronic excision (chr8:129903350:129970943) within FAM49B are 

in bold. The red (bold) line represents the most significant junction. sQTL boxplot of 

chr8:129903350:129970943 intronic excision ratio (PEER adjusted) per individual stratified 

by genotype (right panel). Boxplots: the line represents the median. The boxes extend from 
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the 25th - 75th percentile and the lines extend 1.5 times the interquartile range. n=180 

independent samples.
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