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Abstract

One of the challenging problems in neuroimaging is the principled incorporation of information 

from different imaging modalities. Data from each modality are frequently analyzed separately 

using, for instance, dimensionality reduction techniques, which result in a loss of mutual 

information. We propose a novel regularization method, generalized ridgified Partially Empirical 

Eigenvectors for Regression (griPEER), to estimate associations between the brain structure 

features and a scalar outcome within the generalized linear regression framework. griPEER 

improves the regression coefficient estimation by providing a principled approach to use external 

information from the structural brain connectivity. Specifically, we incorporate a penalty term, 

derived from the structural connectivity Laplacian matrix, in the penalized generalized linear 

regression. In this work, we address both theoretical and computational issues and demonstrate the 

robustness of our method despite incomplete information about the structural brain connectivity. 

In addition, we also provide a significance testing procedure for performing inference on the 

estimated coefficients. Finally, griPEER is evaluated both in extensive simulation studies and 

using clinical data to classify HIV+ and HIV− individuals.
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Résumé:
L’un des défis en imagerie cérébrale consiste à établir les principes pour incorporer de 

l’information provenant de différentes modalités d’imagerie. Les données de chaque modalité 

sont fréquemment analysées séparément, exploitant par exemple des techniques de réduction de la 

dimension, ce qui conduit à une perte d’information mutuelle. Les auteurs proposent une nouvelle 

méthode de régularisation, griPEER (ou par vecteurs propres ridgifiés partiellement empiriques 

généralisés pour la régression) afin d’estimer l’association entre des caratéristiques de structures 

du cerveau et une variable réponse scalaire dans le cadre d’une régression linéaire généralisée. Les 

griPEER améliorent l’estimation des coefficients de régression en établissant les principes d’une 

approche permettant d’utiliser des informations externes de connectivité des structures du cerveau. 

À cet effet, les auteurs ajoutent au modèle de régression pénalisée généralisé un terme de pénalité 

dérivé de la matrice laplacienne de connectivité structurelle. Les auteurs résolvent des problèmes 

théoriques et calculatoires, puis démontrent la robustesse de leur méthode lorsque l’information 

à propos de la connectivité du cerveau est incomplète. De plus, ils présentent une procédure de 

test d’hypothèse permettant de l’inférence au sujet des paramètres estimés. Finalement, les auteurs 

évaluent les griPEER dans de vastes études de simulation et en utilisant des données cliniques afin 

de classifier les individus en VIH+ et VIH−.
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1. INTRODUCTION

Neuroimaging data usually include multiple data types, but most commonly, the analysis 

is performed separately for each data type. Implicit in the work of Randolph, Harezlak, & 

Feng (2012) is a framework for the simultaneous use of multiple data types. For instance, 

structural and/or functional connectivity measures can be viewed as prior knowledge about 

the structure of dependencies between brain regions in a linear model that estimates the 

association between brain region properties (e.g., cortical thickness) and a scalar outcome. 

Karas et al. (2019) demonstrated that using correct prior information significantly increases 

estimation accuracy. The statistical methodology, ridgified Partially Empirical Eigenvectors 

for Regression (riPEER) (Karas et al., 2019), incorporates such a predefined structure 

into a regression model, which minimizes the use of incorrect information. However, the 

estimation procedure in Karas et al. (2019) assumes that the response variable is normally 

distributed, which excludes, for instance, a binary response that indicates the presence/

absence of a condition such as a disease or phenotype.

To fill this gap, we developed a variant of riPEER, named generalized ridgified Partially 
Empirical Eigenvectors for Regression (griPEER), which handles the outcomes coming from 

the exponential family of distributions. In the context of brain imaging, our approach can 

incorporate information from either a structural or functional connectivity matrix. Similar 

to the riPEER precursor, griPEER uses the predefined information across a whole range of 

scenarios—from full inclusion to complete exclusion. To achieve this, griPEER employs a 
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penalized optimization approach with a flexible, parametrized penalty term with parameters 

chosen in a fully automated, data-driven manner.

Here, we work with a generalized linear regression model where the ith scalar outcome, yi, 

belongs to the exponential family of distributions with the parameter θi. We consider only 

the canonical link functions and assume that θ = Xβ + Zb. Here, X denotes a matrix of 

covariates (e.g., demographic data) for which the prior information is not used, and Z is a 

matrix whose columns correspond to variables with at least a partially known structure. In 

this work, β includes the intercept and demographic data, and b represents the coefficients 

of the average cortical thickness of 66 brain regions. The associations between these cortical 

thickness measures are represented by a connectivity matrix that encodes a density of 

connections or the average fractional anisotropy (FA).

The use of structural information in image reconstruction and estimation has been 

implemented for over 50 years (Phillips, 1962; Bertero & Boccacci, 1998; Engl, Hanke, & 

Neubauer, 2000). If the object of interest is a function belonging to a class of, for example, 

differentiable functions, a differential operator-based penalty may be used to “regularize” or 

impose smoothness on the estimates (Huang, Shen, & Buja, 2008). This may improve the 

prediction and interpretability and is “efficient and sometimes essential” when many highly 

correlated predictors (Hastie, Buja, & Tibshirani, 1995) are present. When the object of 

estimation is a vector, the penalties are very often constructed based on ℓ1 and ℓ2 norms as 

implemented in LASSO (Tibshirani, 1996), adaptive LASSO (Zou, 2006), ridge regression 

(Tikhonov, 1963) and elastic net (Zou & Hastie, 2005), to name just a few.

There is no unique method or approach to regularize a particular model in different 

applications, and the final construction depends strongly on the context. If the coefficients 

are sparse or they occur in blocks, using the ℓ1 norm to constrain them (as in the LASSO) 

or constrain the difference of adjacent coefficients (as in the fused LASSO) is useful 

(Tibshirani et al., 2005). A more generalized fused LASSO with two ℓ1 norms could also 

be applied: one constraining the coefficients and one their pairwise differences (Xin et al., 

2016).

When structure among the variables is more intricate, and some (possibly imprecise) 

knowledge is available, less generic penalization schemes are more appropriate (Slawski, 

Castell, & Tutz, 2010; Tibshirani & Taylor, 2011), for example, a p × p adjacency matrix 

representing known connections, or “edges,” between p nodes in a graph. This matrix can 

inform a model that aims to estimate the relationship between an outcome and a vector of p 
values at the graph nodes. More specifically, the adjacency matrix is used to define the graph 

Laplacian matrix, which represents differences between nodes (Chung, 2005) and may be 

used to penalize the process of estimating regression coefficients, b.

For any p × p matrix Q, defining a penalty of the form λb⊤Qb, where λ is a nonnegative 

regularization parameter, constitutes the essence of the methods of Li & Li (2008) and Karas 

et al. (2019). Using a penalty of this form also links the considered optimization problem 

with the theory of mixed-effects models in which b is assumed to be a random-effects vector 
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with distribution N(0, σb
2Q−1), for some σb

2 > 0. This, in turn, reveals a connection with the 

Bayesian approach, where the distribution is treated as a prior on b, as in Maldonado (2009).

However, Q may not be invertible as is the case when Q is defined as Laplacian 

or normalized Laplacian (Chung, 2005). In addition, a single multiplicative parameter, 

λ, adjusts the trade-off between model fit and penalty terms but cannot change the 

regularization pattern, that is, the shape of the set {b: penalty(b) = const} is preserved. 

When Q is misspecified (i.e., is not informative), this lack of adaptivity may significantly 

degrade performance below that offered by an uninformed penalty such as ridge regression 

or LASSO (Karas et al., 2019).

Both these issues were considered in Karas et al. (2019), which does not assume that Q is 

exactly the true signal precision matrix, ℚ, but is merely “close.” It is important to notice 

that brain connectivities are rather rough approximations to the truly complex brain network 

structure, and it is unrealistic to assume that all the entries reflect some universal “truth” 

in any given sample. Moreover, the multistep procedure of quantifying the diffusion tensor 

imaging-based structural brain connectivity itself can produce a significant number of false 

positives. Increasing the flexibility of the regularization process is therefore a natural step, 

and Karas et al. (2019) achieve that by extending the space of possible precision matrices 

and assuming b ∼ N 0, σb
2(Q + aIp)−1 . For a > 0, such modification of Q is invertible and 

can therefore be directly used in the estimation procedure. The resulting penalty, λb⊤(Q + 

aIp)b, has an equivalent form λQbTQb + λR‖b‖2
2, and the connection with a specific linear 

mixed model enables the selection of λQ and XR.

The approach by Karas et al. (2019) assumes the response variable to be normally 

distributed and hence not suitable for categorical outcomes. Here, we extend the concept 

of riPEER’s penalty function to the case when the distribution of the response variable is 

a member of a one-parameter exponential family of distributions. The proposed estimation 

method, griPEER, is of the form:

βgP

bgP ≔ argmin
β, b

−2 loglik β, b ∣ y + λQbTQb + λR‖b‖2
2 , (1)

where loglik(β, b ∣ y) is a log-likelihood. Here, the term −2loglik(β, b ∣ y) is used to fit the 

model to the response distribution, while the parameters λQ and λR are chosen based on the 

connection between the optimization problem and the generalized linear mixed model; this 

is formulated explicitly in Section 2. It is important to emphasize that these parameters not 

only determine the trade-off between the model fit and the penalty term but also the form of 

the penalty. More precisely, if λQ is large relative to λR, then the connectivity information 

has a large role in the estimation process. Conversely, when λQ is small relative to λR, the 

penalty is equal in all coordinates, as with ridge regression.

We illustrate this in a simple example with p = 2 variables and prior information stating that 

these variables are connected. The solution structure depends on the shape of level curve 

of penalty function as illustrated by three scenarios shown in Figure 1. If the relationship 
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between variables, as represented in Q, is reflected in the data and related to the outcome 

y, then griPEER will tend to choose relatively large λQ, which links the coefficients in 

b (see Figure 1c). The other extreme is when the structure in Q is not informative for 

the relationship between y and Z. In such cases, griPEER will select a relatively large λR 

inducing a ridge-like penalty that ignores Q (see Figure 1a).

The remainder of this work is organized as follows. In Section 2, we formulate our statistical 

model, investigate the special case of binomial distribution and discuss the equivalence 

between generalized linear mixed models (GLMMs) and penalized optimization problems. 

We also describe the penalty term construction from the graph theory point of view. The 

estimation procedure used to select the optimal regularization parameters is introduced 

in Section 3, while Section 4 addresses the selection of response-relevant variables. The 

extensive simulations showing very good performance of griPEER in the context of 

estimation accuracy and variables selection (under various scenarios illustrating the impact 

of inaccurate prior information) are reported in Section 5. Finally, in Section 6, we apply 

our methodology to study associations between cortical thickness and HIV disease. The 

conclusions and a discussion are summarized in Section 7.

2. STATISTICAL MODEL

We address the problem of estimation in a penalized generalized linear model where 

the penalty term is derived using structural connectivity information. This information is 

represented by a p × p symmetric matrix whose nondiagonal elements are nonnegative and 

whose diagonal elements are set to zero. This adjacency matrix or connectivity matrix is 

denoted by A. The corresponding graph Laplacian matrix, Q, which defines the penalty term 

of (1) is explained next, followed by specific details about the considered statistical model.

2.1. The Graph Laplacian, Q

We are interested in modelling the association between a scalar outcome, y, and a set of 

p predictor variables that are measured at each graph node. We assume that information 

about connections between these variables—that is, strengths of the connections between the 

nodes—can be summarized by a (symmetric) p × p adjacency matrix A = [aij], 1 ≤ i, j≤ p 

that has nonnegative entries and zeros on the diagonal. We denote the jth node degree as 

dj ≔ ∑iaij and define the degree matrix as D: = diag(d1, … , dp).

Following Chung (2005), we define the unnormalized Laplacian, Qu, corresponding to A
simply as Qu ≔ D − A. This matrix is always positively semidefinite. It is also singular as, 

for the vector of ones, 1 := [1, …, 1]⊤, we have 1TQu1 = 1TD1 − 1TA1 = ∑idi − ∑idi = 0.

A penalty of the form bTQub, as in (1), can be intuitively understood by the following simple 

formula: for any adjacency matrix, A, and its unnormalized Laplacian, Qu,

bTQub = ∑
i, j

aij bi − bj
2 . (2)
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That is, if the term bTQub is used in the optimization problem (1), the squared differences 

of coefficients are penalized in a manner that is proportional to the strengths of connections 

between them. Consequently, coefficients corresponding to nodes having many stronger 

connections (i.e., higher degree nodes) are constrained more than others.

In order to allow a smaller number of nodes with larger di to have more extreme values, 

we employed the normalized Laplacian, Q, which is obtained by dividing each column and 

row of Qu by the square root of the corresponding node’s degree. As a result, the property 

(2), with Q instead of Qu, takes the form bTQb = ∑i, j:aij ≠ 0aij
bi
di

−
bj
dj

2
. Q has ones on 

the diagonal and, just like the unnormalized Laplacian, is a symmetric, positive semidefinite, 

and singular matrix.

2.2. Statistical Model in General Form

Consider the general setting where y is an n × 1 vector of observations, and the design 

matrices, X and Z, are n × p and n × m matrices, respectively. The columns of X represent 

the p covariates, and the rows are denoted by Xi. Similarly, the columns of Z correspond 

to m variables, or graph nodes, for which some connectivity information may be available; 

the rows are denoted by Zi. We assume that unknown vectors b and β exist such that, for 

each i∈{1, … , n}, yi is the member of a one-parameter exponential family of distributions 

described by

f(yi) = exp {yiθi − ψ(θi) + c(yi, φ)}, (3)

where θi := Xiβ + Zib is a subject-specific parameter. The expression in (3) includes 

exponential, binomial, Poisson and Laplace densities.

It can be shown that, for the exponential family of distributions, the mean of yi is simply 

given by the first derivative of ψ at the point θi, while the variance could be expressed as the 

second derivative of ψ, that is,

E yi = ψ′(θi), var yi = ψ″(θi) . (4)

Moreover, the log-likelihood function is

loglikψ, c β, b ∣ y = ∑
i = 1

n
{yi(Xiβ + Zib) − ψ(Xiβ + Zib) + c(yi)} (5)

and it provides a core for the methodology presented in this work. Indeed, we define 

griPEER as a solution to the following optimization problem

βgP

bgP ≔ argmin
β, b

−2 lψ β, b ∣ y + λQbTQb + λR‖b‖2
2 , (6)
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where lψ β, b ∣ y ≔ ∑i = 1
n yi(Xiβ + Zib) − ψ(Xiβ + Zib)  consists of the terms of log-

likelihood function (5) depending on b and β. Here, λQ and λR are regularization 

parameters, which are selected automatically, as described in Section 3.

2.3. The Special Case: Binomial Distribution

This subsection focuses on one special choice of a density function, the binomial 

distribution. This case is further outlined in Sections 5 (binomial outcome in the simulations) 

and 6 (binomial distribution application to neuroimaging data).

Similar to the classical logistic regression theory, we assume that the response, yi, takes the 

value 1 with probability eθi/(eθi + 1) and 0 with probability 1/(eθi + 1). Consequently, the 

density function, f(yi), is given by

f yi = exp yiθi − ln(1 + eθi) , (7)

which is a member of the exponential family of distributions (3) with ψ(θi) = ln(1 + eθi) and 

c(yi) = 0. We also have

E yi = ψ′(θi) = eθi ∕ (eθi + 1)

var yi = ψ″(θi) = eθi ∕ (eθi + 1)2
(8)

.

From this, θi = ln
E(yi)

1 − E(yi)
 that, with the assumption θ = Xβ + Zb adopted earlier, yields the 

canonical link for logistic regression, the logit function.

2.4. Equivalence Between GLMM and Two Optimization Problems

The optimization problem in (6) can be strongly connected with the specific GLMM 

formulation. Indeed, suppose that β and b are vectors of fixed and random effects, 

respectively. Moreover, yi ∣ b are independent, and consequently, f(y ∣ b) = ∏i = 1
n f yi ∣ b , 

f(yi∣b) = exp {yi(Xiβ + Zib)–ψ(Xiβ + Zib) + c(yi)}, for some (known) functions ψ, c and i 

= 1, … , n. Moreover, b ∼ N 0, Qλ
−1 , where Qλ ≔ λQQ + λRIp for some unknown, positive 

parameters λQ and λR.

To see this correspondence, assume that the parameters λQ and λR have been estimated, say 

as λ ≔ [λQ, λR]T, and these values are used to obtain β and b. One can proceed by treating 

both fixed and random effects as parameters and finding maximum likelihood estimates by 

maximizing (with respect to β, b) the density function
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f(y, b) = f(y ∣ b) f(b) = ∏
i = 1

n
{f(yi ∣ b)}f(b)

∝ exp ∑
i = 1

n
yiθi − ψ(θi) − 1

2bTQλ b ,
(9)

where θi = Xiβ + Zib, for i = 1, … , n. Taking the logarithm of the above leads directly to the 

objective of the optimization problem (6).

We now derive a constrained optimization problem that is equivalent to (6) and reveals the 

impact of the regularization parameters on the solution from a slightly different perspective. 

For this, suppose that 
β
b

 is the solution to (6) for given parameters λQ and λR. Then, we 

can define c ≔ λQbTQb + λR‖b‖2
2 ≥ 0. One can check that 

β
b

 also solves the problem

argmin
β, b

−2 lψ β, b ∣ y + λQbTQb + λR‖b‖2
2

subject to λQbTQb + λR‖b‖2
2 = c .

(10)

The multiplicative factor may be neglected, as well as the term λQbTQb + λR‖b‖2
2, which is 

constant in the feasible set. This yields

argmax
β, b

lψ β, b ∣ y

subject to λQbTQb + λR‖b‖2
2 = c .

(11)

This formulation quantifies our intuition presented in the introduction and the corresponding 

Figure 1, where griPEER selects the estimates by taking the maximal likelihood value on a 

set whose shape is explicitly regularized by the parameters λQ and λR.

3. A NEW ESTIMATION ALGORITHM

To select the optimal values of λQ and λR, we employ the corresponding GLMM. The 

likelihood function, ℒ β, λ ∣ y , is given by

ℒ β, λ ∣ y = ∫
ℝpfβ, λ(y ∣ b)fβ, λ(b) db

= ∫
ℝp 2πQλ

− 1
2exp ∑

i = 1

n
yi(Xiβ + Zib) − ψ(Xiβ + Zib) − c(yi)

− 1
2bTQλ b db .

(12)
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Unfortunately, obtaining the maximum of ℒ with respect to β and λ is complicated by 

the fact that there is no closed-form solution to the multidimensional integral in (12). 

However, several approaches to find a solution have been proposed. Breslow & Clayton 

(1993) proposed a general method based on penalized quasilikelihood (PQL) for the 

estimation of fixed effects and the prediction of random effects. Wolfinger & O’connell 

(1993) investigated the pseudolikelihood (PL) approach, which is closely related to the 

Laplace approximation of ℒ. Other proposals include the Adaptive Gaussian Quadrature to 

approximate integrals with respect to a given kernel (Pinheiro & Chao, 2006) and an Markov 

chain Monte Carlo-based procedure (Zeger & Karim, 1991).

In this work, we focus on the Wolfinger PL approach, which is recognized as being fast and 

computationally efficient. It relies on the first-order Taylor series approximation and uses the 

linear mixed model (LMM) proxy in the iterative process: At each iteration, the updates of 

β and b are based on the variance–covariance parameters of random effects. The steps are 

repeated until the convergence criteria are met.

The procedure used here differs from Wolfinger & O’connell (1993) in how the updates of 

β and b are obtained. Unlike the Wolfinger PL approach, which uses the solution to the 

mixed-model equations to update β and b, we employ the correspondence between GLMM 

and the griPEER optimization problem, as described in Section 2.4. Specifically, the (k – 

1)-step estimates of λQ and λR (i.e., λQ
[k − 1]

 and λR
[k − 1]

) are used to obtain the (k – 1)-step 

estimates of β and b (i.e., β
[k − 1]

 and b
[k − 1]

) via the solution to (6). Consequently, we can 

define θi
[k − 1]

≔ Xi β
[k − 1]

+ Zi b
[k − 1]

.

Details of our estimation procedure are as follows. Using the Taylor approximation of 

function ψ′ at point θi
[k − 1]

, we get

ψ′(θi) ≈ ψ′( θi
[k − 1]

) + ψ″( θi
[k − 1]

) ⋅ (θi − θi
[k − 1]

) (13)

and therefore, from (4)

[ψ″( θi
[k − 1]

)]−1 ⋅ (E yi ∣ β, b − ψ′( θi
[k − 1]

)) + θi
[k − 1]

≈ θi . (14)

We now define a random variable yi
[k]

≔ [ψ″( θi
[k − 1]

)]−1 ⋅ (yi − ψ′( θi
[k − 1]

)) + θi
[k − 1]

. The main 

step now is the assumption that the distribution of yi
[k]

 can be well approximated by a normal 

density. Computation of mean and variance of yi
[k]

 immediately yields

E(yi
[k]

∣ b) ≈ θi = Xiβ + Zib, and var(yi
[k]

∣ b) = [ψ″( θi
[k − 1]

)]−2ψ″(θi) ≈ [ψ″

( θi
[k − 1]

)]−1 .
(15)
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The assumption that yi
[k]

 is approximately normally distributed allows us to replace 

the GLMM formulation in the kth step by an LMM where β is a vector of fixed 

effects and b is a vector of random effects, y
[k]

= [X Z] β
b + ε

[k]
, ε

[k]
∼ N(0, W

[k]
), where 

W
[k]

≔ diag([ψ″( θ1
[k − 1]

)]−1, …, [ψ″( θn
[k − 1]

)]−1), b ∼ N(0, Qλ
−1), where Qλ was defined before.

We denote by P
[k]

≔ I − X(XTW −1
[k]

X)−1XTW −1
[k]

 the W
[k]

-weighted projection onto the 

orthogonal complement of the columns of X. Now, defining y
[k]

≔ P
[k]

y
[k]

, X
[k]

≔ P
[k]

X and 

Z
[k]

≔ P
[k]

Z we assume that

y
[k]

∼ N 0, V
[k]

λ , for V
[k]

λ ≔ Z
[k]

Qλ
−1 Z

[k]T
+ W

[k]
. (16)

Maximizing the log-likelihood for y
[k]

, that is, the function 

l( y
[k]

; λ) ≔ − n
2 ln 2π − 1

2 ln ∣ V
[k]

λ ∣ − 1
2yT

[k]
V λ

−1
[k]

y
[k]

, leads directly to the optimization problem

λQ
[k]

λR
[k] ≔ armin

λ ≻ 0
ln ∣ V

[k]
λ ∣ + yT

[k]
V λ

−1
[k]

y
[k]

, (17)

where λ ≽ 0 refers to {(λQ, λR) : λQ ≥ 0, λR ≥ 0}. The following proposition helps us to 

rewrite the objective of (17). We provide proof in the Supplementary Material of section 8.

Proposition 1. Let Ω
[k]

≔ Z
[k]T

W
[k] − 1

Z
[k]

 and q
[k]

≔ Z
[k]T

W
[k] − 1

y
[k]

. Then

• ln detV λ
[k]

= det(Qλ + Ω
[k]

) − ln det Qλ + ln det(W
[k]

),

•
y

[k]T
V λ

−1
[k]

y
[k]

= − q
[k]T

(Qλ + Ω
[k]

)−1 q
[k]

+ yT
[k]

W −1
[k]

y
[k]

.

This proposition makes it possible to reformulate (17) and define the kth step update, λQ
[k]

 and 

λR
[k]

, as

armin
λ ⪰ 0

{ ln det {(Qλ + Ω
[k]

) Qλ
−1} − q

[k]T
(Qλ + Ω

[k]
)−1 q

[k]
} . (18)

It is important to use an efficient and accurate method to solve (18) as this problem 

appears in every step k and determines when the entire algorithm is terminated (i.e., when 

‖ λ
[k]

− λ
[k − 1]

‖ is sufficiently small). To achieve this, we have analytically derived the gradient 
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and the Hessian of the objective function as detailed in the Supplementary Material. The 

final algorithm for selecting the regularization parameters is outlined here:

Algorithm 1. Finding regularization parameters in griPEER

Input:matrices: Z, X and Q; vector: y; initial point: λ
[0]

≔ [λQ
[0]

, λR
[0]

]T; stop criterion: δ > 0;
function which defines the density: ψ; k ≔ 1
do

1 . define β
[k − 1]

and b
[k − 1]

by solving:

argmin
β, b

−2∑i = 1
n yi(Xiβ + Zib) − ψ(Xiβ + Zib) + λQ

[k − 1]
bTQb + λR

[k − 1]
‖b‖2

2 ;

2 . θ
[k − 1]

≔ X β
[k − 1]

+ Z b
[k − 1]

, W
[k]

≔ diag [ψ″( θ1
[k − 1]

)]−1, …, [ψ″( θn
[k − 1]

)]−1 ;

3 . define y
[k]

by putting yi
[k]

≔ [ψ″( θi
[k − 1]

)]−1 ⋅ (yi − ψ′( θi
[k − 1]

)) + θi
[k − 1]

, for i = 1, …, n;

4 . P
[k]

≔ I − X(XTW −1
[k]

X)−1XTW −1
[k]

;

5 . y
[k]

≔ P
[k]

y
[k]

, X
[k]

≔ P
[k]

X, Z
[k]

≔ P
[k]

Z;

6 . Ω
[k]

≔ TZ
[k]

W
[k] − 1

Z
[k]

, q
[k]

≔ Z
[k]T

W
[k] − 1

y
[k]

;

7 . λ
[k]

≔ argmin
λ ≻ 0

ln ∣ λQQ + λRIp + Ω
[k]

λQQ + λRIp
−1 ∣ − q

[k]T
λQQ + λRIp + Ω

[k] −1
q

[k]
;

8 . k k + 1;

while ‖ λ
[k]

− λ
[k − 1]

‖ ∕ ‖ λ
[k − 1]

‖ > δ

To find the numerical solutions to problems in 1. and 7., we employed, respectively, 

the penalized (McIlhagga, 2016) and fsolve functions from the MATLAB Optimization 

Toolbox.

4. PROCEDURES FOR SIGNIFICANCE TESTING

Unlike the LASSO estimation procedure that produces a sparse set of regression coefficients 

but does not (without additional theory such as (Buhlmann, 2013; Zhao & Shojaie, 2016)) 

provide statistical significance testing, we employ two methods to identify variables that are 

significantly related to the response. In this section, we describe two such approaches that 

were implemented in our analysis. Both use the knowledge about the optimal regularization 

parameters described in the previous section. The first approach takes advantage of 

asymptotic properties of generalized linear model (GLM) estimates and constructs the 

asymptotic variance–covariance matrix in a similar fashion as proposed by Cessie & 

Houwelingen (1992) in the context of ridge-penalized logistic regression. The second 

approach applies the bootstrap method. Subsequently, we will refer to these two approaches 

as griPEERasmp (the asymptotic-based approach) and griPEERboot (the bootstrap-based 

approach). The numerical experiments presented in Section 5 suggest that griPEERboot 
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can achieve significantly greater power than griPEERasmp when applied to structural brain 

imaging metrics. As the false discovery rates among variables labelled as relevant were 

similar in this brain imaging application, we applied only griPEERboot in the analysis of 

cortical thickness in HIV-positive and HIV-negative participants (Section 6).

4.1. Asymptotic Variance–Covariance Matrix

We start by introducing some notations. Denote by ℬ the m + p dimensional vector 

of true coefficients and by ℬ its estimate given by the solution to (6). We will 

also need the matrix X ≔ [X, Z] and the vector θ ≔ Xℬ. Moreover, we define a (m 

+ p) × (m + p) penalty matrix as Q ≔
0m × m
0p × m

0m × p
λQQ + λRIp

, where the nonnegative 

parameters λQ and λR are adjusted by Algorithm 1. To summarize, ℬ is the solution 

to argminB ∈ ℝp + m 2∑iψ(XiB) − 2yTXB + BTQB , with ψ being a function from the 

definition of exponential family of distributions (3). Furthermore, the expressions we derive 

in this section include the diagonal matrix Ψ, defined as Ψ := diag{ψ″(θ1), … , ψ′(θn)}.

Using the first-order Taylor approximation, as well as asymptotic properties of 

a GLM estimate, one can find that estimated asymptotic variance for ℬ has a 

form varaℬ = XTΨX + Q −1XTΨX XTΨX + Q −1
. The derivation is based on Cessie 

& Houwelingen (1992), and it is described in Section 8.3 of the Supplementary 

Material. Based on the above formula, we propose a simple decision-making 

strategy where the ith covariate is labelled as statistically relevant if 0 is excluded 

from the confidence interval for its respective regression coefficient, that is, 

0 ∉ ℬi − 1.96 ⋅ (varaℬ)ii, ℬi + 1.96 ⋅ (varaℬ)ii . The entire procedure was presented as 

Algorithm 2.

Algorithm 2. Asymptotic confidence interval

Input: matrices: X, Z and Q, estimate:ℬ = βgP

bgP , optimal parameters: λQ and λR, function: ψ

1 . Define: X ≔ [X, Z], θ ≔ Xℬ and Ψ ≔ diag ψ″(θ1), …, ψ″(θn)

2 . Construct m + p by m + p matrix: Q ≔
0m × m
0p × m

0m × p
λQQ + λRIp

3 . Calculate the variance ofℬ: varaℬ ≔ XTΨX + Q −1XTΨX XTΨX + Q −1

4 . Define the asymptotic confidence interval (CI) forℬi as

CIasmp(ℬi) ≔ ℬi − 1.96 ⋅ (varaℬ)ii, ℬi + 1.96 ⋅ (varaℬ)ii

4.2 Bootstrap-Based Approach

Here, the variances of ℬ coefficients were estimated based on bootstrap samples. Each such 

sample was created from n elements of y and n corresponding rows of Z and X, where 
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indices were selected randomly by sampling with replacement. The dataset obtained in the 

jth repetition, X[j], Z[j] and y[j], was then substituted according to (6) with λQ and λR 

selected by Algorithm 1 applied to the original dataset (i.e., λQ and λR were estimated 

only once). The percentile bootstrap confidence intervals, with the significance level α = 

0.05, were defined based on all s estimates, ℬ[1], …,ℬ[s]
. The default value of s was set 

to 500 in this analysis and used in simulations performed in Section 5.3. Coefficients from 

the griPEER estimate whose confidence intervals do not contain zero are then considered 

response-related discoveries. We summarize this procedure as Algorithm.

Algorithm 3. Bootstrap confidence interval

Input: matrices: X, Z and Q, column matrix of responses: y, optimal parameters: λQ and λR,
the number of bootstrap samples: s (by defaults s = 500)

For j ∈ (1, …, k) do:
1 . generate jth bootstrap sample, X[j], Z[j] and y[j], by sampling with replacement from

[X, Z, y]

2 . get jth griPEER estimate, ℬ[j], for Q, X[j], Z[j], y[j] and tuning parameters λQ and λR
End
Define CIboot(ℬi) − the bootstrap CI forℬi − as the percentile bootstrap confidence interval

forℬi
[1], …,ℬi

[s] with the significance level α = 0.05

5. NUMERICAL EXPERIMENTS

We conducted a simulation study to investigate the performance of griPEER when responses 

are modelled by binomial distribution and compared the results with the logistic ridge 

estimates.

5.1. Definitions

5.1.1. Matrix density—For a p × q matrix A, density is defined as a proportion of 

nonzero entries,

dens(A) ≔ 1
pq ∑

i, j
1 A(i, j) > 0 . (19)

5.1.2. Matrix dissimilarity—To quantify a dissimilarity between two p × q matrices, A 
and B, with dens(A) = dens(B), we defined

diss(A, B) ≔ ∑
i, j

1 A(i, j) − B(i, j) > 0 ∕ 2∑
i, j

1 B(i, j) > 0 , (20)

with values in the interval [0, 1]. If diss(A, B) = 0, then A = B, while diss(A, B) = 1 

indicates that the positions of nonzero entries do not overlap.
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5.2. Model Coefficient Estimation

5.2.1. Settings

5.2.1.1. “Informativeness” of the penalty term—: The simulation settings were designed 

to evaluate performance in a variety of situations ranging from an “observed” (available 

in estimation) connectivity matrix, Aobs, that is fully informative to one that is completely 

noninformative. Here, “informativeness” refers to the amount of true dependencies among 

the variables that are represented in the matrix.

We denote Atrue to be a matrix representing true connections between variables and 

Aobs to be a matrix that is observed and used in an estimation via griPEER. To express 

“informativeness” of Aobs with respect to Atrue, we used a measure of dissimilarity, 

diss(Aobs, Atrue), defined in (20). We have

• diss(Aobs, Atrue) = 0 indicates that Aobs is fully informative;

• diss(Aobs, Atrue) = 1 indicates that Aobs is noninformative;

• diss(Aobs, Atrue) ∈ (0, 1) indicates that Aobs is partially informative.

5.2.1.2. Brain region connectivity context—: One may view Atrue as an adjacency 

matrix of a graph representing the connections between brain regions, and our simulations 

scenarios are based on the following four interpretations regarding this structure.

• A1: “homologous regions.” A1 represents a case when brain regions, i and j, are 

connected (i.e., A1(i, j) = 1) if and only if i and j are homologous brain regions 

from different hemispheres (Figure 2, first panel).

• A2: “modularity.” A2 represents a case when brain regions i and j are connected 

if and only if they belong to the same module with A2(i, j) = 1 within the module 

and 0 otherwise (Figure 2, second panel).

• A3: “density of connections, masked.” A3 is defined based on the brain-imaging 

measure—density of connections between brain regions (see, Section 6)—and 

is then “masked” by modularity information. Here, A3(i, j) equals the median 

of a density of connections between regions i and j if they belong to the same 

module. Otherwise, A3(i, j) ≔ 0 (Figure 2, third panel)

• A4: “neighbouring regions.” A4 represents a case when brain regions i and j are 

connected if they are in close spatial proximity (A4(i, j) > 0). Otherwise, they are 

not connected (A4(i, j) ≔ 0) (Figure 2, last panel).

A homologous regions matrix A1 reflects the situation where we assume that only 

homologous regions from two hemispheres are assumed to be connected. A modularity 
matrix A2, in turn, represents an adjacency-defining division of the brain cortical regions 

into five modules (Sporns, 2013; Cole et al., 2014; Sporns & Betzel, 2016). Next, a “density 
of connections, masked” matrix A3 is based on the estimated density of connections 
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between brain cortical regions, as described in Section 6). Finally, the “neighbouring 
regions” matrix A4 models the situation where adjacent brain regions are connected, that is, 

the strength of connection between brain regions depends on the physical distance between 

them.

5.2.1.3. Simulation scenarios—: We evaluated three simulation scenarios to express 

different sources of “uninformativeness” of Aobs that loosely reflect real-life scenarios. For 

each scenario, we tested all four types of matrices, A1, …, A4. In addition, we consider 

the number of observations that is commonly encountered in the imaging studies, ranging 

from n = 100 to n = 400, and the number of predictors ranging from p = 66 to p = 528 

corresponding to common parcellations of the cortex (Eickhoff et al., 2015; Eickhoff, Yeo, 

& Genon, 2018).

• Scenario 1. The observed connectivity matrix, Aobs, represents connections 

(partially) permuted with respect to connections represented by Atrue. Based on 

one of the four considered matrices, the corresponding Aobs matrix is constructed 

by randomizing edges of a graph given by Atrue until a desired dissimilarity, 

diss(Aobs, Atrue), is achieved. The randomization technique preserves graph size, 

density, strength and graph degree sequence (and hence degree distribution). 

Figure 13 in Section 8.5 of the Supplementary Material shows a visualization of 

the permutation effect for all four matrices considered, A1
true, …, A4

true; Figure 3 

below shows a visualization of permutation effect for one selected matrix A3
true.

• Scenario 2. We investigate the impact of incorrect information of strong 

similarity between variables (and consequently an incorrect assumption about 

closeness of their regression coefficients) while, in fact, their influence on the 

response variable is very distinct. To model such situations, the true signal 

was generated by also taking into account the dissimilarity between some 

coefficients, which was accomplished by setting some entries in Atrue to negative 

values. Specifically, for i ∈ {1, … , 4}, matrix Ai
true was defined by changing 

entries of k columns and corresponding k rows (with k ∈ {1, 4, 7, 10}) of 

Ai into their negative values. Such a structure of Atrue yields the tendency 

that k coefficients of the true signal will be separated from others. Here, 

Aobs(i, j) = ∣ Atrue(i, j) ∣, and hence, Aobs contains only nonnegative values. 

Figure 14 in Section 8.5 of the Supplementary Material shows a visualization 

of the sign alteration effect for all Atrue matrices considered, A1
true, …, A4

true; 

Figure 4 below shows a visualization of the sign alteration effect for one selected 

matrix a true A3
true.

• Scenario 3. The observed connectivity matrix Aobs has lower or higher matrix 

density than Atrue. For Atrue defined based on one of the four considered 

matrices, the corresponding Aobs is then constructed by randomly removing or 

adding edges to the graph of connections represented by Atrue until the desired 
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ratio of matrix densities, dens(Aobs) ∕ dens(Atrue), is reached. Figure 15 in Section 

8.5 of the Supplementary Material shows a visualization of edges removing and 

adding effect for all Aobs matrices considered, A1
obs, …, A4

obs; Figure 5 below 

shows a visualization of the removing and adding effects of edges for one 

selected matrix A3
obs.

5.2.1.4. Simulation procedure—: In each numerical experiment, we performed the 

following procedure.

• For graph adjacency Atrue, we computed its normalized Laplacian, Qtrue (in 

Scenario 2, the node’s degree is defined as di ≔ ∑j ∣ aij ∣; see Section 2.1).

• Replaced the zero singular values of Qtrue by 0.01 · s, where s is the smallest 

nonzero singular value of Qtrue (to obtain an invertible matrix required in 6. (a)).

• For graph adjacency matrix, Aobs, we computed its normalized Laplacian, Qobs.

• Generated Z ∈ ℝn × p, where the rows are independently distributed by Np(0,Σ), 
where Σ is variance–covariance matrix estimated from a real data study (see: 

Sect. 6); standardized columns of Z have zero mean and unit ℓ2 norm.

• Generated X as n-dimensional column of ones.

• Performed the following steps 100 times:

– generated b ∈ ℝp as b ∼ N(0, σb
2(Qtrue)−1) and set β = 0,

– defined θ : = Xβ + Zb,

– defined prBinom := [eθ1 /(1 + eθ1), …, eθn/(1 + eθn)]⊤,

– generated y ~ Binom(prBinom), y ∈ ℝn × 1,

– estimated model coefficients b, β using (i) griPEER, assuming the 

binomial distribution of y and using Qobs in a penalty term and (ii) 

logistic ridge estimator

– computed b estimation error, MSEr ≔ ‖b − b‖2
2 ∕ ‖b‖2

2, for two b 

estimates, (i) bgriPEER and (ii) b l . ridge.

• Computed mean relative relative Mean Squared Error (MSEr) out of the 100 runs 

from (5), for the two estimation methods.

Importantly, a “true” coefficient vector b obtained as b ∼ N(0, σb
2(Qtrue)−1) reflects the 

connectivity structure represented by Atrue. Example vectors b generated using A1, …, A4
are presented in Figure 12 in the Section 8.4 of the Supplementary Material.

5.2.1.5. Simulation parameters—: We consider the following experiment settings:

• number of predictors: p ∈ {66, 198, 528},
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• number of observations: n ∈ {100, 200, 400},

• Atrue matrix constructed based on Ai ∈ {A1, …, A4},

• (Scenario 1.) dissimilarity between Aobs and Atrue:diss(Aobs, Atrue) ∈ [0, 1],

• (Scenario 2.) number of columns (and corresponding rows) of Atrue that have 

signs switched: k ∈ {0, 1, 4, 7, 10},

• (Scenario 3.) density ratio: dens(Aobs) ∕ dens(Atrue) ∈ [0.5, 1.5].

The number of predictors, p = 66, was selected to match the imaging analysis of the 66 

brain regions as described in Section 6. To investigate the situations with a larger number of 

predictors for ith type of connectivity pattern, we created block-diagonal adjacency matrices 

with Ai as blocks. Specifically, adjacency matrices in cases with p = 198 and p = 528 were 

defined as diag{Ai, …, Ai} with a number of repetitions selected, so the resulted dimension 

matches the target p.

5.2.2. Results

5.2.2.1. Scenario 1—: In Scenario 1, we compare griPEER and logistic ridge estimation 

methods when an observed connectivity matrix Aobs contains connections that are permuted 

with respect to connections represented by Atrue. We consider the following simulation 

parameter values: number of predictors p ∈ {66, 198, 528}; number of observations n ∈ 
{100, 200, 400}, Atrue base matrix A1, …, A4; and dissimilarity between Aobs and Atrue

diss(Aobs, Atrue) ∈ [0, 1]. Figure 16 in the Section 8.6 of the Supplementary Material displays 

the aggregated (mean) values of the relative estimation error based on 100 simulation runs 

for all experiment settings considered; Figure 6 below shows visualization of a selected 

subset of experiment settings for n = 100 and p = 66.

MSEr of griPEER is lower or equal to the MSEr of the logistic ridge regression in all cases. 

The utility of griPEER is particularly apparent when Aobs is fully or largely informative, 

which corresponds to the low values of dissimilarity diss(Aobs, Atrue). As Aobs becomes 

less informative about the true connections between the model coefficients, that is, values 

of diss(Aobs, Atrue) become high, the MSEr of griPEER approaches the MSEr of logistic 

ridge. The result illustrates the adaptiveness of griPEER to the amount of true information 

in an observed Aobs matrix. When Aobs is largely informative, incorporating Aobs into the 

estimation is clearly beneficial, but even when Aobs carries little or no information, griPEER 

still yields an MSEr no larger than the MSEr of logistic ridge estimator.

The performance of griPEER and logistic ridge regression depends on the structure of 

connections imposed by Atrue on the true b. We can observe that a difference between 

the MSErs for griPEER and logistic ridge is smaller when Atrue is defined using A1: 

homologous regions matrix (Figure 16, left column panel). Indeed, A1 has smaller density 

than A2, A3 and A4 and imposes fewer connections between true coefficients in a model. 
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Therefore, utilizing (full or partial) connectivity information Aobs in estimation for A1-based 

signals is less beneficial compared to other considered patterns of coefficients dependencies. 

Furthermore, when each node is connected to every other by a path consisting of strong 

connections, as in the case when Atrue is created based on A4 (fourth column panel in Figure 

16), it is expected that all “true” model coefficients in a generated vector b will be strongly 

dependent on each other; see Figure 12 in the Section 8.4 of the Supplementary Material. In 

such cases, even inaccurate information about the connections (high diss(Aobs, Atrue) values) 

may still be beneficial. Finally, if we compare the results within each column panel of 

Figure 16, we observe, as expected, that the estimation error becomes smaller as number of 

predictors p becomes smaller and as the number of observations n becomes larger.

5.2.2.2. Scenario 2—: In Scenario 2, we compare griPEER and logistic ridge estimation 

methods in a situation when some coefficients of the true signal are separated from the 

others much more than suggested by the observed connectivity matrix, Aobs. To generate 

such a design, Atrue has some columns and rows of negative values, which “pushes” the 

corresponding coefficients away, while the signal is randomized. We run the simulation for 

number of observations, n = 100; number of variables, p = 66; and for Atrue based on 

four connectivity patterns inducing matrices, {A1, …, A4}. Matrix Atrue was generated from 

Ai by switching signs in k columns (and corresponding rows), where k ∈ {1, 4, 7, 10}. 

Figure 7 displays the aggregated (mean) values of the relative estimation error based on 100 

simulation runs.

With increasing k, Aobs differs more from the connectivity pattern used in the true signal, 

and so, the relative difference between MSEr for logistic ridge regression and griPEER 

decreases for nearly all settings. Notably, MSEr values for griPEER remain below or equal 

to MSEr values for logistic ridge. These results suggest that even some incorrect information 

(accomplished by introducing negative dependencies between variables) is not detrimental.

5.2.2.3. Scenario 3—: In this scenario, we compare griPEER and logistic ridge estimation 

methods when Aobs is of lower and higher matrix density than Atrue. We again consider n 

= 100 and p = 66. This time, we generated Atrue by adding/removing some connections 

to/from Ai, which influences the density of the resulting matrix. Here, we consider 

dens(Aobs) ∕ dens(Atrue) ∈ [0.5, 1.5] as a range of density ratios. Figure 8 illustrates the mean 

values of the relative estimation error based on 100 simulation runs.

Similar to Scenario 1, incorporating information on only a few connections (A1 case) yields 

the smallest gain in the estimation accuracy measured by MSEr among all considered 

connectivity patterns. If Atrue is set to A4, then (again, analogously to Scenario 1) the 

information about the strong coefficients’ dependence is provided through Aobs. This results 

in substantially lower MSEr for griPEER across the full considered density ratio range. 

When Atrue is one of the module-based matrices, A2 or A3, we still benefit from using Aobs

of lower density than Atrue as Aobs contains unaffected information about five separated 
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modules in connectivity structure (values lower than 1 on the x-axis). Including the false 

connections in Aobs (values greater than 1 on the x-axis) provides the incorrect message of 

some dependencies between modules. A loss in griPEER’s estimation accuracy is apparent 

at the transition point x = 1. It remains, however, significantly better than the estimation 

accuracy for logistic ridge regression over the entire range of considered densities ratios.

Table 3 in the Section 8.6 of the Supplementary Material summarizes obtained 

regularization parameter values and griPEER estimation execution time in numerical 

experiments across three simulation scenarios. The median execution time varied from 3.8 

to 1,277 seconds per run depending on the simulation scenario; the longest execution times 

were attained for p = 528 settings. It is worth noting that the computational time depends on 

a few factors with longer computation times for: (a) larger sample sizes, (b) smaller ratios 

of the number of observations to the number of predictors and (c) fewer sparse connectivity 

matrices.

5.3. Model Coefficient Significance Testing

5.3.1. Settings—We designed a simulation study to evaluate the performance of the 

two procedures from coefficient significance testing for griPEER, introduced in Section 4: 

asymptotic variance–covariance matrix-based approach, griPEERasmp, and bootstrap-based 

approach, griPEERboot.

5.3.1.1. Simulation scenario—: We followed the simulation setting from Scenario 1, 

described in Section 5.2. Specifically, we assumed that Aobs represented connections 

(partially) permuted with respect to connections represented by Atrue, that is, the 

corresponding Aobs is constructed by randomizing entries in Atrue until a desired 

dissimilarity, diss(Aobs, Atrue), is achieved (see: Figure 13). The randomization technique 

preserves graph size, density, strength and graph degree sequence (and hence degree 

distribution). Here, we confined our evaluation to p = 66 and specific Atrue based on A3. 

The median of a density of connections was masked by modularity information, which 

corresponds to an adjacency matrix in the brain imaging analysis Section 4.

The adopted simulation scheme starts by generating the true signal and responses as in 

Section 5.2. We generated a large number of observations, n = 1,000, but in the estimation, 

only 150 records were used to emulate a real data setting. The large sample size was used 

only to label the variables that were “truly relevant” so that the performance of griPEERasmp 

and griPEERboot in the context of variables selection could be assessed. Defining “truly 

relevant” variables was accomplished by using the asymptotic confidence interval for the 

logistic model estimate (nonregularized estimation), which is unbiased and asymptotically 

normal (Fahrmeir & Kaufmann, 1985). The details are described below.

5.3.1.2. Simulation study procedure—: Here, we perform the following steps.

• Applied Steps 1–5 from the simulation study procedure described in Section 5.2 

with n = 1,000.

• Ran the following steps 100 times:
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– generated p-dimensional vector of true coefficients, b, as well as n-

dimensional vectors, θ and y, by following steps 2(a)–2(d) described in 

Section 5.2,

– calculated the asymptotic standard deviations, δi ≔ ZTΨZ −1
ii
, for i 

= 1, … , p, where Ψ ≔ diag eθ1

(eθ1 + 1)2
, …, eθn

(eθn + 1)2
 (see, Section 8.3 of 

the Supplementary Material),

– divided the set of indices, {1, … , p}, into two separated groups: IT, 

corresponding to the variables defined as relevant and IF, corresponding 

to the variables defined as irrelevant, by using the criterion i ∈ IT ⇔ 0 

∉ [bi – 1.96 δi, bi + 1.96 δi],

– generated the data for estimation, y*, X* and Z*, by taking the first 150 

rows of y, X and Z; centered and normalized the columns of Z* to zero 

means and unit ℓ2 norms,

– applied griPEERasmp and griPEERboot on y*, X* and Z* to indicate 

response-related variables defined by each of methods,

– based on information about “truly relevant” and “truly irrelevant” 

variables, that is, the known division into IT and IF; for each method 

identified: S, the number of true discoveries and V, the number of false 

discoveries,

– for each method collected measures pow∗ ≔ S
∣ IT ∣  and, fdr∗ ≔ V

V + S ,

• Defines the estimates of power and false discovery rate (FDR) as the averages of 

pow* and fdr* (across 100 repetitions of the step 2), respectively.

5.3.2. Results—The values of power and false discovery rate (FDR) (Figure 9, left and 

right, respectively) were estimated based on the simulation procedure described in Section 

5.3.1. As expected, for both methods, power decreases as Aobs becomes less informative 

regarding the true connections between model coefficients. We observe, however, that 

griPEERboot can reach substantially higher power than griPEERasmp. The estimated FDRs 

are fairly similar for both methods, particularly when connectivity information is less 

accurate.

These results suggest that utilizing griPEERboot for coefficient significance testing produced 

greater power compared to the griPEERasmp approach without a substantial increase of FDR. 

Consequently, we employ griPEERboot in the real data application in Section 6.

5.4. The Software Used in Simulations

Our analyses were performed using software built in MATLAB, available at GitHub at 

https://github.com/martakarass/gripeer-numerical-experiments. This repository also contains 

all scripts used in numerical simulations and to generate figures.
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6. BRAIN IMAGING DATA APPLICATION

We model the association between the presence or absence of HIV and the properties of 

the cortical structural brain imaging data. More specifically, we employ cortical thickness 

measurements obtained using FreeSurfer software (Fischl, 2012) to classify the binary 

response indicating the status of HIV infection, where 0 indicates an HIV-uninfected (HIV−) 

individual and 1 an HIV-infected (HIV+) individual.

6.1. Data and Preprocessing

6.1.1. Study sample—The analyzed sample consisted of 162 men aged 18-42 years, 

where 108 were HIV+ and 54 were HIV−. The demographic and clinical characteristics are 

summarized in Table 1.

6.1.2. Cortical measurements—The FreeSurfer software package (version 5.1) was 

used to analyze the structural magnetic resonance imaging data, including gray – white 

matter segmentation, reconstruction of cortical surface models, labelling of regions on 

the cortical surface and analysis of group morphometry differences. The resulting dataset 

has cortical measurements for 68 cortical regions with parcellation based on the Desikan-

Killiany atlas (Desikan et al., 2006). However, in this analysis, we used 66 variables 

describing average cortical gray matter thickness (in millimeters), which did not incorporate 

left and right insula due to their exclusion from the structural connectivity matrix.

6.1.3. Structural connectivity information—We used two adjacency matrices, which 

were incorporated in the griPEER estimation through the normalized Laplacian matrix. 

The adjacency matrices were based on two structural connectivity metrics: density of 

connections (DC) and fractional anisotropy (FA). For each of these matrices, we performed 

two steps to obtain the final adjacency matrix, A. In the first step, we computed the 

entry-wise median (across participants) of DC or FA connectivity matrices. The second step 

relied on “masking by modularity partition”, that is, limiting the information achieved in the 

first step to only the connections between brain regions that were in the same module (i.e., 

we set Aij ≔ 0 if regions i and j were not in the same module). For this purpose, we used 

the modularity connectivity matrix (Sporns, 2013; Cole et al., 2014; Sporns & Betzel, 2016), 

which defines the division of the brain into five separated communities. The modularity 

matrix was obtained using the Louvain method Blondel et al. (2008) and was based on 

model proposed by Hagmann et al. (2008). More details on this procedure can be found in 

Karas et al. (2019).

6.2. Estimation Methods

We employed griPEERboot and logistic ridge to classify the HIV+ and HIV− individuals 

based on the estimated cortical thickness measurements. All analyses were adjusted for 

Age with its respective coefficient nonpenalized. Consequently, X was an n × 2 matrix 

containing the column of ones (representing the intercept) and the column corresponding 

to participants’ age. Columns of design matrices (other than the intercept) were zero mean-

centered and normalized to unit standard deviation before the estimation. The selection 

of regularization parameter in logistic ridge regression was performed within the GLMM 
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framework. For all presented results, we used a bootstrap-based approach with 50,000 

samples to define the subset of statistically significant variables.

6.3. Results

The estimates obtained from the griPEERboot and logistic ridge regression for the sample in 

Table 1 are presented in Figure 10. Brain regions labelled as response related are indicated 

by solid red vertical lines. In Table 2, we summarize the estimated values corresponding to 

brain regions tagged as response related by at least one considered approach. Note that all 

significant associations are negative, indicating that thinner cortical areas are indicative of 

HIV-positive status. Significant estimates obtained from the griPEER for both (FA and DC) 

connectivity matrices agree for seven of eight cortical brain regions. The significant logistic 

ridge findings disagree with the FA-based griPEER estimates in four regions and with the 

DC-based griPEER estimates in three regions. The corresponding tuning parameters are (λQ 

= 192.4, λR = 482.7) for FA and (λQ = 168.9, λR = 133.5) for the DC matrix. For the 

logistic ridge, the selected parameter is λR = 277.

The discovered regions are primarily located in the left hemisphere’s frontal and parietal 

lobes. Two regions, the postcentral gyrus and superior parietal lobule, were detected in 

both hemispheres. All considered approaches identified the right entorhinal cortex as being 

significantly thinner in HIV-infected individuals.

Brain regions identified by griPEERboot using an FA matrix restricted to modules (Masked 

FA) are shown in the Figure 11.

7. DISCUSSION

In this work, we presented a rigorous, computationally feasible method to incorporate 

additional information in the estimation of regression parameters in the GLM setting. 

The method presented here, griPEER, extends our previous work performed in the linear 

model setting of Karas et al. (2019). We utilized known structural connectivity information 

(assessed by different diffusion weighted imaging (DWI) metrics) to inform the association 

between the cortical thickness covariates and a generalized outcome (e.g., binary indicator 

of HIV infection). The structural connectivity information was used to create a Laplacian 

matrix, which in turn allowed us to specify the regularization penalty. The simulation 

study showed that, in each of the presented scenarios, the griPEER method outperformed 

logistic ridge in a binomial model coefficient estimation—griPEER yielded a smaller or 

similar relative estimation error, MSEr = ‖b − b‖2
2 ∕ ‖b‖2

2, when compared to the logistic 

ridge. Performance of griPEER is significantly better when the observed connectivity 

information was either fully or largely informative about the true connectivity structure 

between model coefficients. Notably, even in the cases when the observed connectivity 

information was only partially informative or completely noninformative, griPEER yielded 

MSEr that was no larger than the logistic ridge estimator. Our method has therefore the same 

desirable properties as its precursor, riPEER, in the continuous outcomes case. Moreover, 

the performed simulations showed that our implementation produces stable regression 
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coefficient estimates. In addition, we did not encounter convergence problems even when 

the binary response variables were highly unbalanced.

griPEER simultaneously estimates the associations between the predictors (region-specific 

cortical thickness) and binary outcome variables in the GLMM framework. This constitutes 

a huge advantage over widely used approaches relying on testing variables individually. 

Such procedures are then followed by a multiple testing correction leading to an increased 

number of false negatives and, consequently, to reduced power. For instance, after multiple 

testing correction was applied in MacDuffie et al. (2018), there were no brain regions found 

with cortical thickness significantly related to the HIV diagnosis, although smaller global 

cortical area and volume were observed in HIV-positive participants with lower nadir CD4 

count.

Application of griPEER to classify individuals as HIV+ and HIV− resulted in the discovery 

of eight and seven cortical regions when FA and DC matrices were used, respectively. 

Applying logistic ridge regression (i.e., performing the analysis with no external information 

arising from brain connectivity) to the same dataset provided six discoveries. Interestingly, 

all regression coefficients identified as statistically significant were estimated as negative by 

all three considered approaches. Our results therefore confirm the belief, strongly supported 

by the literature (Thompson et al., 2005; Sanford et al., 2018), that HIV infection is 

associated with reduced cortical thickness.

All considered approaches discovered regions located mostly in left parietal and frontal 

brain lobes. The cortical thickness of these brain regions is often reported as being 

significantly reduced by HIV infection (MacDuffie et al., 2018; Sanford et al., 2018). In 

particular, changes in mean cortical thickness in the left precentral and the supramarginal 

gyrus were found to be significantly associated with HIV infection Kallianpur et al. (2012), 

while significantly lower cortical thickness in the bilateral postcentral region in HIV patients 

was observed by Yadav et al. (2017). In addition, all considered methods revealed regions 

in the left primary sensory and motor cortex where cortical thickness differences between 

HIV-positive and HIV-negative subjects were detected by Sanford et al. (2018).

Employing griPEER with FA matrix revealed three additional cortical regions compared to 

logistic ridge regression, namely, the left frontal gyrus and the bilateral superior parietal 

lobes, that were thinner in the HIV+ individuals. These additional findings are consistent 

with the literature cited above and suggest that using DWI-based information may indeed 

increase the power of statistical techniques applied to investigate the association between 

cortical thickness and HIV-related outcome variables.

By providing a fully data-adaptive tool, we extend the existing approaches and show how 

the external information can be employed in the estimation when binary responses are 

considered. In future work, we plan to extend our methodology in two directions. First, 

we will utilize other cortical structural metrics, such as the cortical area and its curvature, 

to create structural connectivity matrices. Second, we will incorporate multiple sources of 

information in the regularization procedures. This will enable simultaneous inclusion of 

both structural and functional brain connectivity information, as well as allow us to divide 
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the connectivity information into parts corresponding to different brain modules and let the 

algorithm automatically determine their impact on the regression coefficient estimates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 

Shapes of the set {b :λQbTQb + λR‖b‖2
2 = 1} (level curve) for various pairs of regularization 

parameters: (a) assumed strong connections between variables is neglected, (b) moderate 

tendency for coefficients of the solution to be similar to each other and (c) strong tendency 

for coefficients of the solution to be similar to each other.
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Figure 2: 

Matrices used in the simulation study to construct Atrue. Presented are variants for p = 66 

(based on the Desikan–Killiany atlas (Desikan et al., 2006)). A1 “homologous regions,” A2
“modularity”, A3 “density of connections, masked” and A4 “neighbouring regions.”
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Figure 3: 

A3
true connectivity graph adjacency matrix (first column) and A3

obs connectivity graph 

adjacency matrices (second to fourth columns) used in Scenario 1.
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Figure 4: 

Visualization of sign alteration effect for A3
true connectivity graph adjacency matrix used in 

Scenario 2.
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Figure 5: 

Visualization of removing and adding effects of edges for matrix A3
obs used in Scenario 3.
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Figure 6: 

MSEr for estimation of b as a function of dissimilarity between Aobs and Atrue as measured 

by diss(Aobs, Atrue) (Scenario 1) for griPEER (blue line) and logistic ridge (red line). 

Standard errors of the mean from 100 experiment runs are shown.
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Figure 7: 
MSEr for estimation of b for four true connectivity patterns described by matrices, 

A1, …, A4 (Scenario 2). Results for griPEER and logistic ridge (blue and red lines, 

respectively). Presented are the average values of MSEr from 100 runs for n = 100 and 

p = 66. The number of columns (and corresponding rows) of Ai, for which signs of entries 

were switched in Atrue construction, is represented by the x-axis values. Error bars indicate 

standard errors of the mean.
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Figure 8: 
MSEr for estimation of b as a function of the matrix density ratio (Scenario 3). Results 

for griPEER and logistic ridge (blue and red lines, respectively). Presented are the average 

values of MSEr from 100 runs for n = 100, p = 66 and four true connectivity patterns 

inducing matrices, A1, …, A4. Ratio of densities, dens(Aobs) ∕ dens(Atrue) was varied from 0.5 

to 1.5. Standard errors of the mean are shown. Green dashed vertical lines denote ratio of 

matrix densities of 1, when Aobs is identical to Atrue.
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Figure 9: 
The estimated values for power (left panel) and FDR (right panel) obtained with an 

asymptotic variance–covariance matrix-based approach (griPEERasmp, green line) and a 

bootstrap-based approach (griPEERboot, red line). Values are aggregated (mean) over 100 

runs with number of observations n = 150, number of variables p = 66 and A3 (Figure 2, 

middle right plot) as a true connectivity pattern. The extent of dissimilarity between Aobs

and Atrue is shown on the x-axis. Standard errors of the mean are used.
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Figure 10: 
griPEERboot results in a sample of 162 participants, of whom 108 were HIV-infected. Here, 

the binary response variable was defined as the disease indicator, and 66 cortical brain 

regions were considered—33 from each hemisphere. Regions labelled as response related 

are indicated by red vertical lines. Confidence intervals were calculated based on 50,000 

bootstrap samples.
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Figure 11: 
Brain regions associated with HIV disease for Masked FA connectivity matrix. Here, five 

left-hemisphere (LH) and three right-hemisphere (RH) regions were identified griPEERboot. 

Brain region abbreviations: CMF = Caudal middle frontal, PREC = Precentral, PSTS = 

Postcentral, SP = Superior parietal, SMAR = Supramarginal, ENT = Entorhinal.
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Table 1:

Characteristics for 162 men included in the study. Table includes the information about subjects’ age (Age), 

recent CD4 cell count (Recent CD4), nadir CD4 cell count (Nadir CD4) and recent viral load (Recent VL).

HIV status Variables Min Median Max Mean StdDev

Age 18 24 41 26.31 6.45

HIV+ (108) Recent CD4 20 446 1179 461.83 243.81

Nadir CD4 15 293 690 289.13 158.31

Recent VL 20 50 555495 30232.22 78827.35

HIV− (54) Age 18 23 41 24.8 6.45
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Table 2:

Estimates of the cortical brain region coefficients obtained by the logistic ridge regression and griPEERboot 

with two different connectivity matrices—fractional anisotropy (Masked FA) and density of connections 

(Masked DC). Both matrices were masked by the modularity matrix before the analysis. Values corresponding 

to regions tagged to be response related are shown in bold font. Regions are listed in the table if they were 

found to be significant by at least one of the three considered methods.

Connectivity CaudMF PostCen PreCen PreCun SupPar SupraMar Entor PostCen SupPar

type [L] [L] [L] [L] [L] [L] [R] [R] [R]

Empty −0.016 −0.025 −0.018 −0.019 −0.015 −0.029 −0.021 −0.020 −0.013

Masked FA −0.019 −0.031 −0.030 −0.011 −0.020 −0.029 −0.023 −0.019 −0.017

Masked DC −0.016 −0.026 −0.022 −0.016 −0.018 −0.028 −0.018 −0.018 −0.015
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