

Since January 2020 Elsevier has created a COVID-19 resource centre with

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the

company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related

research that is available on the COVID-19 resource centre - including this

research content - immediately available in PubMed Central and other

publicly funded repositories, such as the WHO COVID database with rights

for unrestricted research re-use and analyses in any form or by any means

with acknowledgement of the original source. These permissions are

granted for free by Elsevier for as long as the COVID-19 resource centre

remains active.

Computers & Industrial Engineering 165 (2022) 107912

Available online 5 January 2022
0360-8352/© 2021 Elsevier Ltd. All rights reserved.

An empowered AdaBoost algorithm implementation: A COVID-19
dataset study

Ender Sevinç
Ankara Science University, Ankara, Turkey

A R T I C L E I N F O

Keywords:
Covid-19
Artificial intelligence
Adaptive boost algorithm
Machine learning

A B S T R A C T

The Covid-19 outbreak, which emerged in 2020, became the top priority of the world. The fight against this
disease, which has caused millions of people’s deaths, is still ongoing, and it is expected that these studies will
continue for years. In this study, we propose an improved learning model to predict the severity of the patients by
exploiting a combination of machine learning techniques. The proposed model uses an adaptive boost algorithm
with a decision tree estimator and a new parameter tuning process. The learning ratio of the new model is
promising after many repeated experiments are performed by using different parameters to reduce the effect of
selecting random parameters. The proposed algorithm is compared with other recent state-of-the-art algorithms
on UCI data sets and a recent Covid-19 dataset. It is observed that competitive accuracy results are obtained, and
we hope that this study unveils more usage of advanced machine learning approaches.

1. Introduction

Humankind has endeavoured to make sense of the events around it
since the first years of its existence. Machine learning (ML) algorithms
have helped much understand and predict unknown events. Predictions
have gained dimensions and approaches for more complex and
numerous data (Lu, 2019; Shhadat, Hayajneh, & Al-Sharif, 2020). A
group of input variables evaluates the predicted variable (dependent
variable in statistics). With these variables, many tools such as trees,
different regression techniques, nearest neighbours, boosting algo-
rithms, etc., have been studied to put forward a model that maps the
input variables to output classes. However, studies do not provide a
desired level of accuracy most of the time. This study originates from
such a need and requirement. It tries to propose a model which achieves
a mapping close to optimum in a short period.

Usage of ML algorithms increases the computing power and accu-
racy, especially ensemble methods come forward at this point (Seni &
Elder, 2010). The ensemble methods enable us to train multiple models
using the same learning algorithm. The proposed algorithm of this study
is an excellent example of this technique. Besides that, a model having
an integrated ensemble algorithm is more likely to get the minimum
error and higher accuracy levels.

Freund and Shapire introduced the Adaptive Boosting (AdaBoost)
algorithm in (Freund, 1995) then improved it (Freund & Schapire,

1997). In the algorithm, they used so-called “weak” classifiers to
perform better performance which can lead the AdaBoost into a
powerful, high-performance algorithm. They developed an exponential
loss function to update the weights. After that, many studies have been
made and presented, and some of them are as in (Schapire, 2003; Souza
& Matwin, 2012).

The AdaBoost is a popular classification algorithm. During the
training phase, the distribution weight of the sample is increased as the
error rate increases, and oppositely as it decreases, the new distribution
weight is reduced. Then samples are continually trained with the un-
known distribution weights. The aim is to have strong feedback by
reducing the next machine’s error and reaching better accuracy rates in
the end. The process of the AdaBoost algorithm can be found easily, and
one sample research is in (Lu, Hu, & Bai, 2015).

Almost one and a half year ago, the World Health Organization
(WHO) stated to the world that COVID-19 is a pandemic. The rapid
spread of the disease around the globe brought it necessary to take many
measures immediately. Unfortunately, the final figures are embarrassing
since over 178 million people are infected (confirmed) and over 3.8
million dead all over the world according to (Who coronavirus (covid-
19) dashboard) by the end of March 2021. The main goal of this study is
to support and contribute the solution to an epidemic. The virus spreads
mainly through saliva droplets. After being infected, the disease causes
pneumonia in the lungs, which cause difficulty in breathing. The most

E-mail address: ender.sevinc@ankarabilim.edu.tr.
URL: https://www.ankarabilim.edu.tr.

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier.com/locate/caie

https://doi.org/10.1016/j.cie.2021.107912
Received 24 June 2021; Received in revised form 18 December 2021; Accepted 25 December 2021

mailto:ender.sevinc@ankarabilim.edu.tr
https://www.ankarabilim.edu.tr
www.sciencedirect.com/science/journal/03608352
https://www.elsevier.com/locate/caie
https://doi.org/10.1016/j.cie.2021.107912
https://doi.org/10.1016/j.cie.2021.107912
https://doi.org/10.1016/j.cie.2021.107912
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2021.107912&domain=pdf

Computers & Industrial Engineering 165 (2022) 107912

2

common symptoms in COVID-19 patients were recorded as fever and
cough as in (Lai, Shih, Ko, Tang, & Hsueh, 2020).

The proposed model of the study is an empowered ensemble method
using an adaptive boost strategy. The algorithm gets “Decision Tree” as
the base classifier. In a standard AdaBoost model, predictions are made
on the training set, and the weight of input is updated due to the error
rate. Then a second classifier is trained using the updated weight, and it
makes predictions on the training set again. This feedback results in a
remarkable decrease in error. This procedure goes on in this way up to
the end.

Briefly, a machine-learning algorithm has been proposed and tuned
for quick and effective learning here. This tuning process is done for
empowering the primary model using an adaptive boosting approach.
One of the best capabilities of the proposed algorithm is that it obtains
and gets the results in a moderate computer in short periods due to other
known AI and ML algorithms. The way the proposed algorithm works is
that it drops into filtering methods since it is related to the correlations
between the input and the output classes.

The experiments are conducted on two datasets. In the first part,
well-known UCI-datasets (Uci machine learning repository: data sets)
are used, and even this part is also divided into two sections. In the first
section, ensemble algorithms are shown using two sample datasets. This
section shows the reason for selecting the adaptive boosting approach.
Then in the second section of the first part, the proposed algorithm is
compared with known sample ML datasets taken from (Datasets: Feature
selection @ asu; Uci machine learning repository: data sets). This is done
for presenting the accuracy rates of all compared algorithms using these
datasets. Finally, in the second part, the proposed algorithm is compared
with other known and recent algorithms to present the aim of this study.

This paper is organized as follows. Section 2 presents the recent
studies on the topic. Section 3 shows the proposed algorithm after brief
information on AdaBoost Algorithm and Decision Trees. Then Section 4
presents the results of this study in three consecutive subsections. In the
first one, comparisons of all ensemble methods, in the second one
comparisons of known and recent algorithms, and the third one com-
parisons of other state-of-the-art algorithms are compared. Finally,
Section 5 presents conclusions and future works of the study.

2. Related work

Although ML algorithms have major sub-fields, supervised learning
studies are the most known and popular ones. In this method, algorithms
are mainly categorized into two main types,filter and wrapper algo-
rithms. The main difference between these two algorithms is that
filtering algorithms try to evaluate the correlation with the output class.
In contrast, wrapper methods try to find out a subset of input variables to
use. There are also hybrid approaches as well in the literature.

Feature selection methods, most of which have been used and
studied mainly for analysis, classification, categorization, pattern
detection, etc., are popular in supervised learning. Some recent studies
on classification are presented in (Sevinc, 2019 & Sevinç & Dökeroglu,
2019). Feature selection techniques are done by extreme learning ma-
chine (Huang, Zhou, Ding, & Zhang, 2012) and improved by GA
methodologies for better performance. A similar GA is presented in
(Karakaya, 2017). The aim is to find a generic solution in a reasonable
amount of time after optimizing an improved GA. Similarly, in (Deniz,
Kiziloz, Dokeroglu, & Cosar, 2017 and Dokeroglu & Sevinc, 2019), some
filtering mechanisms and methodologies supported by extreme learning
machines have been developed and experimented with for feature sub-
set selection. These studies are good examples of filter-based feature
selection approach while Xue et al. (Xue et al., 2019) presents a wrapper
feature selection algorithm for classification. They proposed a re-
weighted multi-view algorithm which allowed multiple relevant views
for better accuracy. As a hybrid approach, Zhu et al. proposed a hybrid
filter and wrapper feature selection algorithm with a combination of
genetic algorithm (GA) and local search (LS) in (Zhu, Ong, & Dash,

2007).
Additionally, there are other algorithms, such as meta-heuristic al-

gorithms, in the literature. Artificial Bee Colony, Bacterial Foraging, Bat
Algorithm, Gary wolf, whale optimization, etc., are involved in this
group. These methodologies aim to reach better classification perfor-
mances by upgrading some parameters and implementing specific
feature selection techniques. A survey is presented in (Dokeroglu, Sev-
inc, Kucukyilmaz, & Cosar, 2019) and two additional study is presented
in (Mirjalili, 2015 & Li et al., 2020). The final two studies from which
this study benefited are binary classification algorithms that affected
and developed from the movements of dragonflies.

If it comes to the ML algorithm for classification, it is a vast field and
still developing. You can find many ML algorithms for regression and
classification problems. The most popular ML website is presented in
(Api reference) in which python base classes and utility functions are
listed. One can easily create unique models by using integrated most
common ML algorithms and get remarkable results.

As a research study on ML algorithms, a prominent one can be found
in (Souza & Matwin, 2012). It is one of the initial examples of the
Adaptive Boost (AdaBoost) algorithm. The authors used resampling with
substitution instead of the re-weighting approach for reaching a good
“weak learner”. They claimed that the proposed model produced the
slightest error for specific weight distribution by this process. Because
the weaker learner you get, the lower error rate you reach. In another
interesting study in (Bai, Xie, Wang, Zhang, & Li, 2021), a similar
AdaBoost algorithm is put forward which is close to the approach in
here. Their model has three elements mainly and the learning perfor-
mance of the model is reinforced by the AdaBoost approach. Finally, it is
claimed that the proposed model overwhelms all the comparison models
in terms of root-mean-square error, threshold statistics, and residuals
analysis. It is also added that they successfully improve the sensitivity
and regression capacity of the model by handling the rough knowledge
synchronously with their AdaBoost methodology.

Among ML algorithms, Ensemble algorithms must be taken into
consideration since they have an essential role in learning methodology.
In (Kiziloz, 2021), five popular ensemble methods are implemented for
feature selection, and models are run on known datasets from (Uci
machine learning repository: data sets). When used as the only algo-
rithm in the model, it has been reported that it executes fast; however,
when they are used together and integrated, they perform better in
terms of accuracy. This is believed to be reasonable, and this method-
ology is also performed in this study. Also in (Priore, Ponte, Puente, &
Gómez, 2018), a scheduling based using ensemble methods of machine
learning algorithms has been presented. They deal with the scheduling
problem and try to improve the result by considering the recommen-
dations made by different ensemble methods of ML algorithms. Thus,
they try to obtain a conceptual evolution in the design of control sys-
tems. In addition, the study in (Albadr et al., 2020) tries to identify the
effectiveness of detecting COVID-19 using chest X-ray images by inte-
grating Extreme Learning Machine with genetic algorithm evolutionary
capabilities.

Ensemble methods are so attractive that you can encounter easily as
in a typical combinatorial optimization problem, a Dynamic Vehicle
Routing Problem (DVRP) studied in (Wang, Liao, Li, Yan, & Chen,
2021). The authors try to find a solution to the problem with time
windows constraint. Finally, they construct a multi-objective optimiza-
tion model for the problem and improve it by an ensemble learning
method. They claim that the ensemble learning model can help to
improve the capability of adapting to new environments with different
dynamic conditions.

Similar to these studies, there are many other studies such as in (Guz,
Cuendet, Hakkani-Tur, & Tur, 2010; Jabri, Saidallah, Alaoui, & Fer-
gougui, 2018; Khan, Ahamed, Kadry, & Ramasamy, 2020). All these
studies aim to show the power of AdaBoost algorithm, especially in bi-
nary classification problems. After tuning and making repeated experi-
ments on a real dataset, i.e. Covid-19, we also try to present the success

E. Sevinç

Computers & Industrial Engineering 165 (2022) 107912

3

of the proposed model against best known and recent state-of-the-art
algorithms.

3. Proposed algorithm

In this part, a tuned Adaptive Boost (AdaBoost) Algorithm is presented.
A model that is empowered by a classifier is a candidate solution to
predict and solve such regression and classification problems with
higher success.

Another aim of the algorithm is to reach the possible best accuracy
within a short period. Execution times will also be mentioned here since
it is an essential issue for any machine learning algorithm. The results of
the experiments are the averages of 10 independent runs of program
executions to get rid of any randomness effect.

Adaptive Boosting (AdaBoost), first introduced by (Freund & Schapire,
1997) is briefly a general ensemble method that creates a strong clas-
sifier by using a number of weak classifiers. The algorithm starts with a
weak learner, weighting each example equally. This is obtained by
applying weights w1,w2,…wN to each training sample, which is called
boosting iterations. At the beginning, all the weights are equally set to
wi = 1

N. Then a weak learner on the original data is trained by training
dataset. At each iteration, sample weights are updated, and this con-
tinues as it is reapplied to the data again up to the end. At each step, as
the correct predictions are made, the weight of the training example is
decreased, and oppositely the weight is increased if the model incor-
rectly predicted it. In other words, misclassified examples get their
weights increased for the next round(s), while correctly classified ones
get their weights decreased. Finally, predictions are integrated with a
weighted majority sum to get the final prediction.

Machine learning models generally suffer from bias or variances, and
many studies are proposed to minimize this effect. Ensemble learning

methods are good examples to mention related to the point. These
methodologies are known to make training and predictions based on
different models. Then by combining them, these models tend to have
less bias and be less data-sensitive. The two most popular ensemble
methods are bagging and boosting.

• Bagging: Its name comes from Bootstrap AGGregatINGand mostly
applies the decision tree method as a Bootstrap variance. Bagging
trains all individual models parallel and each model is trained by a
random subset of the dataset. As a result, the average of all the
predictions from different trees are evaluated and unbiased when
compared to a single decision tree

• Boosting: This method trains a group of individual models in a
sequential way. Each individual model gets a feedback from mistakes
made by the previous model. Subsequent trees are re-trained at every
step since the goal is to solve the absolute error caused by the pre-
vious tree. This method shows how AdaBoost works mainly.

A sample illustration of these methods can be seen in Fig. 1. As
mentioned, the proposed algorithm uses Boosting strategy and it can be
seen that a high learning rate is more probable.

3.1. Adaptive boost algorithm

Though multi label classification is possible, because of Covid-19
data set, a binary classification will be shown. Each data is presented
and labeled as in Eq. 1

(x1, y1), (x2, y2),…, (xk, yk) (1)

where k is training data set size, xi ∈ T and yi ∈{-1, 1}. T represents the
training data and the set {-1, 1} binary class labels for the data elements.

Fig. 1. Bagging and Boosting Illustration.

E. Sevinç

Computers & Industrial Engineering 165 (2022) 107912

4

Each training data sample xi can be a point in a multidimensional feature
space.

AdaBoost by itself implements a probability distribution over all the
training samples. This distribution is modified by iterations with a new
weak classifier to the data. In this study, the probability distribution is
denoted as Dt(xi) and t refers to the successive iterations of the algo-
rithm. The weak classifier chosen for the iteration t is denoted by ht .
Then the class label assigned by xi is presented by ht(xi). By comparing
ht(xi) with yi for i = 1, 2, …,k, there will be an error ∊t, which is called as
the classification error rate for the classifier ht.

Each candidate classifier is trained during iterations using a sub-
sampling of all of the training data as provided by the probability dis-
tribution Dt(x). As a result, the higher the probability Dt(x) for a given
training sample x, the greater the chance that it will be chosen for
training the candidate classifier h(t). The selection of ht is essential since
among all different possible values, the one that minimizes the
misclassification rate ∊t must be chosen. For example, a weak classifier is
primarily a single feature that is simply a threshold in most AdaBoost
implementations.

The other important point for AdaBoost algorithm is the trust level

αt, of weak classifier in which we trust. As mentioned clearly before, the
bigger the value of error, ∊t for a classifier, the lower the trust must be.
The relation between αt and ∊t is shown in Eq. 2

αt =
1
2

ln
1 − ∊t

∊t
(2)

If the error rate, ∊t, gets closer to 1 starting from 0, the trust level of
the candidate classifier h(t) will get a value in the scale of − ∞ and ∞. ∊t

being close to 1 means that the weak classifier fails almost completely on
the overall training dataset, and ∊t being close to 0 means that your weak
classifier is a powerful classifier as also stated in (Cao, Miao, Liu, & Gao,
2014)

A final classifier H is obtained at the end. After k iterations, H clas-
sifier in AdaBoost algorithm is evaluated as in Eq. 3

H(x) = sign

(
∑k

t=1
αt.ht(x)

)

(3)

where x is the new data element which denotes the information strength
in the training data. For example, in binary classification if H(x) is
positive, then the predicted class is 1, otherwise, it is − 1.

Fig. 2. Accuracy Rates of Ensemble Algorithms.

E. Sevinç

Computers & Industrial Engineering 165 (2022) 107912

5

The classifier presents a weighted aggregation produced by the in-
dividual weak classifiers. Thus, in the end, a single strong, weak clas-
sifier can dominate over several not-so-strong weak classifiers with the
highest trust factor αt among others. A fundamental AdaBoost algorithm
is explained in (Schapire, 2003), and related python libraries can be
easily found in (Api reference).

The proposed AdaBoost algorithm of this study works through the
following steps;

1. Initially, Adaboost creates and assigns training and test subsets
randomly.

2. It trains the model through iterations by selecting the training set.
3. It assigns the higher weight to wrong classified observations so that

in the next iteration, these observations will get a high probability for
classification.

4. Algorithm assigns the weight to the classifier after each iteration due
to the tuned Decision Tree classifier.

5. The whole process continues until the complete training data fits
without any error or reaches a maximum number of estimators.

6. To classify, perform a “vote” among classifiers and decide the output
due to the model built.

3.2. Decision trees

Decision trees are well-known and popular for classification prob-
lems. Their popularity mainly originates from the similarity to that of
standard human brain’s making decisions. Being a supervised machine
learning algorithm, a decision tree includes a series of sequential de-
cisions given for reaching a specific result. This mechanism is adopted
for reaching better accuracy in the tests. The decision tree classifier
evaluates due to the majority over many decisions and then makes the
decision.

The decision tree algorithm starts with attribute election. For this,
Attribute Selection Measure (ASM) split records and provides a rank and
weight for the dataset features. Gini index and information gain are the
most popular methods for ASM. According to these methods, features
take place at the root node or the internal nodes; then, evaluation is
done. More information about the indexes can be found in (Raileanu &
Stoffel, 2004).

Different decision tree algorithms use gini, entropy, or a combination
of both. Gini index and entropy are the criteria for evaluating infor-
mation gain. Decision tree algorithms use this value to split a node.
These two measures show the noise/impurity degree of a node. For
example, if a node has multiple classes, it indicates impurity, and
oppositely if a node has only one class, it means it is pure. Finally, a
decision tree is a graph-based solution to a problem representing all
possible solutions to a trial by decisions based on given conditions.

3.3. Tuning AdaBoost with decision tree classifier

The proposed algorithm here is called Empowered ADAboost with
Decision Tree (E-ADAD) method. The algorithm mainly uses tuning
parameters of related python libraries defined in the “sklearn” package.
Python libraries have a wide range of capabilities by simply making
function calls to manage and achieve a wide range of abilities. Many
types of different models can be developed and used for other purposes
for future problems.“Decision Tree” classifier has been used as the
estimator and the “gini” method has been implemented by this classifier.
In a binary classification problem such as the Covid-19 dataset, gini
criterion is more popular and powerful. Its formula is presented in Eq. 4.

Gini = 1 −
∑n

i=1
p2(ci) (4)

where p(ci) is the probability of class ci in that node. Gini Index suggests a
two-way split for the attributes and thus we can compute a weighted

sum of the impurity for each partition separately.
The classifier of E-ADAD model definition is given below;

clf = AdaBoostClassifier(
DecisionTreeClassifier(criterion = ’gini’, max depth = 4),

learning rate = 0.9)

Though it is not shown, there is a split strategy in the constructor,
namely “best”. It is assigned by default. Additionally, another important
parameter is the “maximum depth of the tree”. A higher maximum depth
value causes overfitting, while a lower one causes underfitting. This
value is assigned as “4” as seen in the model definition.

E-ADAD uses the “learning rate” parameter, which is denoted
generally as α, shows the speed of learning that the model achieves.
However, slower learning brings forward another significant point. A
low learning rate will take much time and more probability to converge
or get stuck in an undesirable local minimum. However, a higher one
makes the learning jump over minima. In this study, 0.8 ⩽α⩽1.0 is
selected for E-ADAD since this range was observed to be more appro-
priate during the tests. Another point is that different α values being in
the range are taken for different datasets.

Number of estimators is another parameter that affects accuracy. The
default value is 50, and this number is the point where boosting is
terminated. The default value is chosen and used for E-ADAD.

Finally, algorithm{
′SAMME.R′} is assigned by default. It is also clearly

emphasized in the study (Hastie, Rosset, Zhu, & Zou, 2009) that the two-
class AdaBoost builds an additive model to approximate the two-class
Bayes rule. The SAMME.R is a natural and clean multi-class extension
of the two-class AdaBoost algorithm. In other words, by its nature
SAMME/SAMME.R adapts to the philosophy of boosting, and it is
strongly believed that it is a powerful method in two-class predictions.

E-ADAD algorithm is presented below;

Algorithm 1. E-ADAD Algorithm

Due to result of AdaBoost algorithm, results are obtained on the test
dataset and according to supervised learning methodology, success rate
is evaluated.

E. Sevinç

Computers & Industrial Engineering 165 (2022) 107912

6

4. Experimental results

4.1. Comparison among other ensemble algorithms

The experiments are executed on a standard laptop Windows-10
machine. It has an i7 CPU (i7-5700HQ CPU @ 2.70 GHz) and 16 GB
of memory. The code is implemented in Jupyter-notebook Version 3.0.0.
All coding is in Python 3.6 version and *.ipynb format.

Ensemble algorithms are well-known among ML algorithms. They
have an essential role since they are flexible and integrated by different
types of estimators. These ensemble estimators are ideal for regression
and classification problems since they are capable of reducing bias and
variance to increase the performance of models.

Decision trees are the ones that are mostly integrated with ensemble
algorithms. They are easy to understand and produce remarkable results
in a world full of algorithms that look like a black box. Even after
combining several models, ensemble methods improve learning much,
as also stated in (Kiziloz, 2021).

Adaptive Boost (Adaboost) Algorithm: AdaBoost is powerful to arrange
a set of weak classifiers in a sequence in which each weak classifier is the
best choice for a classifier at that point for rectifying the errors made by
the previous classifier. Boosting means arranging a set of weak classifiers
in a sequence in which each weak classifier is the best choice for a
classifier to rectify the errors made by the previous classifier.

AdaBoost can improve its ability to learn from past errors since it has
the theoretical guarantee that as more weak classifiers are put into use,
the final misclassification rate must be made arbitrarily small. Addi-
tionally, the AdaBoost approach has a bound on the generalization error.
This means it will not ever increase since the updated weight will
decrease. Finally, this method constitutes the origin of this study.

Random Forest Algorithm: Random Forest is a tree-based machine
learning algorithm that integrates the solving capability of multiple
decision trees. As the name suggests, this approach proposes a “forest” of
trees. Decision trees are randomly created, and each node in the tree
works on a random subset of features to predict the output. Then this
random forest collects and integrates the result of individual decision
trees, then evaluates the final output.

In the experiments, data sets have been divided into train and test
subsets with different proportions obtained by randomly selected same
subsets. This is done for getting rid of the effect of any time randomness.
In other words, random_state parameter must be set to a value in order
not to get different results after each execution. This is important
because when we use random state = some number parameter, this
means that each split will be random but the same every time. It pro-
vides us to work on the same split as the first time it is assigned.

A sample code using sci-kit for splitting the dataset is given below;

from sklearn.model.selection import train test split
X train, X test, y train, y test =

train test split(X, y, test size = 0.25, random state = 0)

According to that code, the training size is 75% of data while the test
size is 25%. The split is first randomly done and is the same for each run.
That means the initial random selection is the same for each run/split.
random state = 0 means that the data will be randomly split, but the
same random parts will be selected. The number “0” has no impact on
this.

Histogram-based Gradient Boosting: Histogram-based Gradient Boost-
ing approach is very similar to that of Gradient Boosting except for the
compatibility with the dataset. This classification tree estimator is
relatively faster than GradientBoostingClassifier for big datasets (number
of samples ⩾10000).

In this algorithm, each predictor is to be improved by reducing the
errors due to its predecessor. However, Gradient Boosting fits a new
predictor of the previous predictor’s residual errors instead of providing
a predictor on the data at each iteration.

Finally, ensemble algorithms are compared to show the best one. The

results can be seen in Fig. 2. For all the algorithms, “Iris” and “Wisconsin
Breast Cancer” datasets have been used. These datasets are mostly used
ones while “Iris” is multi-class classification and “Wisconsin Breast
Cancer” is a two-class classification problem. The reason for selecting
these two common datasets is to show a clear distinction among the
candidate algorithms.

All ensemble classification algorithms are experienced on these
datasets in Fig. 2. Though all the results are close to each other AdaBoost
algorithm is slightly more successful when compared to others. Esp. in a
binary class classification problem, AdaBoost Algorithms are more
successful, as seen in “Wisconsin Breast Cancer”. It can be observed that
it is about 5% better than the average of the rest algorithms.

4.2. Comparison with state-of-the-art algorithms

The study in (Too & Mirjalili, 2021) is a very recent and remarkable
one in the literature. Binary Dragonfly Algorithm is discussed and used,
then some parameters are changed, and a new algorithm, hyper learning
binary dragonfly algorithm (HLBDA), is proposed. This new algorithm,
HLBDA, has been compared with eight other state-of-the-art algorithms,
and the results are presented.

Intuitively, this study is also affected by that study and proposes
another ML algorithm. Then we make another comparison with all the
algorithms presented in (Too & Mirjalili, 2021) from which a total of 9
algorithms is imported. The other mentioned eight well-known algo-
rithms in there are; Binary Dragonfly Algorithm (BDA)(Mirjalili, 2016),
binary artificial bee colony (BABC) (He, Xie, Wong, & Wang, 2018),
binary multiverse optimizer (BMVO) (Al-Madi, Faris, & Mirjalili, 2019),
binary particle swarm optimization (BPSO) (Kennedy & Eberhart,
1997), chaotic crow search algorithm (CCSA) (Sayed, Hassanien, &
Azar, 2019), binary coyote optimization algorithm (BCOA) (de Souza,
de Macedo, dos Santos Coelho, Pierezan, & Mariani, 2020), evolution
strategy with covariance matrix adaptation (CMAES) (Hansen & Kern,
2004), and success-history based adaptive differential evolution with
linear population size reduction (LSHADE) (Tanabe & Fukunaga, 2014).
Table 1 presents the parameters that are used by these algorithms.

All the datasets are also included here for making a more fair com-
parison. These datasets from (Datasets: Feature selection @ asu; Uci
machine learning repository: data sets) are popular and commonly
known in the ML area. The result is that the same algorithms using the
same datasets are used and compared here. However, “Horse Colic” is an
exception since it has 30% of the values are missing, and there is no clue
how it had been used, and there is no given mapping plan for those
values. Because of that reason, this dataset, i.e. “Horse Colic”, has been
excluded from the study. As a result, 20 out of 21 datasets have been
used as in (Too & Mirjalili, 2021). The dataset definitions are given in
Table 2. Some of them have medium while others have a big size.

However, it will be beneficial to give the following information
about the datasets used in the experiments. In the “Hepatitis” dataset of
(Uci machine learning repository: data sets), a lot of missing values are
found. 155 instances have 20 features. These missing values are
completed as stated in the explanation part of the dataset. Since all the
values can be completed with the stated average values, no row or
column dropped.

For “Primary Tumor”, only 5 columns have missing values. These are
completed as in the explanation part of the dataset.

“Soybean” dataset has the most problematic missing values. It is a
medium-sized dataset having 307 rows × 35 columns. There are 19
output classes of soybean, all of which have small differences due to
their classification. All values have been completed and used due to
definitions.

“Arrhythmia” is also a medium-level dataset having 279 features in
total. There are a total of 5 columns that have missing values. According
to this study, if the number of missing values is greater than 10% of the
whole, that column is not taken, namely dropped. This is the case for

E. Sevinç

Computers & Industrial Engineering 165 (2022) 107912

7

13th column. Since that column has more than 83% missing values, it has
been drooped. For the rest four columns (10,11,12, and 14), they are
within limits, and the completion process is done due to the column’s
mode.

“Dermatology” data set has are only missing value in one column, and
only eight rows have missing values. They are again in limits, so those
values are filled with the mean of that column.

For “Glass”, “Lymphography”, “Ionosphere”, “Zoo”, “Musk-1”,
“SPECT Heart”, “Libras Movement”, “ILPD”, “Seeds”, “LSVT”, “SCADI”,
“TOX_171”, “Leukemia”, “Lung discrete” and “Colon” datasets, no
missing values have been detected. So all the values of datasets are used
and included in the experiments.

Predicted accuracy levels of all algorithms can be seen in Fig. 3. E-
ADAD has a better performance among most of the datasets (12 in 20)
when compared to all of the algorithms presented in (Too & Mirjalili,
2021).

In a typical learning prediction model, all data has been divided into
three parts, training, validation, and test subsets. This discrimination has
some drawbacks, such as test set data in the model and evaluation of the
test can hardly be seen on general performance. Grouping data in this
way may cause some misplacement. This effect can also be called
leakage of data. In addition to this factor, the number of samples for
learning or testing can drastically reduce caused after partitioning them.
These effects totally can result in worsening the performance of the
model.

As a solution to this problem, Cross-Validation (CV) has been used in
the experiments. CV is in fact a critical technique for avoiding a meth-
odological mistake at the same time. This means that there will be no
unseen data up to that time that the model used. In this method, a cross-

validation splitting strategy must be determined initially. Then the
generator divides or splits the whole data into k equal parts. By default,
this k value is 5 in sci-kit library. It means you implement 5-fold cross-
validation with the generator.

After splitting the whole data into k “folds”, the model is trained
using (k-1) of the folds as training data, and with the last fold, it will be
validated. This whole process will be done repeatedly until k times to
equally finish all the splits created by the generator in turn. An illus-
tration of k-fold CV is seen in Fig. 4.

Numbers related to the “Learning Curves” and “Fitness Times” of
each fold are given in Tables 3 and 4 respectively. The performance of
CV is calculated by taking the average of the values of splits computed in
turn and all the figures are put together for a clear comparison of the
datasets.

Then the performance of CV is calculated by taking the average of the
values of splits computed in turn. Though this approach seems to need a
high computation time, it gives the advantage of getting rid of
randomness data leakage. Additionally, you can get rid of the effect of a
small number of training or test datasets simultaneously.

If to see all the methodologies together, “Learning Curves” of Datasets
is presented in Fig. 5, while “Fitness Times” of datasets is in Fig. 6.

In Fig. 5, learning curve of a Decision Tree classifier is shown as the
training set score and the cross-validation scores of the prediction
together. This graph is in support of showing accuracy and learning
speeds at the same time. These two figures, namely Figs. 5 and 6 are
obtained by cross-validator and the whole dataset has been divided by
ShuffleSplit function of the sci-kit library. After splitting data into
training and test sets, which are 75% and 25% respectively in the study,
then the results are automatically evaluated and the results are
produced.

High learning curves can easily be noticed. It shows the appropri-
ateness of the model. Then accordingly, a high cross-validation rates is
following them. The results of these CV rates are the results of E-ADAD
classifier. Then in Fig. 6, the model shows the time how the CV results
has been achieved in seconds. It seems extremely fast when compared to
its rivals.

Finally, the proposed algorithm has a very fast convergence speed
and learning rate, even in the early iterations as clearly seen in Figs. 5
and 6.

4.3. Real dataset comparison

2020 began with a disaster, and the World Health Organization
(WHO) announced that Covid-19 became an epidemic. Unfortunately,
initial cases were met in China, and the virus rapidly spread over the
world. Still, we have many restrictions in our daily life.

In this section, the proposed algorithm is used to solve a real-life
problem, namely a Covid-19 patient health prediction dataset. This
dataset is the same as in (Too & Mirjalili, 2021), and it can be found on
(Atharva-Peshkar) on the Internet.

The description of the dataset is shown in Table 5. In the dataset,
some symptoms are given and accordingly, the death and recovery
conditions are given related to given factors due to those 15 features.

In the whole dataset, there are 1081 instances totally. 1018 instances
out of 1081 have the value “0” which denotes alive and the rest 63 in-
stances have the value “1” which denotes dead. In the whole dataset,
there are totally 1081 instances. 1018 instances out of 1081 have the
value “0” which denotes alive and the rest 63 instances have the value
“1” which denotes dead. There are totally 2 classes in the whole dataset.
75% and 25% were used in the study for training and testing sets
respectively.

This study is intended to make a comparison with the algorithms in
(Too & Mirjalili, 2021) since it is the most recent, state-of-the-art, and
published ML algorithm. The proposed algorithm of that study is
HLBDA, and additional four other algorithms (HLBDA, BDA, BMVO, and
BPSO) have been compared, which are stated there. The parameters pl

Table 1
Parameter description of feature selection algorithms

No Algorithm Parameter Value

1 HLBDA pl and gl 0.7 and 0.85
2 BDA Controlled parameters Same as original
3 BABC Maximum limits 5
4 BMVO WEP [0.02, 1]

TDR [0.6, 0]
5 BPSO Inertia weight, w [0.9, 0.4]

Acceleration factors, c1 and c2 2
6 CCSA AP, fl 0.1, 2
7 BCOA Coyote, pack number 5,2
8 CMAES Parent number γ/4
9 LSHADE Minimum population size 4

Table 2
Descriptive statistics of the used datasets

No. Dataset # of Instances # of Features Output Classes

1 Glass 214 10 7
2 Hepatitis 155 20 2
3 Lymphography 148 18 4
4 Primary Tumor 339 17 22
5 Soybean 307 35 19
6 Ionosphere 351 34 2
7 Zoo 101 16 7
8 Musk-1 476 166 2
9 Arrhythmia 452 279 16
10 Dermatology 366 34 6
11 SPECT Heart 267 22 2
12 Libras Movement 360 91 15
13 ILPD 583 10 2
14 Seeds 210 7 3
15 LSVT 126 310 2
16 SCADI 70 205 7
17 TOX_171 171 5748 4
18 Leukemia 72 7070 2
19 Lung discrete 73 325 7
20 Colon 62 2000 2

E. Sevinç

Computers & Industrial Engineering 165 (2022) 107912

8

Fig. 3. Accuracy of Datasets.

E. Sevinç

Computers & Industrial Engineering 165 (2022) 107912

9

and gl of HLBDA are declared to be set to 0.7 and 0.85, respectively, and
success rates are given in the study. It is told that after updating these
two values as stated, HLBDA had a fast convergence speed, which means
it gets closer to the final result very quickly. Then it is also claimed that
HLBDA had a better success learning rate due to the other mentioned
four algorithms.

The results are presented in Figs. 7 and 8. The results of model
performance due to the training set and the model is as seen in Fig. 7.
Though the proposed algorithm in that study is told to be converged very
quickly, E-ADAD trains all training set in 0.14 s and it reaches a better
accuracy rate in the period.

Fig. 8 shows the accuracy rates of all algorithms. E-ADAD has got a
95.33% accuracy rate, and this value is the mean of 10 independent
runs. It overcomes HLBDA with 92.21% prediction accuracy being the
highest among others in that study.

E-ADAD has the best prediction rate even in a short period. With the
help of the “Decision Tree” classifier, E-ADAD has overcome all the other
recent and state-of-the-art algorithms.

Moreover, two more methods are mentioned for emphasizing the Fig. 4. k-fold Cross-Validation(CV) Illustration.

Table 3
Accuracy Learning Curves of the datasets.

No Dataset Folds Average

#1 #2 #3 #4 #5

1 Glass 0.975 0.975 0.975 0.975 0.975 0.975
2 Hepatitis 0.833 0.833 0.875 0.875 0.917 0.867
3 Lymphography 0.946 0.770 0.838 0.811 0.838 0.840
4 Primary Tumor 0.424 0.424 0.388 0.459 0.388 0.416
5 Soybean 0.744 0.818 0.844 0.883 0.779 0.814
6 Ionosphere 0.943 0.943 0.943 0.955 0.924 0.942
7 Zoo 0.962 1.000 1.000 0.962 0.928 0.970
8 Musk-1 1.000 1.000 1.000 1.000 1.000 1.000
9 Arrhythmia 0.623 0.628 0.637 0.646 0.619 0.631
10 Dermatology 0.982 0.983 0.982 0.966 0.947 0.972
11 SPECT Heart 0.836 0.791 0.866 0.881 0.881 0.851
12 Libras Movement 0.778 0.686 0.789 0.778 0.789 0.764
13 ILPD 0.655 0.710 0.710 0.697 0.710 0.697
14 Seeds 0.906 0.943 0.943 0.962 1.000 0.951
15 LSVT 0.800 0.960 0.920 0.840 0.680 0.840
16 SCADI 0.846 0.846 0.923 0.923 0.712 0.850
17 TOX_171 0.725 0.878 0.813 0.725 0.813 0.791
18 Leukemia 0.929 1.000 1.000 0.929 0.929 0.957
19 Lung discrete 0.929 0.929 0.857 0.843 0.814 0.874
20 Colon 0.917 0.917 0.763 0.877 0.763 0.847

Table 4
Fitness Times of the datasets.

No Dataset Folds Average

#1 #2 #3 #4 #5

1 Glass 0.088 0.100 0.113 0.072 0.070 0.089
2 Hepatitis 0.070 0.100 0.071 0.072 0.070 0.077
3 Lymphography 0.059 0.064 0.097 0.110 0.076 0.081
4 Primary 0.125 0.090 0.123 0.106 0.068 0.103
5 Soybean 0.111 0.091 0.082 0.114 0.081 0.096
6 Ionosphere 0.152 0.156 0.147 0.184 0.138 0.155
7 Zoo 0.101 0.084 0.080 0.062 0.070 0.080
8 Musk-1 0.012 0.012 0.022 0.016 0.016 0.016
9 Arrhythmia 0.519 0.512 0.503 0.536 0.434 0.501
10 Dermatology 0.087 0.079 0.096 0.108 0.098 0.094
11 SPECT 0.085 0.100 0.081 0.101 0.063 0.086
12 Libras 0.736 0.492 0.734 0.497 0.677 0.627
13 ILPD 0.086 0.213 0.081 0.091 0.081 0.110
14 Seeds 0.089 0.088 0.092 0.090 0.092 0.090
15 LSVT 0.213 0.301 0.268 0.211 0.210 0.241
16 SCADI 0.016 0.104 0.086 0.058 0.078 0.069
17 TOX_171 6.223 6.520 6.591 6.115 5.770 6.244
18 Leukemia 0.062 0.064 0.091 0.063 0.069 0.070
19 Lung 0.107 0.163 0.109 0.121 0.101 0.120
20 Colon 0.255 0.053 0.019 0.023 0.018 0.074

E. Sevinç

Computers & Industrial Engineering 165 (2022) 107912

10

capability of the E-ADAD algorithm. The first one is confusion matrix
commonly used for summarizing the performance of a classification
algorithm. It is specifically used for the cases if there is a big difference
between the classes. A binary data set is used here and in the test dataset,
there are 271 instances which are 25% of 1081 total instances. 253 of
these are declared as “0”, meaning NOT death, and 18 of these are “1” in
the test part as seen in Fig. 9. Anyway, proportions are being preserved
as they are on the whole.

Receiver Operating Characteristic (ROC) curve is also another
parameter to evaluate classifier output quality. One characteristic of
ROC curves is that the “true positive rate”s are placed on the Y axis,

while “false positive rate”s are on the X-axis. In other words, the top left
corner of the plot is the “ideal” point - a false positive rate of zero, and a
true positive rate of one. However, this point is an extreme, but the
closer the better. It implies that a larger Area Under the Curve (AUC) is
simply preferable.

The AUC in the proposed algorithm is evaluated as 0.722 and the
blue line shows no sign of classification capability or random selectivity
while the red line shows the E-ADAD’s performance. This implies a
reasonable and remarkable classification has been achieved between the
classes of the binary dataset as seen in Fig. 10.

Fig. 5. Sample Efficiencies of Datasets.
Fig. 6. Fitness Times of Datasets.

E. Sevinç

Computers & Industrial Engineering 165 (2022) 107912

11

5. Conclusion and future work

In this study, an Adaptive Boost Algorithm using a Decision Tree
estimator is proposed. After making trials, a tuning process is done to a
classifier, and a binary classification problem is solved.

AdaBoost is popular and well-known technique in this field.

Moreover, it is improved for binary and multi-class classifications. It is
seen that the proposed learning model substantially can achieve a good
performance both in execution and the average prediction rates. Even
for binary classification problems, the algorithm produces way better
results than state-of-the-art algorithms. This study is also believed to be
used and implemented for other real-life situations during epidemic
conditions.

Additionally, for different data and conditions, the E-ADAD algo-
rithm seems to be a good candidate to be benefited. Among its rivals, it
seems to predict and achieve in short periods. This is thought to be an
outstanding capability and speciality. As a result, E-ADAD achieves the
highest accuracy for predicting output classes.

For future studies, E-ADAD can be tuned to get more successful re-
sults with multi-class classifications. There is a wide range of research in
this field. Especially for regression problems, E-ADAD needs to be
searched much for getting far better results. There are many ML fields in
new models, and classifiers are proposed and put forward for better
results.

Additionally, ensemble algorithms are very promising for proposing
new models. Probable newly proposed models with different classifiers
can be very beneficial while solving other types of real-life problems. An
ensemble algorithm integrated can be useful for especially unsupervised
learning and unlabeled data.

Table 5
The description of Covid-19 Dataset

No Feature Name Description

1 id ID of patient
2 location The place where patients live
3 country The country patients belong to
4 gender The gender of patients
5 age The ages of patients
6 sym_on The date patients show the symptoms
7 hosp_vis The date patients visit hospital
8 vis_wuhan Whether the patients visited Wuhan, China
9 from_wuhan Whether the patients come from Wuhan, China
10 symptom1 Name and type of symptoms
11 symptom2 Name and type of symptoms
12 symptom3 Name and type of symptoms
13 symptom4 Name and type of symptoms
14 symptom5 Name and type of symptoms
15 symptom6 Name and type of symptoms

Fig. 7. Performance of the model.

Fig. 8. Accuracy graph of the algorithms for Covid dataset.

E. Sevinç

Computers & Industrial Engineering 165 (2022) 107912

12

Acknowledgements

All persons who have made substantial contributions to the work
reported in the manuscript (e.g., technical help, writing and editing
assistance, general support), but who do not meet the criteria for
authorship, are named in the Acknowledgements and have given us their
written permission to be named. If we have not included an Acknowl-
edgements, then that indicates that we have not received substantial
contributions from non-authors.

References

Albadr, M. A. A., Tiun, S., Ayob, M., Al-Dhief, F. T., Omar, K., & Hamzah, F. A. (2020).
Optimised genetic algorithm-extreme learning machine approach for automatic
covid-19 detection. PloS One, 15(12), e0242899.

Al-Madi, N., Faris, H., & Mirjalili, S. (2019). Binary multi-verse optimization algorithm
for global optimization and discrete problems. International Journal of Machine
Learning and Cybernetics, 10(12), 3445–3465.

Api reference. URL https://scikit-learn.org/stable/modules/classes.html.

Atharva-Peshkar. Atharva-peshkar/covid-19-patient-health-analytics. https://github.
com/Atharva-Peshkar/Covid-19-Patient-Health-Analytics.

Bai, Y., Xie, J., Wang, D., Zhang, W., & Li, C. (2021). A manufacturing quality prediction
model based on adaboost-lstm with rough knowledge. Computers & Industrial
Engineering, 155, 107227.

Cao, Y., Miao, Q.-G., Liu, J.-C., & Gao, L. (2014). Advance and prospects of adaboost
algorithm. Acta Automatica Sinica, 39(6), 745–758. https://doi.org/10.3724/sp.
j.1004.2013.00745

Datasets: Feature selection @ asu. https://jundongl.github.io/scikit-feature/datasets.
html.

Deniz, A., Kiziloz, H. E., Dokeroglu, T., & Cosar, A. (2017). Robust multiobjective
evolutionary feature subset selection algorithm for binary classification using
machine learning techniques. Neurocomputing, 241, 128–146. https://doi.org/
10.1016/j.neucom.2017.02.033

de Souza, R. C. T., de Macedo, C. A., dos Santos Coelho, L., Pierezan, J., & Mariani, V. C.
(2020). Binary coyote optimization algorithm for feature selection. Pattern
Recognition, 107, 107470.

Dokeroglu, T., & Sevinc, E. (2019). Evolutionary parallel extreme learning machines for
the data classification problem. Computers and Industrial Engineering, 130, 237–249.
https://doi.org/10.1016/j.cie.2019.02.024

Dokeroglu, T., Sevinc, E., Kucukyilmaz, T., & Cosar, A. (2019). A survey on new
generation metaheuristic algorithms. Computers and Industrial Engineering, 137,
106040. https://doi.org/10.1016/j.cie.2019.106040

Fig. 9. Confusion matrix of Covid dataset.

Fig. 10. ROC curve of E-ADAD Algorithm.

E. Sevinç

http://refhub.elsevier.com/S0360-8352(21)00816-0/h0005
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0005
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0005
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0010
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0010
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0010
https://scikit-learn.org/stable/modules/classes.html
https://github.com/Atharva-Peshkar/Covid-19-Patient-Health-Analytics
https://github.com/Atharva-Peshkar/Covid-19-Patient-Health-Analytics
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0025
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0025
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0025
https://doi.org/10.3724/sp.j.1004.2013.00745
https://doi.org/10.3724/sp.j.1004.2013.00745
https://jundongl.github.io/scikit-feature/datasets.html
https://jundongl.github.io/scikit-feature/datasets.html
https://doi.org/10.1016/j.neucom.2017.02.033
https://doi.org/10.1016/j.neucom.2017.02.033
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0045
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0045
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0045
https://doi.org/10.1016/j.cie.2019.02.024
https://doi.org/10.1016/j.cie.2019.106040

Computers & Industrial Engineering 165 (2022) 107912

13

Freund, Y. (1995). Boosting a weak learning algorithm by majority. Information and
Computation, 121(2), 256–285. https://doi.org/10.1006/inco.1995.1136

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System Sciences, 55
(1), 119–139. https://doi.org/10.1006/jcss.1997.1504

Guz, U., Cuendet, S., Hakkani-Tur, D., & Tur, G. (2010). Multi-view semi-supervised
learning for dialog act segmentation of speech. IEEE Transactions on Audio, Speech,
and Language Processing, 18(2), 320–329. https://doi.org/10.1109/
tasl.2009.2028371

Hansen, N., & Kern, S. (2004). Evaluating the cma evolution strategy on multimodal test
functions. In International Conference on Parallel Problem Solving from Nature (pp.
282–291). Springer.

Hastie, T., Rosset, S., Zhu, J., & Zou, H. (2009). Multi-class adaboost, Statistics and its.
Interface, 2(3), 349–360.

He, Y., Xie, H., Wong, T.-L., & Wang, X. (2018). A novel binary artificial bee colony
algorithm for the set-union knapsack problem. Future Generation Computer Systems,
78, 77–86.

Huang, G.-B., Zhou, H., Ding, X., & Zhang, R. (2012). Extreme learning machine for
regression and multiclass classification. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 42(2), 513–529. https://doi.org/10.1109/
tsmcb.2011.2168604

Jabri, S., Saidallah, M., Alaoui, A. E. B. E., & Fergougui, A. E. (2018). Moving vehicle
detection using haar-like, lbp and a machine learning adaboost algorithm. In 2018
IEEE International Conference on Image Processing, Applications and Systems (IPAS). htt
ps://doi.org/10.1109/ipas.2018.8708898.

Karakaya, M. (2017). Sevinc, An efficient genetic algorithm for routing multiple uavs
under flight range and service time window constraints.

Kennedy, J. & Eberhart, R. C. (1997). A discrete binary version of the particle swarm
algorithm. In 1997 IEEE International conference on systems, man, and cybernetics.
Computational cybernetics and simulation (Vol. 5, pp. 4104–4108). IEEE.

Khan, F., Ahamed, J., Kadry, S., & Ramasamy, L. K. (2020). Detecting malicious urls
using binary classification through adaboost algorithm. International Journal of
Electrical and Computer Engineering (IJECE), 10(1), 997. https://doi.org/10.11591/
ijece.v10i1.pp997-1005

Kiziloz, H. E. (2021). Classifier ensemble methods in feature selection. Neurocomputing,
419, 97–107. https://doi.org/10.1016/j.neucom.2020.07.113

Lai, C.-C., Shih, T.-P., Ko, W.-C., Tang, H.-J., & Hsueh, P.-R. (2020). Severe acute
respiratory syndrome coronavirus 2 (sars-cov-2) and coronavirus disease-2019
(covid-19): The epidemic and the challenges. International Journal of Antimicrobial
Agents, 55(3), 105924. https://doi.org/10.1016/j.ijantimicag.2020.105924

Li, J., Kang, H., Sun, G., Feng, T., Li, W., Zhang, W., & Ji, B. (2020). Ibda: Improved
binary dragonfly algorithm with evolutionary population dynamics and adaptive
crossover for feature selection. IEEE Access, 8, 108032–108051. https://doi.org/
10.1109/access.2020.3001204

Lu, M. (2019). Embedded feature selection accounting for unknown data heterogeneity.
Expert Systems with Applications, 119, 350–361.

Lu, J., Hu, H., & Bai, Y. (2015). Generalized radial basis function neural network based
on an improved dynamic particle swarm optimization and adaboost algorithm.
Neurocomputing, 152, 305–315. https://doi.org/10.1016/j.neucom.2014.10.065

Mirjalili, S. (2015). Dragonfly algorithm: a new meta-heuristic optimization technique
for solving single-objective, discrete, and multi-objective problems. Neural
Computing and Applications, 27(4), 1053–1073. https://doi.org/10.1007/s00521-
015-1920-1

Mirjalili, S. (2016). Dragonfly algorithm: a new meta-heuristic optimization technique
for solving single-objective, discrete, and multi-objective problems. Neural
Computing and Applications, 27(4), 1053–1073.

Priore, P., Ponte, B., Puente, J., & Gómez, A. (2018). Learning-based scheduling of
flexible manufacturing systems using ensemble methods. Computers & Industrial
Engineering, 126, 282–291.

Raileanu, L. E., & Stoffel, K. (2004). Theoretical comparison between the gini index and
information gain criteria. Annals of Mathematics and Artificial Intelligence, 41(1),
77–93.

Sayed, G. I., Hassanien, A. E., & Azar, A. T. (2019). Feature selection via a novel chaotic
crow search algorithm. Neural Computing and Applications, 31(1), 171–188.

Schapire, R. E. (2003). The boosting approach to machine learning: An overview.
Nonlinear Estimation and Classification Lecture Notes in Statistics, 149–171. https://doi.
org/10.1007/978-0-387-21579-2_9

Seni, G., & Elder, J. F. (2010). Ensemble methods in data mining: improving accuracy
through combining predictions. Synthesis Lectures on Data Mining and Knowledge
Discovery, 2(1), 1–126.

Sevinc, E. (2019). A novel evolutionary algorithm for data classification problem with
extreme learning machines. IEEE Access, 7, 122419–122427. https://doi.org/
10.1109/access.2019.2938271

Sevinç, E., & Dökeroglu, T. (2019). A novel hybrid teaching-learning-based optimization
algorithm for the classification of data by using extreme learning machines. Turkish
Journal Of Electrical Engineering and Computer Sciences, 1523–1533. https://doi.org/
10.3906/elk-1802-40

Shhadat, I., Hayajneh, A., & Al-Sharif, Z. A. (2020). The use of machine learning
techniques to advance the detection and classification of unknown malware.
Procedia Computer Science, 170, 917–922.

Souza, E. N. D., & Matwin, S. (2012). Improvements to adaboost dynamic, Advances in
Artificial Intelligence. Lecture Notes in Computer Science, 293–298. https://doi.org/
10.1007/978-3-642-30353-1_26

Tanabe, R., & Fukunaga, A. S. (2014). Improving the search performance of shade using
linear population size reduction. In 2014 IEEE congress on evolutionary computation
(CEC) (pp. 1658–1665). IEEE.

Too, J., & Mirjalili, S. (2021). A hyper learning binary dragonfly algorithm for feature
selection: A covid-19 case study. Knowledge-Based Systems, 212, 106553. https://doi.
org/10.1016/j.knosys.2020.106553

Uci machine learning repository: data sets. https://archive.ics.uci.edu/ml/datasets.php.
Wang, F., Liao, F., Li, Y., Yan, X., & Chen, X. (2021). An ensemble learning based multi-

objective evolutionary algorithm for the dynamic vehicle routing problem with time
windows. Computers & Industrial Engineering, 154, 107131.

Who coronavirus (covid-19) dashboard. https://covid19.who.int/.
Xue, Y., Wang, N., Yan, N., Zhong, P., Niu, S., & Song, Y. (2019). Robust re-weighted

multi-view feature selection. CMC-Computers Materials & Continua, 60(2), 741–756.
Zhu, Z., Ong, Y.-S., & Dash, M. (2007). Wrapper–filter feature selection algorithm using a

memetic framework. IEEE Transactions on Systems, Man and Cybernetics, Part B
(Cybernetics), 37(1), 70–76. https://doi.org/10.1109/tsmcb.2006.883267

E. Sevinç

https://doi.org/10.1006/inco.1995.1136
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1109/tasl.2009.2028371
https://doi.org/10.1109/tasl.2009.2028371
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0075
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0075
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0075
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0080
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0080
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0085
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0085
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0085
https://doi.org/10.1109/tsmcb.2011.2168604
https://doi.org/10.1109/tsmcb.2011.2168604
https://doi.org/10.1109/ipas.2018.8708898
https://doi.org/10.1109/ipas.2018.8708898
https://doi.org/10.11591/ijece.v10i1.pp997-1005
https://doi.org/10.11591/ijece.v10i1.pp997-1005
https://doi.org/10.1016/j.neucom.2020.07.113
https://doi.org/10.1016/j.ijantimicag.2020.105924
https://doi.org/10.1109/access.2020.3001204
https://doi.org/10.1109/access.2020.3001204
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0130
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0130
https://doi.org/10.1016/j.neucom.2014.10.065
https://doi.org/10.1007/s00521-015-1920-1
https://doi.org/10.1007/s00521-015-1920-1
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0145
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0145
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0145
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0150
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0150
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0150
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0155
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0155
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0155
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0160
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0160
https://doi.org/10.1007/978-0-387-21579-2_9
https://doi.org/10.1007/978-0-387-21579-2_9
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0170
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0170
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0170
https://doi.org/10.1109/access.2019.2938271
https://doi.org/10.1109/access.2019.2938271
https://doi.org/10.3906/elk-1802-40
https://doi.org/10.3906/elk-1802-40
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0185
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0185
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0185
https://doi.org/10.1007/978-3-642-30353-1_26
https://doi.org/10.1007/978-3-642-30353-1_26
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0195
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0195
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0195
https://doi.org/10.1016/j.knosys.2020.106553
https://doi.org/10.1016/j.knosys.2020.106553
https://archive.ics.uci.edu/ml/datasets.php
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0210
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0210
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0210
https://covid19.who.int/
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0220
http://refhub.elsevier.com/S0360-8352(21)00816-0/h0220
https://doi.org/10.1109/tsmcb.2006.883267

	An empowered AdaBoost algorithm implementation: A COVID-19 dataset study
	1 Introduction
	2 Related work
	3 Proposed algorithm
	3.1 Adaptive boost algorithm
	3.2 Decision trees
	3.3 Tuning AdaBoost with decision tree classifier

	4 Experimental results
	4.1 Comparison among other ensemble algorithms
	4.2 Comparison with state-of-the-art algorithms
	4.3 Real dataset comparison

	5 Conclusion and future work
	Acknowledgements
	References

