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Abstract

Mobile monitoring is increasingly employed to measure fine spatial-scale variation in air pollutant 

concentrations. However, mobile measurement campaigns are typically conducted over periods 

much shorter than the decadal periods used for modeling chronic exposure for use in air pollution 

epidemiology. Using the regions of Los Angeles and Baltimore and the time period from 2005–

2014 as our modeling domain, we investigate whether including mobile or stationary passive 

sampling device (PSD) monitoring data collected over a single two-week period in one or two 

seasons using a unified spatio-temporal air pollution model can improve model performance 

in predicting NO2 and NOx concentrations throughout the 9-year study period beyond what 

is possible using only routine monitoring data. In this initial study, we use data from mobile 

measurement campaigns conducted contemporaneously with deployments of stationary PSDs, 

and only use mobile data collected within 300m of a stationary PSD location for inclusion 

in the model. We find that including either mobile or PSD data substantially improves model 

performance for pollutants and locations where model performance was initially the worst 

(with the most-improved R2 changing from 0.40 to 0.82), but does not meaningfully change 

performance in cases where performance was already very good. Results indicate that in many 

cases additional spatial information from mobile monitoring and personal sampling are potentially 

cost-efficient inexpensive ways of improving exposure predictions at both two-week and decadal 

averaging periods, especially for the predictions that are located closer to features such as 

roadways targeted by the mobile short-term monitoring campaign.
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INTRODUCTION

Air pollution concentrations can vary widely within a city. This phenomenon may be due 

to factors that reflect local urban features, such as location and magnitude of the local 

emission sources, meteorology, physical features (e.g., buildings, elevated highways and 

urban canyons) and ventilation1. Among the top twenty most populous cities in the U.S, 

routine U.S. EPA air pollutant monitoring utilizes on average three to seven monitoring sites 

per city, depending on the pollutant. This density of monitoring may not accurately describe 

this spatial variability, especially for traffic-related air pollution.

Both short-term supplemental mobile monitoring campaigns and passive sampling 

campaigns are useful tools for ascertaining fine-scale variation in air pollutant 

concentrations, with mobile monitoring being increasingly employed for this purpose2–10 

and being used to quantify spatial variability in longer-term average pollution 

concentrations11–14. Thus researchers have adopted mobile monitoring to sample urban 

microenvironments1,11,15 as a supplement to routine stationary monitoring. In addition to 

the advantages of high spatial resolution and cost-effectiveness, mobile monitoring can also 

be performed using a single measurement platform, such as a modified vehicle that deploys 

multiple state-of-the-art air quality measurement instruments.

However, the use of mobile monitoring has been limited partly by the sheer number 

of manhours required to conduct the sampling. This results in challenges in adequately 

capturing temporal trends or temporal variations in concentrations compared to stationary 

monitoring approaches. One solution to this challenge is to aggregate mobile data over 

longer time periods. Levy et al. found that average pollutant concentrations from their 

mobile data collected during three-week campaigns in three seasons were within 25% 

of actual annual averages for NO2, NOx, CO and O3 and within 30% of actual annual 

average PM2.5 at fixed monitoring sites.11 Riley et al. and Tessum et al. reported strong 

to moderate correlations between co-located and concurrent mobile and fixed-site passive 

sampler measurements of NOx and NO2 in both heating and non-heating seasons on a two-

week timescale.12,13 These studies indicate that appropriately aggregated mobile monitoring 

data collected over the course of several weeks can provide useful information regarding 

spatial patterns in air pollutant concentrations. As mobile measurements can be taken at a 

large number of locations, this raises the prospect of developing stable surfaces of urban 

air pollution concentrations with high spatial resolution, allowing more accurate exposure 

estimates for epidemiologic studies.

A unified and flexible spatio-temporal air pollution modeling approach (the ST model) 

developed for the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) 

provides accurate fine-scale predictions for multiple air pollutants.16–19 This modeling 

approach employs land use regression in estimating spatially-varying long-term averages 
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(i.e., over several years), spatially-varying seasonal and long-term trends, and spatially 

correlated but temporally independent residuals in a universal kriging framework to develop 

space-time fields of air pollutant concentrations at fine spatial and temporal scales. The 

ST model has previously used stationary monitoring data from the MESA Air monitoring 

campaign along with data from the EPA Air Quality System (AQS). However, the model is 

also able to accommodate irregular space-time monitoring data of the type generated during 

a mobile monitoring campaign when averaged to the same time scale. Training and testing 

the ST model with the addition of mobile and/or passive sampler monitoring data is a critical 

step in determining the utility of mobile monitoring and passive sampling in generating 

accurate and more cost-efficient fine-scale air pollution concentration predictions. In this 

study, we evaluate the contributions of short-term mobile and passive monitoring platforms 

in developing long-term air pollution concentration predictions using routine ambient air 

monitoring network (AQS and several fixed monitoring sites conducted by MESA Air) data 

within the ST model framework.

METHODS

Overview

We developed independent spatio-temporal models of NOx and NO2 in Los Angeles and 

NOx in the Baltimore region for the period from June 2005 through December 2014 using 

NO2 or NOx measurement data and spatial covariates. During model development, we added 

data from a supplemental monitoring campaign conducted in 2012 and 2013 in addition to 

the data previously used to model these pollutants for the MESA Air study. (Details are 

described by Keller et al.19 and in the Supplementary Information. We did not model NO2 

concentrations in the Baltimore region owing to inconsistencies in our mobile instrument 

measurements.) In this study, along with AQS and MESA fixed site data, either mobile 

monitoring data or passive sampler device (PSD) data sampled at the same locations as the 

mobile monitoring data were incorporated into the spatio-temporal model to assess whether 

addition of mobile monitoring data and PSD data can improve model performance. To 

evaluate the added benefit of using mobile monitoring data and PSD data during model 

training, we compared models created using three combinations of measurement data as 

three scenarios: 1) AQS+ fixed site data, 2) AQS + fixed site + mobile data, and 3) AQS + 

fixed site + PSD data. MESA home data (see Monitoring Data, below) were not included in 

the model training but were used to validate the model predictions.

Monitoring Data

The spatial domains of this study are the metropolitan regions of Los Angeles and 

Baltimore. We defined the metropolitan region as an area with an approximately 80 km 

radius of each metropolitan center. This definition allowed us to include more than 10 

AQS monitoring sites in each study domain. We aggregated all measurements to two-week 

intervals since many MESA Air supplementary monitoring instruments only collected data 

at the two-week time scale. Previous analysis has supported the appropriateness of this level 

of temporal aggregation for use in predicting various chronic health effects.19
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AQS and MESA Fixed-Site Air Monitoring—Daily NO2 and NOx concentration 

measurements from 1st June 2005 through 31st December 2014 from the U.S. EPA Air 

Quality System (AQS; https://aqs.epa.gov/api) were aggregated into 2-week averages. The 

Los Angeles and Baltimore study domains contained 21 and 11 AQS sites, respectively, as 

shown in Figure 1. AQS monitors that had less than two years of data or had partial temporal 

coverage (i.e., operated only in the summer) were excluded from this analysis.

In order to better capture the within-region variability of pollutant concentrations, MESA 

Air conducted a supplementary fixed-site monitoring campaign to collect more spatially rich 

data in addition to the AQS sites. Two-week average measurements of NO2 and NOx were 

repeatedly collected using Ogawa passive samplers20 from July 2005 through August 2009 

at five sites in the Baltimore region and at seven sites in the Los Angeles region with total 

numbers of 86 and 77 measurements in Los Angeles and Baltimore, respectively. MESA 

Air also collected two-week average measurements of NO2 and NOx at a subset of cohort 

participant residences in each metropolitan region. Those home outdoor sites were visited 

on a rotating basis with one to three visits in different seasons from May 2006 through May 

2008 in the Los Angeles region and from June 2006 through July 2008 in the Baltimore 

region. MESA Air monitoring site selection, data collection, and data quality control have 

been described in detail elsewhere.19, 20

Mobile and Fixed-Site Short-Term Air Monitoring—Details of the short-term mobile 

monitoring and short-term fixed-site passive sampling device (PSD) monitoring campaigns 

in Baltimore and Los Angeles are described by Riley et al. and Tessum et al.12,13; the 

monitoring campaign instrumentation is also summarized in the Supplemental Material. 

Briefly, 43 intersections were selected throughout each city as sampling sites, targeting 

intersections with a combination of residential streets and mixed traffic composition 

roadways. PSD monitoring campaigns were aligned with the mobile monitoring at these 

sampling sites and conducted at the same time. The Baltimore monitoring campaigns were 

conducted during the winter (February 12th –February 22nd) and summer (June 18th – June 

27th) of 2012. The Los Angeles monitoring campaigns were conducted during the spring 

(March 9th –March 26th) and summer (June 14th – July 1st) of 2013.

During each PSD monitoring campaign, single two-week integrated NOx and NO2 

concentrations were measured using Ogawa samplers (Ogawa & Company, USA, Inc., 

Pompano Beach, FL) at 43 sampling sites. These passive samplers were positioned on 

utility poles which were within a distance of approximately 2–8 m from the corresponding 

intersections.

During mobile monitoring campaign, measurements were taken in the immediate area 

surrounding the 43 intersections (approximately 300-meter radius) to create corresponding 

“fuzzy points.” The 300-meter radius was chosen based on Tessum et al. showing that a 

300-meter radius buffer includes a sufficient number of measurements and provides the 

best correlations between collocated and concurrent mobile and PSD measurements among 

several radii tested.13 On any given mobile monitoring day, NOx and NO2 measurements 

were sampled through a vehicle-roof-mounted inlet made of Teflon, and were taken between 

the hours of 14:00 and 19:00. Each sampling site was repeatedly visited by a gasoline 
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powered minivan (a 2012 model for the spring campaign and a 2013 model for the summer 

campaign) that was driven at an average speed of 20–30 km hr−1 from different directions. 

During the two-week monitoring period, each intersection was visited a total of 3–5 times 

for approximately 8–10 minutes each time. Measurements were recorded as 10-second 

averages. Data synchronization and logging were performed in the LabVIEW environment 

(with LabVIEW 2010 with DAQmx 9.4 and NI serial 3.8 instrument drivers). The unit of 

analysis for each pollutant was the median of these measurements during the two-week time 

periods at each sampling site.

A summary of all monitor sites and measurements by pollutant, region and site type is 

provided in Table 1. The location of each sampling site is shown in Figure 1.

Spatio-temporal Modeling Process

Our modeling approach combines the measurements described above with geographic 

information about the study domains to make predictions of concentrations at times and 

places for which we do not have measurements. See the Supplementary Information for 

additional details.

We generate spatio-temporal pollutant concentration surfaces using the ST modeling 

framework16–19 as implemented in the R language21 (SpatioTemporal package version 1.1.9, 

R Core Team). Briefly, the model is based on temporal trends, captured as smoothed 

empirical orthogonal functions estimated from the data, with spatiotemporal variation 

explained by spatial/geographic and spatiotemporal covariates. The model represents the 

spatio-temporal concentration surface as a series of temporal trends that vary in space. The 

model can be written as:

C s,t = β0 s + ∑i = 1
m βi s fi t + v s,t (1)

where C(s,t) represents the log-transformed 2-week average pollutant concentration at 

location s and time t, β0(s) is the long-term mean at location s, fi(t) are smooth time trends, 

and βi(s) are spatially varying coefficients for the time trends, and v(s,t) is spatio-temporal 

residual variation.

To configure the model, we first estimated temporal trends using AQS and MESA 

fixed site measurements, and imputed missing measurement values using an expectation 

maximization-like algorithm17. The time trends were then smoothed using splines with 

degrees of freedom, df, selected as we describe below. We next estimated long-term average 

and time trend coefficients, β0(s) and βi(s), respectively, represented as spatial random fields 

with a spatially varying mean, using geographic covariates at location s and employing 

a covariance function. We assume the spatiotemporal residuals v(s,t) to be correlated in 

space and independent in time. The model implicitly accounts for the effects of meteorology 

through the trend functions and spatially correlated residuals.

More than 300 geographic variables were compiled for use in our model, including 

proximity variables (e.g., distance to nearest major road) and buffer variables (e.g., total 

road length within a buffer area of various radii). Variables were selected for inclusion 
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separately for each pollutant and region following the approach described by Keller et al.19 

This approach removes geographic variables containing highly influential values or limited 

variability. Approximately 200 geographic variables remained after applying the selection 

criteria. An example of selected geographic variables for the NOx model in Los Angeles is 

shown in Table S1.

In model development, we do not directly use all ~200 geographic covariates shown in Table 

S1, nor do we select individual geographic covariates for inclusion in the model. Instead, we 

use partial least squares (PLS) regression to reduce the dimensionality of the covariates and 

then use the PLS components in model fitting. PLS regression generates linear combinations 

or scores that maximize the covariance between the dependent variable and the independent 

components and has been successfully used in spatial22 and spatio-temporal modeling19; 

typically, three or fewer components are needed to capture the multidimensional information 

and avoid overfitting. PLS scores at AQS and fixed sites were obtained by regressing 

the time series of observations, C(s,t), on the smoothed time trends using ordinary least 

squares regression. PLS scores at mobile/PSD monitoring and MESA home sites were 

calculated using scaled loadings of all the geographic variables at those locations and the 

score definitions determined from the regression at AQS and fixed sites. PLS regression was 

performed using the pls package in R.23

Evaluation of Model Performance

Model hyperparameters were chosen independently for each pollutant in each metropolitan 

region using leave-one-out cross-validation (LOOCV). Detailed information regarding 

hyperparameters is provided in the Supplementary Information. To select the model with the 

best performance, we performed cross-validation using AQS and fixed site measurements 

for each location in each region based on two-week measurements, withholding all 

measurements for a single site and predicting concentrations at that site using a model 

generated based on data at all other locations. We report root mean-squared error (RMSE) as 

an absolute measure of model performance and cross-validation R2 (denoted by R2
CV) as a 

relative measure of performance.

We additionally evaluated the pure out-of-sample performance of the final models by 

predicting concentrations at the MESA home sites, which were not used in model generation 

and thus represent an independent and robust measure to evaluate performance. However, 

because there only were a few measurements at those home sites, model performance was 

only evaluated at the two-week time scale. Evaluating model performance with external 

measurements provides an additional test of the model’s ability to provide predictions 

beyond the training locations.

RESULTS

Observations of pollutant concentration

Figure 2 shows concentrations of pollutants observed at each type of monitoring site for 

the entire study duration. NO2 and NOx concentrations sampled at MESA fixed site and 

home site were similar to ones sampled at AQS sites in both regions during the same 
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sampling period, while mobile and PSD measurements were systematically higher than AQS 

measurements, especially for NOx measurements. This suggests, as expected, that higher 

NOx levels are seen at sites close to certain traffic related air pollution sources, especially 

near intersections. NOx measurements from all types of monitoring sites in Los Angeles are 

higher than those in Baltimore (Table S2).

Table 2 provides a comparison of the mobile and PSD measurements for each metropolitan 

region and pollutant. In general, mobile measurements of NO2 and NOx in Los Angeles 

were systematically lower than PSD measurements, while mobile measurements of NOx 

in Baltimore were systematically higher than PSD measurements. Mobile measurements 

of both NO2 and NOx had smaller variance across locations than PSD measurements 

in the study regions. Seasonal differences were also observed between PSD and mobile 

NOx measurements: summer mobile measurements were systematically higher than 

PSD measurements; winter mobile measurements were systematically lower than PSD 

measurements. It is not clear what factor was responsible for the seasonal differences. 

Any or all of multiple factors such as seasonal traffic pattern changes, presence of heating 

sources, different time of day sampling schemes, weather conditions and changes in 

atmospheric chemistry could have played a role. NO2 measurements were only conducted in 

the summer, with mobile measurements being systematically lower than PSD measurements 

and with smaller variance.

Moderate to high correlations (R2=0.57 to 0.75) were present between mobile and PSD 

measurements of NO2 and NOx, as shown in Figure 3. The correlation between NOx 

measurements in Los Angeles was stronger than that in Baltimore.

Model structure

Table 3 shows the selected hyperparameters for each metropolitan region and pollutant. In 

general, the selected Los Angeles NO2 and NOx models were more highly parameterized 

than the Baltimore NOx model: the selected Los Angeles NO2 and NOx models had two 

time trends and had both spatial smoothing in the long-term average [β0(s)] and in the time 

trend coefficients [βi(s)], while the selected Baltimore NOx model had only one time trend. 

In addition, the Los Angeles NO2 model had three PLS scores per time trend, while both 

Los Angeles and Baltimore NOx models had two. Hyperparameters with larger values in LA 

indicate that more complex models were selected to account for variability in the data.

Model Results

Table 4 shows MESA home site evaluation results for all models, evaluated at the two-week 

time scale and classified by pollutant and region. Adding either PSD or mobile data 

improved home-site prediction performance for NO2 and NOx models in Los Angeles 

relative to models that included only AQS and fixed monitoring site measurements. 

Substantial improvement was seen in the Los Angeles NO2 model, but no substantial change 

was observed in the Los Angeles NOx model. However, the NOx model in Baltimore shows 

no improvement with addition of PSD data, and even shows some decrease in prediction 

accuracy at home sites with the addition of mobile data. In general, NO2 and NOx models 
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with PSD data consistently provided more accurate predictions than the comparable models 

with mobile data.

Scatter plots of two-week average home-site predictions and observations for each pollutant 

and region are shown in Supplemental Material Figures S2, S5 and S8. The benefits of 

adding mobile or PSD data to the model for NO2 and NOx in Los Angeles are most apparent 

at high-concentration locations (Figures S2 and S5). However, this is not the case when 

adding mobile data to the NOx model in Baltimore (Figure S8) where adding mobile data 

results in under-prediction at high concentration locations, while adding PSD data results in 

over-prediction at high-concentration locations.

Table 5 provides cross-validation metrics for all models at AQS and fixed sites for both 

two-week and long-term (entire study period) averages. In general, models with added PSD 

data consistently showed improved prediction accuracy at AQS and fixed sites at both short- 

and long-term time scales. Models with added mobile data did not substantially impact 

performance (either positively or negatively) when initial performance (i.e., models with no 

added data) is very good (i.e. models of NO2 and NOx in Los Angeles). However, models 

with added mobile data showed more substantial improvements in prediction accuracy for 

both two-week and long-term averages where model performance was initially not very 

good (i.e. models of NOx in Baltimore) as compared to models with added PSD data (R2
cv 

0.79 vs 0.69 and R2
cv 0.82 vs 0.58, respectively).

Figures S3–4, S6–7, and S9–10 contain scatter plots of predictions and observations for 

both two-week and long-term averages at AQS and fixed sites. As with predictions of 

home-site concentrations, the improvement in predicting both short- and long-term AQS and 

fixed site NO2 concentrations in Los Angeles when adding mobile and PSD data is mainly 

caused by more accurate predictions at high concentrations (Figures S3 and S4). The models 

predicting NOx at AQS and fixed sites in Los Angeles when adding mobile and PSD data 

show a similar pattern in improvement for short-term predications as the NO2 model in Los 

Angeles (Figure S7), but for long-term predictions prediction accuracy is improved at all 

concentrations (Figure S6). The improvement in predicting both short- and long-term AQS 

and fixed site NOx in Baltimore when adding additional data was also due to more accurate 

predictions at high concentrations (Figures S9 and S10). This improvement was particularly 

notable with addition of mobile data.

DISCUSSION

This study advances the literature by incorporating short-term mobile and PSD monitoring 

data targeting traffic intersections into spatio-temporal models to investigate the potential 

of improving short and long-term model predictions. In recent years, studies have adopted 

mobile monitoring data for use in LUR-based models for predicting short-term pollutant 

concentrations; however, to the best of our knowledge this is the first study to incorporate 

short-term mobile monitoring data for predicting long-term average concentrations. The 

unique flexible framework of this ST model allows for spatially and temporally unbalanced 

monitoring data to make this innovation possible. In addition, all models included spatial 

smoothing via universal kriging of the long-term average (columns 6 and 7 in Table 3), 
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showing that while PLS scores derived from geographic covariates explained much of 

the spatial variation in the data, borrowing strength across observations nearby in space 

results in improvement in those models. Additional spatial information from mobile/PSD 

monitoring data benefited models by better capturing spatial variation in the pollutant 

concentrations.

Prediction accuracy of most models was excellent (R2
CV > 0.8 as shown in Tables 4 and 

5, and estimated NRMSE<0.33, RMSE normalized by mean) in both regions for both 

pollutants when only using regulatory (i.e., AQS) and MESA fixed site monitoring data 

with long time series, leaving limited potential for further improvement. However, we 

find that the addition of short-term mobile or PSD measurements, especially the latter, 

do nevertheless generally increase model prediction performance; substantial improvements 

are observed in cases where model performance was initially not very good (R2<0.65) but 

not in cases where performance was already very good (R2>0.80). With mobile and PSD 

measurements being taken on and adjacent to roadways, they are especially well-suited to 

capturing the higher concentrations of traffic-related NO2 and NOx (Figure 2) resulting in 

improved model performance in predicting at higher concentration sites closer to roadways 

(Figures S2–S10). One possible explanation for the improvement in predicting home-site 

NOx concentrations in Los Angeles, but not in Baltimore, may be due to more home sites 

in Los Angeles being closer to roadways than in Baltimore (26% of those sites in Los 

Angeles were within a 100-meter distance to roadway while 20% of those in Baltimore 

were within a 100-meter distance to roadway, Figure S11), as well as the home-site NOx 

concentrations in Los Angeles being higher than those in Baltimore (median concentration: 

38 ppb vs. 15 ppb). For model performance at AQS and fixed sites, larger improvements 

generally were seen among NOx models with mobile and PSD data in Baltimore (26% and 

11% improvement in RMSE, respectively) than in the corresponding NOx models in Los 

Angeles (4% and 6% improvement in RMSE, respectively). This may also be related to the 

AQS and fixed site monitors in Baltimore being closer to roadways than in Los Angeles 

(31% of the sites in Baltimore were within 50 meters of the roadway while 7% of those in 

Los Angeles were within 50 meters of the roadway).

Although the addition of mobile and PSD data to the models resulted in improved pollutant 

concentration prediction performance, there are at least two additional issues that need to 

be addressed. First, we found unexpectedly poor performance for the NO2 model using 

AQS and fixed site data only for home site predictions in Los Angeles compared to other 

model scenarios. The NO2 models in Los Angeles in general had poorer predictions at 

home sites compared to NOx models in Los Angeles and NOx models in Baltimore. Part 

of the explanation for the poor performance of those NO2 models was the presence of a 

single outlier site, as shown in all three scatter plots in Figure S2. When this site was 

excluded, the R2
CV values increased 6–7% and RMSEs decreased 8%−18%. The high NO2 

concentration at this particular residential site was not reflected in a high NOx concentration 

at the co-located and concurrent sampling period. Second, we noticed the addition of mobile 

and PSD data worsened R2 and RMSE in two cases (Baltimore NOx models in Table 4 and 

LA NO2 models in Table 5). It is possible that the added data decreased model overfitting 

in the original models, thereby resulting in apparently worsened performance measures. 

Additional research is required to explore this possibility.
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Mobile and PSD data were collected at the same locations during the same two-week 

time periods. Although models using added mobile monitoring data show significant 

improvement among scenarios where model performance was initially not very good 

without added data, the improvement is less consistent than models using PSD data across 

all scenarios. This is likely because mobile measurements were taken during afternoon 

hours on 3–5 days only and therefore are less representative of two-week averages than are 

the PSD measurements, which were deployed for the entire two-week period. The mobile 

measurement values also represent an average of all measurements within 300 m of each 

intersection, while the PSD devices were deployed at a fixed location by the intersection. 

Although the mobile data added less value than did the PSD data, mobile data nevertheless 

did show improvements in some models and therefore may be of use in exposure studies that 

do not have the resources to deploy PSD monitors, in studies that focus on traffic-related air 

pollution exposure, or in studies measuring pollutants for which low cost sensors are not yet 

available. Additionally, our models using additional mobile data show some improvements 

in predictive ability, albeit not as good as models using PSD data, suggesting that mobile 

data have the potential to improve model performance even more if they can be sampled to 

better represent longer time periods, such as two weeks, in this case.

The design of the mobile monitoring campaign in this study was not specifically tailored for 

air pollution modelling, and therefore had several limitations. First, our mobile monitoring 

only sampled in the afternoon hours and only on weekdays, a period typically characterized 

by a higher mixing height and therefore better mixing. This limits the ability of these mobile 

measurements to serve as surrogates for two-week averages.13 For example, morning hours 

tend to have highest traffic-related emissions and relatively low atmospheric mixing depths, 

and weekends tend to have the worst traffic congestion in certain seasons. Second, each 

monitoring site in this study was visited only 3–5 times; more visits would likely yield 

a more representative average24. Third, we had 59 and 71 sites in the greater Baltimore 

and Los Angeles areas, respectively, with only 50 and 56 sites within the respective city 

limits. Recent work, however, has suggested that use of >200 sites is needed to accurately 

represent intra-urban concentration variability.25 A larger number of monitoring sites may 

be especially beneficial in a large urban area such as Los Angeles. Mobile monitoring, 

by its nature, can provide large spatial coverage. However, in this study we focused on 

establishing a method to aggregate and combine mobile monitoring data into an air pollution 

exposure model. Therefore, mobile monitoring data were only aggregated into 43 locations 

for comparison with the sites where PSD monitoring data were available. Future research 

could leverage the full mobile dataset to increase the spatial coverage by including more 

on-road locations, and increase the number of repeat visits at those locations for more 

representative average measurements.

This study demonstrated the feasibility and value of adding short-term mobile monitoring 

and passive sampling data to long-term fixed site monitoring data in generating spatio-

temporal model predictions of both short and long-term air pollutant concentrations. When 

aiming to improve exposure predictions for use in epidemiological studies, adding short-

term supplemental monitoring data is a potentially useful way of improving fine-scale 

spatial coverage at both shorter and longer term time frames. Mobile monitoring designs 
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may be particularly effective for modeling traffic-related pollutants that cannot be sampled 

with low-cost sensors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Maps of the modeling areas in the Los Angeles and Baltimore areas, including four types 

of monitoring sites. Abbreviations: AQS, U.S. Environmental Protection Agency (EPA) Air 

Quality System sites; MESA fixed, MESA Air fixed monitoring sites; MESA home, MESA 

Air home monitoring sites; Mobile, mobile monitoring sites (a center of “fuzzy points” 

collocated with passive sampler device [PSD] sites).
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Figure 2. 
Scatter plots of NOx observations from all five types of monitoring site in Los Angeles (a) 

and Baltimore (b), and NO2 observations in Los Angeles (c).
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Figure 3. 
Scatter plots of PSD and mobile observations for NOx in Los Angeles (a) and Baltimore (b), 

and for NO2 in Los Angeles (c), at the collocated 43 sampling sites
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Table 1.

Number of monitor sites and observations by pollutant, region and site type

Pollutant Site type* Number of sites Total observations
Number of observations per site

Minimum Maximum

NO2

Los Angeles, CA

AQS 21 5049 202 250

MESA fixed 7 599 81 90

MESA home 120 216 1 2

Mobile 43 43 1 1

PSD 43 43 2 2

NOx

Los Angeles, CA

AQS 21 5055 109 111

MESA fixed 7 599 81 90

MESA home 120 217 1 2

Mobile 43 86 2 2

PSD 43 86 2 2

Baltimore, MD

AQS 11 2256 147 251

MESA fixed 5 386 27 98

MESA home 85 171 1 3

Mobile 43 86 2 2

PSD 42 84 1 2

*
Site type abbreviations: AQS, U.S. Environmental Protection Agency (EPA) Air Quality System sites; MESA fixed, MESA Air fixed monitoring 

sites; MESA home, MESA Air home monitoring sites; Mobile, mobile monitoring sites (a center of “fuzzy points” collocated with passive sampler 
device [PSD] sites).
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Table 2.

Summary of monitoring data at mobile and PSD site by pollutant and region

Pollutant Site type
Winter/Spring Summer

n Mean ± SD n Mean ± SD

NO2 (ppb)

Los Angeles, CA

Mobile - - 43 12.3±3.22

PSD - - 43 14.9±3.37

NOx (ppb)

Los Angeles, CA

Mobile 43 37.7±7.56 43 25.4±3.32

PSD 43 48.6±6.93 43 25.1±4.58

Baltimore, MD

Mobile 42 35.2±10.0 42 24.5±6.30

PSD 42 40.2±11.2 42 12.2±5.67
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Table 3.

Model structure for the best model selected by AQS and fixed site cross-validation for each pollutant and 

region

Pollutant Location No. of time 
trends

No. of PLS 
scores

df/year in time 
trend

Spatial smoothing

Long-term 
average (β0)

Time trend 
coefficients (βi)

NO2 Los Angeles, CA 2 3 4 Yes Yes

NOx

Los Angeles, CA 2 2 8 Yes Yes

Baltimore, MD 1 2 4 Yes Yes
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Table 4.

External validation measures of predictive accuracy at home sites at the two-week time scale

Pollutant Model Scenario
Two-week averages

RMSE R 2 CV * R 2 CV reg *

NO2

Los Angeles, CA

AQS+Fixed Site 6.00 0.48 0.57

AQS+Fixed Site+Mobile 4.33 0.73 0.76

AQS+Fixed Site+PSD 4.27 0.74 0.77

NOx

Los Angeles, CA

AQS+Fixed Site 11.0 0.82 0.83

AQS+Fixed Site+Mobile 10.6 0.83 0.84

AQS+Fixed Site+PSD 10.2 0.84 0.85

Baltimore, MD

AQS+Fixed Site 4.97 0.90 0.90

AQS+Fixed Site+Mobile 6.14 0.84 0.87

AQS+Fixed Site+PSD 5.08 0.89 0.90

*
R2CV provides a measure of fit to the 1–1 line, in contrast to the typical regression-based R2 (R2CV reg)

Environ Sci Technol. Author manuscript; available in PMC 2022 March 16.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tessum et al. Page 20

Table 5.

Cross-validation measures of predictive accuracy at AQS and fixed sites at both the two-week and long-term 

time scale (entire study period)

Pollutant Model Scenario
Two-week averages Long-term averages

RMSE R 2 CV R 2 CV reg RMSE R 2 CV R 2 CV reg

NO2

Los Angeles, CA

AQS+Fixed Site 3.56 0.81 0.82 2.21 0.83 0.85

AQS+Fixed Site+Mobile 3.63 0.81 0.81 2.26 0.82 0.83

AQS+Fixed Site+PSD 3.51 0.82 0.82 2.04 0.85 0.85

NOx

Los Angeles, CA

AQS+Fixed Site 9.65 0.84 0.84 5.34 0.85 0.87

AQS+Fixed Site+Mobile 9.24 0.85 0.85 4.79 0.88 0.88

AQS+Fixed Site+PSD 9.04 0.86 0.86 4.30 0.90 0.90

Baltimore, MD

AQS+Fixed Site 9.61 0.61 0.75 7.88 0.40 0.82

AQS+Fixed Site+Mobile 7.07 0.79 0.79 4.28 0.82 0.85

AQS+Fixed Site+PSD 8.56 0.69 0.78 6.64 0.58 0.86
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