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A B S T R A C T   

The Covid-19 outbreak, which emerged in 2020, became the top priority of the world. The fight against this 
disease, which has caused millions of people’s deaths, is still ongoing, and it is expected that these studies will 
continue for years. In this study, we propose an improved learning model to predict the severity of the patients by 
exploiting a combination of machine learning techniques. The proposed model uses an adaptive boost algorithm 
with a decision tree estimator and a new parameter tuning process. The learning ratio of the new model is 
promising after many repeated experiments are performed by using different parameters to reduce the effect of 
selecting random parameters. The proposed algorithm is compared with other recent state-of-the-art algorithms 
on UCI data sets and a recent Covid-19 dataset. It is observed that competitive accuracy results are obtained, and 
we hope that this study unveils more usage of advanced machine learning approaches.   

1. Introduction 

Humankind has endeavoured to make sense of the events around it 
since the first years of its existence. Machine learning (ML) algorithms 
have helped much understand and predict unknown events. Predictions 
have gained dimensions and approaches for more complex and 
numerous data (Lu, 2019; Shhadat, Hayajneh, & Al-Sharif, 2020). A 
group of input variables evaluates the predicted variable (dependent 
variable in statistics). With these variables, many tools such as trees, 
different regression techniques, nearest neighbours, boosting algo-
rithms, etc., have been studied to put forward a model that maps the 
input variables to output classes. However, studies do not provide a 
desired level of accuracy most of the time. This study originates from 
such a need and requirement. It tries to propose a model which achieves 
a mapping close to optimum in a short period. 

Usage of ML algorithms increases the computing power and accu-
racy, especially ensemble methods come forward at this point (Seni & 
Elder, 2010). The ensemble methods enable us to train multiple models 
using the same learning algorithm. The proposed algorithm of this study 
is an excellent example of this technique. Besides that, a model having 
an integrated ensemble algorithm is more likely to get the minimum 
error and higher accuracy levels. 

Freund and Shapire introduced the Adaptive Boosting (AdaBoost) 
algorithm in (Freund, 1995) then improved it (Freund & Schapire, 

1997). In the algorithm, they used so-called “weak” classifiers to 
perform better performance which can lead the AdaBoost into a 
powerful, high-performance algorithm. They developed an exponential 
loss function to update the weights. After that, many studies have been 
made and presented, and some of them are as in (Schapire, 2003; Souza 
& Matwin, 2012). 

The AdaBoost is a popular classification algorithm. During the 
training phase, the distribution weight of the sample is increased as the 
error rate increases, and oppositely as it decreases, the new distribution 
weight is reduced. Then samples are continually trained with the un-
known distribution weights. The aim is to have strong feedback by 
reducing the next machine’s error and reaching better accuracy rates in 
the end. The process of the AdaBoost algorithm can be found easily, and 
one sample research is in (Lu, Hu, & Bai, 2015). 

Almost one and a half year ago, the World Health Organization 
(WHO) stated to the world that COVID-19 is a pandemic. The rapid 
spread of the disease around the globe brought it necessary to take many 
measures immediately. Unfortunately, the final figures are embarrassing 
since over 178 million people are infected (confirmed) and over 3.8 
million dead all over the world according to (Who coronavirus (covid- 
19) dashboard) by the end of March 2021. The main goal of this study is 
to support and contribute the solution to an epidemic. The virus spreads 
mainly through saliva droplets. After being infected, the disease causes 
pneumonia in the lungs, which cause difficulty in breathing. The most 
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common symptoms in COVID-19 patients were recorded as fever and 
cough as in (Lai, Shih, Ko, Tang, & Hsueh, 2020). 

The proposed model of the study is an empowered ensemble method 
using an adaptive boost strategy. The algorithm gets “Decision Tree” as 
the base classifier. In a standard AdaBoost model, predictions are made 
on the training set, and the weight of input is updated due to the error 
rate. Then a second classifier is trained using the updated weight, and it 
makes predictions on the training set again. This feedback results in a 
remarkable decrease in error. This procedure goes on in this way up to 
the end. 

Briefly, a machine-learning algorithm has been proposed and tuned 
for quick and effective learning here. This tuning process is done for 
empowering the primary model using an adaptive boosting approach. 
One of the best capabilities of the proposed algorithm is that it obtains 
and gets the results in a moderate computer in short periods due to other 
known AI and ML algorithms. The way the proposed algorithm works is 
that it drops into filtering methods since it is related to the correlations 
between the input and the output classes. 

The experiments are conducted on two datasets. In the first part, 
well-known UCI-datasets (Uci machine learning repository: data sets) 
are used, and even this part is also divided into two sections. In the first 
section, ensemble algorithms are shown using two sample datasets. This 
section shows the reason for selecting the adaptive boosting approach. 
Then in the second section of the first part, the proposed algorithm is 
compared with known sample ML datasets taken from (Datasets: Feature 
selection @ asu; Uci machine learning repository: data sets). This is done 
for presenting the accuracy rates of all compared algorithms using these 
datasets. Finally, in the second part, the proposed algorithm is compared 
with other known and recent algorithms to present the aim of this study. 

This paper is organized as follows. Section 2 presents the recent 
studies on the topic. Section 3 shows the proposed algorithm after brief 
information on AdaBoost Algorithm and Decision Trees. Then Section 4 
presents the results of this study in three consecutive subsections. In the 
first one, comparisons of all ensemble methods, in the second one 
comparisons of known and recent algorithms, and the third one com-
parisons of other state-of-the-art algorithms are compared. Finally, 
Section 5 presents conclusions and future works of the study. 

2. Related work 

Although ML algorithms have major sub-fields, supervised learning 
studies are the most known and popular ones. In this method, algorithms 
are mainly categorized into two main types,filter and wrapper algo-
rithms. The main difference between these two algorithms is that 
filtering algorithms try to evaluate the correlation with the output class. 
In contrast, wrapper methods try to find out a subset of input variables to 
use. There are also hybrid approaches as well in the literature. 

Feature selection methods, most of which have been used and 
studied mainly for analysis, classification, categorization, pattern 
detection, etc., are popular in supervised learning. Some recent studies 
on classification are presented in (Sevinc, 2019 & Sevinç & Dökeroglu, 
2019). Feature selection techniques are done by extreme learning ma-
chine (Huang, Zhou, Ding, & Zhang, 2012) and improved by GA 
methodologies for better performance. A similar GA is presented in 
(Karakaya, 2017). The aim is to find a generic solution in a reasonable 
amount of time after optimizing an improved GA. Similarly, in (Deniz, 
Kiziloz, Dokeroglu, & Cosar, 2017 and Dokeroglu & Sevinc, 2019), some 
filtering mechanisms and methodologies supported by extreme learning 
machines have been developed and experimented with for feature sub-
set selection. These studies are good examples of filter-based feature 
selection approach while Xue et al. (Xue et al., 2019) presents a wrapper 
feature selection algorithm for classification. They proposed a re- 
weighted multi-view algorithm which allowed multiple relevant views 
for better accuracy. As a hybrid approach, Zhu et al. proposed a hybrid 
filter and wrapper feature selection algorithm with a combination of 
genetic algorithm (GA) and local search (LS) in (Zhu, Ong, & Dash, 

2007). 
Additionally, there are other algorithms, such as meta-heuristic al-

gorithms, in the literature. Artificial Bee Colony, Bacterial Foraging, Bat 
Algorithm, Gary wolf, whale optimization, etc., are involved in this 
group. These methodologies aim to reach better classification perfor-
mances by upgrading some parameters and implementing specific 
feature selection techniques. A survey is presented in (Dokeroglu, Sev-
inc, Kucukyilmaz, & Cosar, 2019) and two additional study is presented 
in (Mirjalili, 2015 & Li et al., 2020). The final two studies from which 
this study benefited are binary classification algorithms that affected 
and developed from the movements of dragonflies. 

If it comes to the ML algorithm for classification, it is a vast field and 
still developing. You can find many ML algorithms for regression and 
classification problems. The most popular ML website is presented in 
(Api reference) in which python base classes and utility functions are 
listed. One can easily create unique models by using integrated most 
common ML algorithms and get remarkable results. 

As a research study on ML algorithms, a prominent one can be found 
in (Souza & Matwin, 2012). It is one of the initial examples of the 
Adaptive Boost (AdaBoost) algorithm. The authors used resampling with 
substitution instead of the re-weighting approach for reaching a good 
“weak learner”. They claimed that the proposed model produced the 
slightest error for specific weight distribution by this process. Because 
the weaker learner you get, the lower error rate you reach. In another 
interesting study in (Bai, Xie, Wang, Zhang, & Li, 2021), a similar 
AdaBoost algorithm is put forward which is close to the approach in 
here. Their model has three elements mainly and the learning perfor-
mance of the model is reinforced by the AdaBoost approach. Finally, it is 
claimed that the proposed model overwhelms all the comparison models 
in terms of root-mean-square error, threshold statistics, and residuals 
analysis. It is also added that they successfully improve the sensitivity 
and regression capacity of the model by handling the rough knowledge 
synchronously with their AdaBoost methodology. 

Among ML algorithms, Ensemble algorithms must be taken into 
consideration since they have an essential role in learning methodology. 
In (Kiziloz, 2021), five popular ensemble methods are implemented for 
feature selection, and models are run on known datasets from (Uci 
machine learning repository: data sets). When used as the only algo-
rithm in the model, it has been reported that it executes fast; however, 
when they are used together and integrated, they perform better in 
terms of accuracy. This is believed to be reasonable, and this method-
ology is also performed in this study. Also in (Priore, Ponte, Puente, & 
Gómez, 2018), a scheduling based using ensemble methods of machine 
learning algorithms has been presented. They deal with the scheduling 
problem and try to improve the result by considering the recommen-
dations made by different ensemble methods of ML algorithms. Thus, 
they try to obtain a conceptual evolution in the design of control sys-
tems. In addition, the study in (Albadr et al., 2020) tries to identify the 
effectiveness of detecting COVID-19 using chest X-ray images by inte-
grating Extreme Learning Machine with genetic algorithm evolutionary 
capabilities. 

Ensemble methods are so attractive that you can encounter easily as 
in a typical combinatorial optimization problem, a Dynamic Vehicle 
Routing Problem (DVRP) studied in (Wang, Liao, Li, Yan, & Chen, 
2021). The authors try to find a solution to the problem with time 
windows constraint. Finally, they construct a multi-objective optimiza-
tion model for the problem and improve it by an ensemble learning 
method. They claim that the ensemble learning model can help to 
improve the capability of adapting to new environments with different 
dynamic conditions. 

Similar to these studies, there are many other studies such as in (Guz, 
Cuendet, Hakkani-Tur, & Tur, 2010; Jabri, Saidallah, Alaoui, & Fer-
gougui, 2018; Khan, Ahamed, Kadry, & Ramasamy, 2020). All these 
studies aim to show the power of AdaBoost algorithm, especially in bi-
nary classification problems. After tuning and making repeated experi-
ments on a real dataset, i.e. Covid-19, we also try to present the success 
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of the proposed model against best known and recent state-of-the-art 
algorithms. 

3. Proposed algorithm 

In this part, a tuned Adaptive Boost (AdaBoost) Algorithm is presented. 
A model that is empowered by a classifier is a candidate solution to 
predict and solve such regression and classification problems with 
higher success. 

Another aim of the algorithm is to reach the possible best accuracy 
within a short period. Execution times will also be mentioned here since 
it is an essential issue for any machine learning algorithm. The results of 
the experiments are the averages of 10 independent runs of program 
executions to get rid of any randomness effect. 

Adaptive Boosting (AdaBoost), first introduced by (Freund & Schapire, 
1997) is briefly a general ensemble method that creates a strong clas-
sifier by using a number of weak classifiers. The algorithm starts with a 
weak learner, weighting each example equally. This is obtained by 
applying weights w1,w2,…wN to each training sample, which is called 
boosting iterations. At the beginning, all the weights are equally set to 
wi = 1

N. Then a weak learner on the original data is trained by training 
dataset. At each iteration, sample weights are updated, and this con-
tinues as it is reapplied to the data again up to the end. At each step, as 
the correct predictions are made, the weight of the training example is 
decreased, and oppositely the weight is increased if the model incor-
rectly predicted it. In other words, misclassified examples get their 
weights increased for the next round(s), while correctly classified ones 
get their weights decreased. Finally, predictions are integrated with a 
weighted majority sum to get the final prediction. 

Machine learning models generally suffer from bias or variances, and 
many studies are proposed to minimize this effect. Ensemble learning 

methods are good examples to mention related to the point. These 
methodologies are known to make training and predictions based on 
different models. Then by combining them, these models tend to have 
less bias and be less data-sensitive. The two most popular ensemble 
methods are bagging and boosting.  

• Bagging: Its name comes from Bootstrap AGGregatINGand mostly 
applies the decision tree method as a Bootstrap variance. Bagging 
trains all individual models parallel and each model is trained by a 
random subset of the dataset. As a result, the average of all the 
predictions from different trees are evaluated and unbiased when 
compared to a single decision tree  

• Boosting: This method trains a group of individual models in a 
sequential way. Each individual model gets a feedback from mistakes 
made by the previous model. Subsequent trees are re-trained at every 
step since the goal is to solve the absolute error caused by the pre-
vious tree. This method shows how AdaBoost works mainly. 

A sample illustration of these methods can be seen in Fig. 1. As 
mentioned, the proposed algorithm uses Boosting strategy and it can be 
seen that a high learning rate is more probable. 

3.1. Adaptive boost algorithm 

Though multi label classification is possible, because of Covid-19 
data set, a binary classification will be shown. Each data is presented 
and labeled as in Eq. 1 

(x1, y1), (x2, y2),…, (xk, yk) (1)  

where k is training data set size, xi ∈ T and yi ∈{-1, 1}. T represents the 
training data and the set {-1, 1} binary class labels for the data elements. 

Fig. 1. Bagging and Boosting Illustration.  
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Each training data sample xi can be a point in a multidimensional feature 
space. 

AdaBoost by itself implements a probability distribution over all the 
training samples. This distribution is modified by iterations with a new 
weak classifier to the data. In this study, the probability distribution is 
denoted as Dt(xi) and t refers to the successive iterations of the algo-
rithm. The weak classifier chosen for the iteration t is denoted by ht . 
Then the class label assigned by xi is presented by ht(xi). By comparing 
ht(xi) with yi for i  = 1, 2, …,k, there will be an error ∊t, which is called as 
the classification error rate for the classifier ht. 

Each candidate classifier is trained during iterations using a sub- 
sampling of all of the training data as provided by the probability dis-
tribution Dt(x). As a result, the higher the probability Dt(x) for a given 
training sample x, the greater the chance that it will be chosen for 
training the candidate classifier h(t). The selection of ht is essential since 
among all different possible values, the one that minimizes the 
misclassification rate ∊t must be chosen. For example, a weak classifier is 
primarily a single feature that is simply a threshold in most AdaBoost 
implementations. 

The other important point for AdaBoost algorithm is the trust level 

αt, of weak classifier in which we trust. As mentioned clearly before, the 
bigger the value of error, ∊t for a classifier, the lower the trust must be. 
The relation between αt and ∊t is shown in Eq. 2 

αt =
1
2

ln
1 − ∊t

∊t
(2) 

If the error rate, ∊t, gets closer to 1 starting from 0, the trust level of 
the candidate classifier h(t) will get a value in the scale of − ∞ and ∞. ∊t 

being close to 1 means that the weak classifier fails almost completely on 
the overall training dataset, and ∊t being close to 0 means that your weak 
classifier is a powerful classifier as also stated in (Cao, Miao, Liu, & Gao, 
2014) 

A final classifier H is obtained at the end. After k iterations, H clas-
sifier in AdaBoost algorithm is evaluated as in Eq. 3 

H(x) = sign

(
∑k

t=1
αt.ht(x)

)

(3)  

where x is the new data element which denotes the information strength 
in the training data. For example, in binary classification if H(x) is 
positive, then the predicted class is 1, otherwise, it is − 1. 

Fig. 2. Accuracy Rates of Ensemble Algorithms.  
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The classifier presents a weighted aggregation produced by the in-
dividual weak classifiers. Thus, in the end, a single strong, weak clas-
sifier can dominate over several not-so-strong weak classifiers with the 
highest trust factor αt among others. A fundamental AdaBoost algorithm 
is explained in (Schapire, 2003), and related python libraries can be 
easily found in (Api reference). 

The proposed AdaBoost algorithm of this study works through the 
following steps;  

1. Initially, Adaboost creates and assigns training and test subsets 
randomly.  

2. It trains the model through iterations by selecting the training set.  
3. It assigns the higher weight to wrong classified observations so that 

in the next iteration, these observations will get a high probability for 
classification.  

4. Algorithm assigns the weight to the classifier after each iteration due 
to the tuned Decision Tree classifier.  

5. The whole process continues until the complete training data fits 
without any error or reaches a maximum number of estimators.  

6. To classify, perform a “vote” among classifiers and decide the output 
due to the model built. 

3.2. Decision trees 

Decision trees are well-known and popular for classification prob-
lems. Their popularity mainly originates from the similarity to that of 
standard human brain’s making decisions. Being a supervised machine 
learning algorithm, a decision tree includes a series of sequential de-
cisions given for reaching a specific result. This mechanism is adopted 
for reaching better accuracy in the tests. The decision tree classifier 
evaluates due to the majority over many decisions and then makes the 
decision. 

The decision tree algorithm starts with attribute election. For this, 
Attribute Selection Measure (ASM) split records and provides a rank and 
weight for the dataset features. Gini index and information gain are the 
most popular methods for ASM. According to these methods, features 
take place at the root node or the internal nodes; then, evaluation is 
done. More information about the indexes can be found in (Raileanu & 
Stoffel, 2004). 

Different decision tree algorithms use gini, entropy, or a combination 
of both. Gini index and entropy are the criteria for evaluating infor-
mation gain. Decision tree algorithms use this value to split a node. 
These two measures show the noise/impurity degree of a node. For 
example, if a node has multiple classes, it indicates impurity, and 
oppositely if a node has only one class, it means it is pure. Finally, a 
decision tree is a graph-based solution to a problem representing all 
possible solutions to a trial by decisions based on given conditions. 

3.3. Tuning AdaBoost with decision tree classifier 

The proposed algorithm here is called Empowered ADAboost with 
Decision Tree (E-ADAD) method. The algorithm mainly uses tuning 
parameters of related python libraries defined in the “sklearn” package. 
Python libraries have a wide range of capabilities by simply making 
function calls to manage and achieve a wide range of abilities. Many 
types of different models can be developed and used for other purposes 
for future problems.“Decision Tree” classifier has been used as the 
estimator and the “gini” method has been implemented by this classifier. 
In a binary classification problem such as the Covid-19 dataset, gini 
criterion is more popular and powerful. Its formula is presented in Eq. 4. 

Gini = 1 −
∑n

i=1
p2(ci) (4)  

where p(ci) is the probability of class ci in that node. Gini Index suggests a 
two-way split for the attributes and thus we can compute a weighted 

sum of the impurity for each partition separately. 
The classifier of E-ADAD model definition is given below; 

clf = AdaBoostClassifier(
DecisionTreeClassifier(criterion = ’gini’, max depth = 4),

learning rate = 0.9)

Though it is not shown, there is a split strategy in the constructor, 
namely “best”. It is assigned by default. Additionally, another important 
parameter is the “maximum depth of the tree”. A higher maximum depth 
value causes overfitting, while a lower one causes underfitting. This 
value is assigned as “4” as seen in the model definition. 

E-ADAD uses the “learning rate” parameter, which is denoted 
generally as α, shows the speed of learning that the model achieves. 
However, slower learning brings forward another significant point. A 
low learning rate will take much time and more probability to converge 
or get stuck in an undesirable local minimum. However, a higher one 
makes the learning jump over minima. In this study, 0.8 ⩽α⩽1.0 is 
selected for E-ADAD since this range was observed to be more appro-
priate during the tests. Another point is that different α values being in 
the range are taken for different datasets. 

Number of estimators is another parameter that affects accuracy. The 
default value is 50, and this number is the point where boosting is 
terminated. The default value is chosen and used for E-ADAD. 

Finally, algorithm{
′SAMME.R′} is assigned by default. It is also clearly 

emphasized in the study (Hastie, Rosset, Zhu, & Zou, 2009) that the two- 
class AdaBoost builds an additive model to approximate the two-class 
Bayes rule. The SAMME.R is a natural and clean multi-class extension 
of the two-class AdaBoost algorithm. In other words, by its nature 
SAMME/SAMME.R adapts to the philosophy of boosting, and it is 
strongly believed that it is a powerful method in two-class predictions. 

E-ADAD algorithm is presented below; 

Algorithm 1. E-ADAD Algorithm   

Due to result of AdaBoost algorithm, results are obtained on the test 
dataset and according to supervised learning methodology, success rate 
is evaluated. 
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4. Experimental results 

4.1. Comparison among other ensemble algorithms 

The experiments are executed on a standard laptop Windows-10 
machine. It has an i7 CPU (i7-5700HQ CPU @ 2.70 GHz) and 16 GB 
of memory. The code is implemented in Jupyter-notebook Version 3.0.0. 
All coding is in Python 3.6 version and *.ipynb format. 

Ensemble algorithms are well-known among ML algorithms. They 
have an essential role since they are flexible and integrated by different 
types of estimators. These ensemble estimators are ideal for regression 
and classification problems since they are capable of reducing bias and 
variance to increase the performance of models. 

Decision trees are the ones that are mostly integrated with ensemble 
algorithms. They are easy to understand and produce remarkable results 
in a world full of algorithms that look like a black box. Even after 
combining several models, ensemble methods improve learning much, 
as also stated in (Kiziloz, 2021). 

Adaptive Boost (Adaboost) Algorithm: AdaBoost is powerful to arrange 
a set of weak classifiers in a sequence in which each weak classifier is the 
best choice for a classifier at that point for rectifying the errors made by 
the previous classifier. Boosting means arranging a set of weak classifiers 
in a sequence in which each weak classifier is the best choice for a 
classifier to rectify the errors made by the previous classifier. 

AdaBoost can improve its ability to learn from past errors since it has 
the theoretical guarantee that as more weak classifiers are put into use, 
the final misclassification rate must be made arbitrarily small. Addi-
tionally, the AdaBoost approach has a bound on the generalization error. 
This means it will not ever increase since the updated weight will 
decrease. Finally, this method constitutes the origin of this study. 

Random Forest Algorithm: Random Forest is a tree-based machine 
learning algorithm that integrates the solving capability of multiple 
decision trees. As the name suggests, this approach proposes a “forest” of 
trees. Decision trees are randomly created, and each node in the tree 
works on a random subset of features to predict the output. Then this 
random forest collects and integrates the result of individual decision 
trees, then evaluates the final output. 

In the experiments, data sets have been divided into train and test 
subsets with different proportions obtained by randomly selected same 
subsets. This is done for getting rid of the effect of any time randomness. 
In other words, random_state parameter must be set to a value in order 
not to get different results after each execution. This is important 
because when we use random state = some number parameter, this 
means that each split will be random but the same every time. It pro-
vides us to work on the same split as the first time it is assigned. 

A sample code using sci-kit for splitting the dataset is given below; 

from sklearn.model.selection import train test split
X train, X test, y train, y test =

train test split(X, y, test size = 0.25, random state = 0)

According to that code, the training size is 75% of data while the test 
size is 25%. The split is first randomly done and is the same for each run. 
That means the initial random selection is the same for each run/split. 
random state = 0 means that the data will be randomly split, but the 
same random parts will be selected. The number “0” has no impact on 
this. 

Histogram-based Gradient Boosting: Histogram-based Gradient Boost-
ing approach is very similar to that of Gradient Boosting except for the 
compatibility with the dataset. This classification tree estimator is 
relatively faster than GradientBoostingClassifier for big datasets (number 
of samples ⩾10000). 

In this algorithm, each predictor is to be improved by reducing the 
errors due to its predecessor. However, Gradient Boosting fits a new 
predictor of the previous predictor’s residual errors instead of providing 
a predictor on the data at each iteration. 

Finally, ensemble algorithms are compared to show the best one. The 

results can be seen in Fig. 2. For all the algorithms, “Iris” and “Wisconsin 
Breast Cancer” datasets have been used. These datasets are mostly used 
ones while “Iris” is multi-class classification and “Wisconsin Breast 
Cancer” is a two-class classification problem. The reason for selecting 
these two common datasets is to show a clear distinction among the 
candidate algorithms. 

All ensemble classification algorithms are experienced on these 
datasets in Fig. 2. Though all the results are close to each other AdaBoost 
algorithm is slightly more successful when compared to others. Esp. in a 
binary class classification problem, AdaBoost Algorithms are more 
successful, as seen in “Wisconsin Breast Cancer”. It can be observed that 
it is about 5% better than the average of the rest algorithms. 

4.2. Comparison with state-of-the-art algorithms 

The study in (Too & Mirjalili, 2021) is a very recent and remarkable 
one in the literature. Binary Dragonfly Algorithm is discussed and used, 
then some parameters are changed, and a new algorithm, hyper learning 
binary dragonfly algorithm (HLBDA), is proposed. This new algorithm, 
HLBDA, has been compared with eight other state-of-the-art algorithms, 
and the results are presented. 

Intuitively, this study is also affected by that study and proposes 
another ML algorithm. Then we make another comparison with all the 
algorithms presented in (Too & Mirjalili, 2021) from which a total of 9 
algorithms is imported. The other mentioned eight well-known algo-
rithms in there are; Binary Dragonfly Algorithm (BDA)(Mirjalili, 2016), 
binary artificial bee colony (BABC) (He, Xie, Wong, & Wang, 2018), 
binary multiverse optimizer (BMVO) (Al-Madi, Faris, & Mirjalili, 2019), 
binary particle swarm optimization (BPSO) (Kennedy & Eberhart, 
1997), chaotic crow search algorithm (CCSA) (Sayed, Hassanien, & 
Azar, 2019), binary coyote optimization algorithm (BCOA) (de Souza, 
de Macedo, dos Santos Coelho, Pierezan, & Mariani, 2020), evolution 
strategy with covariance matrix adaptation (CMAES) (Hansen & Kern, 
2004), and success-history based adaptive differential evolution with 
linear population size reduction (LSHADE) (Tanabe & Fukunaga, 2014). 
Table 1 presents the parameters that are used by these algorithms. 

All the datasets are also included here for making a more fair com-
parison. These datasets from (Datasets: Feature selection @ asu; Uci 
machine learning repository: data sets) are popular and commonly 
known in the ML area. The result is that the same algorithms using the 
same datasets are used and compared here. However, “Horse Colic” is an 
exception since it has 30% of the values are missing, and there is no clue 
how it had been used, and there is no given mapping plan for those 
values. Because of that reason, this dataset, i.e. “Horse Colic”, has been 
excluded from the study. As a result, 20 out of 21 datasets have been 
used as in (Too & Mirjalili, 2021). The dataset definitions are given in 
Table 2. Some of them have medium while others have a big size. 

However, it will be beneficial to give the following information 
about the datasets used in the experiments. In the “Hepatitis” dataset of 
(Uci machine learning repository: data sets), a lot of missing values are 
found. 155 instances have 20 features. These missing values are 
completed as stated in the explanation part of the dataset. Since all the 
values can be completed with the stated average values, no row or 
column dropped. 

For “Primary Tumor”, only 5 columns have missing values. These are 
completed as in the explanation part of the dataset. 

“Soybean” dataset has the most problematic missing values. It is a 
medium-sized dataset having 307 rows  × 35 columns. There are 19 
output classes of soybean, all of which have small differences due to 
their classification. All values have been completed and used due to 
definitions. 

“Arrhythmia” is also a medium-level dataset having 279 features in 
total. There are a total of 5 columns that have missing values. According 
to this study, if the number of missing values is greater than 10% of the 
whole, that column is not taken, namely dropped. This is the case for 
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13th column. Since that column has more than 83% missing values, it has 
been drooped. For the rest four columns (10,11,12, and 14), they are 
within limits, and the completion process is done due to the column’s 
mode. 

“Dermatology” data set has are only missing value in one column, and 
only eight rows have missing values. They are again in limits, so those 
values are filled with the mean of that column. 

For “Glass”, “Lymphography”, “Ionosphere”, “Zoo”, “Musk-1”, 
“SPECT Heart”, “Libras Movement”, “ILPD”, “Seeds”, “LSVT”, “SCADI”, 
“TOX_171”, “Leukemia”, “Lung discrete” and “Colon” datasets, no 
missing values have been detected. So all the values of datasets are used 
and included in the experiments. 

Predicted accuracy levels of all algorithms can be seen in Fig. 3. E- 
ADAD has a better performance among most of the datasets (12 in 20) 
when compared to all of the algorithms presented in (Too & Mirjalili, 
2021). 

In a typical learning prediction model, all data has been divided into 
three parts, training, validation, and test subsets. This discrimination has 
some drawbacks, such as test set data in the model and evaluation of the 
test can hardly be seen on general performance. Grouping data in this 
way may cause some misplacement. This effect can also be called 
leakage of data. In addition to this factor, the number of samples for 
learning or testing can drastically reduce caused after partitioning them. 
These effects totally can result in worsening the performance of the 
model. 

As a solution to this problem, Cross-Validation (CV) has been used in 
the experiments. CV is in fact a critical technique for avoiding a meth-
odological mistake at the same time. This means that there will be no 
unseen data up to that time that the model used. In this method, a cross- 

validation splitting strategy must be determined initially. Then the 
generator divides or splits the whole data into k equal parts. By default, 
this k value is 5 in sci-kit library. It means you implement 5-fold cross- 
validation with the generator. 

After splitting the whole data into k “folds”, the model is trained 
using (k-1) of the folds as training data, and with the last fold, it will be 
validated. This whole process will be done repeatedly until k times to 
equally finish all the splits created by the generator in turn. An illus-
tration of k-fold CV is seen in Fig. 4. 

Numbers related to the “Learning Curves” and “Fitness Times” of 
each fold are given in Tables 3 and 4 respectively. The performance of 
CV is calculated by taking the average of the values of splits computed in 
turn and all the figures are put together for a clear comparison of the 
datasets. 

Then the performance of CV is calculated by taking the average of the 
values of splits computed in turn. Though this approach seems to need a 
high computation time, it gives the advantage of getting rid of 
randomness data leakage. Additionally, you can get rid of the effect of a 
small number of training or test datasets simultaneously. 

If to see all the methodologies together, “Learning Curves” of Datasets 
is presented in Fig. 5, while “Fitness Times” of datasets is in Fig. 6. 

In Fig. 5, learning curve of a Decision Tree classifier is shown as the 
training set score and the cross-validation scores of the prediction 
together. This graph is in support of showing accuracy and learning 
speeds at the same time. These two figures, namely Figs. 5 and 6 are 
obtained by cross-validator and the whole dataset has been divided by 
ShuffleSplit function of the sci-kit library. After splitting data into 
training and test sets, which are 75% and 25% respectively in the study, 
then the results are automatically evaluated and the results are 
produced. 

High learning curves can easily be noticed. It shows the appropri-
ateness of the model. Then accordingly, a high cross-validation rates is 
following them. The results of these CV rates are the results of E-ADAD 
classifier. Then in Fig. 6, the model shows the time how the CV results 
has been achieved in seconds. It seems extremely fast when compared to 
its rivals. 

Finally, the proposed algorithm has a very fast convergence speed 
and learning rate, even in the early iterations as clearly seen in Figs. 5 
and 6. 

4.3. Real dataset comparison 

2020 began with a disaster, and the World Health Organization 
(WHO) announced that Covid-19 became an epidemic. Unfortunately, 
initial cases were met in China, and the virus rapidly spread over the 
world. Still, we have many restrictions in our daily life. 

In this section, the proposed algorithm is used to solve a real-life 
problem, namely a Covid-19 patient health prediction dataset. This 
dataset is the same as in (Too & Mirjalili, 2021), and it can be found on 
(Atharva-Peshkar) on the Internet. 

The description of the dataset is shown in Table 5. In the dataset, 
some symptoms are given and accordingly, the death and recovery 
conditions are given related to given factors due to those 15 features. 

In the whole dataset, there are 1081 instances totally. 1018 instances 
out of 1081 have the value “0” which denotes alive and the rest 63 in-
stances have the value “1” which denotes dead. In the whole dataset, 
there are totally 1081 instances. 1018 instances out of 1081 have the 
value “0” which denotes alive and the rest 63 instances have the value 
“1” which denotes dead. There are totally 2 classes in the whole dataset. 
75% and 25% were used in the study for training and testing sets 
respectively. 

This study is intended to make a comparison with the algorithms in 
(Too & Mirjalili, 2021) since it is the most recent, state-of-the-art, and 
published ML algorithm. The proposed algorithm of that study is 
HLBDA, and additional four other algorithms (HLBDA, BDA, BMVO, and 
BPSO) have been compared, which are stated there. The parameters pl 

Table 1 
Parameter description of feature selection algorithms  

No Algorithm Parameter Value 

1 HLBDA pl and gl 0.7 and 0.85 
2 BDA Controlled parameters Same as original 
3 BABC Maximum limits 5 
4 BMVO WEP [0.02, 1]   

TDR [0.6, 0] 
5 BPSO Inertia weight, w [0.9, 0.4]   

Acceleration factors, c1 and c2 2 
6 CCSA AP, fl 0.1, 2 
7 BCOA Coyote, pack number 5,2 
8 CMAES Parent number γ/4  
9 LSHADE Minimum population size 4  

Table 2 
Descriptive statistics of the used datasets  

No. Dataset # of Instances # of Features Output Classes 

1 Glass 214 10 7 
2 Hepatitis 155 20 2 
3 Lymphography 148 18 4 
4 Primary Tumor 339 17 22 
5 Soybean 307 35 19 
6 Ionosphere 351 34 2 
7 Zoo 101 16 7 
8 Musk-1 476 166 2 
9 Arrhythmia 452 279 16 
10 Dermatology 366 34 6 
11 SPECT Heart 267 22 2 
12 Libras Movement 360 91 15 
13 ILPD 583 10 2 
14 Seeds 210 7 3 
15 LSVT 126 310 2 
16 SCADI 70 205 7 
17 TOX_171 171 5748 4 
18 Leukemia 72 7070 2 
19 Lung discrete 73 325 7 
20 Colon 62 2000 2  
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Fig. 3. Accuracy of Datasets.  
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and gl of HLBDA are declared to be set to 0.7 and 0.85, respectively, and 
success rates are given in the study. It is told that after updating these 
two values as stated, HLBDA had a fast convergence speed, which means 
it gets closer to the final result very quickly. Then it is also claimed that 
HLBDA had a better success learning rate due to the other mentioned 
four algorithms. 

The results are presented in Figs. 7 and 8. The results of model 
performance due to the training set and the model is as seen in Fig. 7. 
Though the proposed algorithm in that study is told to be converged very 
quickly, E-ADAD trains all training set in 0.14 s and it reaches a better 
accuracy rate in the period. 

Fig. 8 shows the accuracy rates of all algorithms. E-ADAD has got a 
95.33% accuracy rate, and this value is the mean of 10 independent 
runs. It overcomes HLBDA with 92.21% prediction accuracy being the 
highest among others in that study. 

E-ADAD has the best prediction rate even in a short period. With the 
help of the “Decision Tree” classifier, E-ADAD has overcome all the other 
recent and state-of-the-art algorithms. 

Moreover, two more methods are mentioned for emphasizing the Fig. 4. k-fold Cross-Validation(CV) Illustration.  

Table 3 
Accuracy Learning Curves of the datasets.  

No Dataset Folds Average 

#1 #2 #3 #4 #5 

1 Glass 0.975 0.975 0.975 0.975 0.975 0.975 
2 Hepatitis 0.833 0.833 0.875 0.875 0.917 0.867 
3 Lymphography 0.946 0.770 0.838 0.811 0.838 0.840 
4 Primary Tumor 0.424 0.424 0.388 0.459 0.388 0.416 
5 Soybean 0.744 0.818 0.844 0.883 0.779 0.814 
6 Ionosphere 0.943 0.943 0.943 0.955 0.924 0.942 
7 Zoo 0.962 1.000 1.000 0.962 0.928 0.970 
8 Musk-1 1.000 1.000 1.000 1.000 1.000 1.000 
9 Arrhythmia 0.623 0.628 0.637 0.646 0.619 0.631 
10 Dermatology 0.982 0.983 0.982 0.966 0.947 0.972 
11 SPECT Heart 0.836 0.791 0.866 0.881 0.881 0.851 
12 Libras Movement 0.778 0.686 0.789 0.778 0.789 0.764 
13 ILPD 0.655 0.710 0.710 0.697 0.710 0.697 
14 Seeds 0.906 0.943 0.943 0.962 1.000 0.951 
15 LSVT 0.800 0.960 0.920 0.840 0.680 0.840 
16 SCADI 0.846 0.846 0.923 0.923 0.712 0.850 
17 TOX_171 0.725 0.878 0.813 0.725 0.813 0.791 
18 Leukemia 0.929 1.000 1.000 0.929 0.929 0.957 
19 Lung discrete 0.929 0.929 0.857 0.843 0.814 0.874 
20 Colon 0.917 0.917 0.763 0.877 0.763 0.847  

Table 4 
Fitness Times of the datasets.  

No Dataset Folds Average 

#1 #2 #3 #4 #5 

1 Glass 0.088 0.100 0.113 0.072 0.070 0.089 
2 Hepatitis 0.070 0.100 0.071 0.072 0.070 0.077 
3 Lymphography 0.059 0.064 0.097 0.110 0.076 0.081 
4 Primary 0.125 0.090 0.123 0.106 0.068 0.103 
5 Soybean 0.111 0.091 0.082 0.114 0.081 0.096 
6 Ionosphere 0.152 0.156 0.147 0.184 0.138 0.155 
7 Zoo 0.101 0.084 0.080 0.062 0.070 0.080 
8 Musk-1 0.012 0.012 0.022 0.016 0.016 0.016 
9 Arrhythmia 0.519 0.512 0.503 0.536 0.434 0.501 
10 Dermatology 0.087 0.079 0.096 0.108 0.098 0.094 
11 SPECT 0.085 0.100 0.081 0.101 0.063 0.086 
12 Libras 0.736 0.492 0.734 0.497 0.677 0.627 
13 ILPD 0.086 0.213 0.081 0.091 0.081 0.110 
14 Seeds 0.089 0.088 0.092 0.090 0.092 0.090 
15 LSVT 0.213 0.301 0.268 0.211 0.210 0.241 
16 SCADI 0.016 0.104 0.086 0.058 0.078 0.069 
17 TOX_171 6.223 6.520 6.591 6.115 5.770 6.244 
18 Leukemia 0.062 0.064 0.091 0.063 0.069 0.070 
19 Lung 0.107 0.163 0.109 0.121 0.101 0.120 
20 Colon 0.255 0.053 0.019 0.023 0.018 0.074  
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capability of the E-ADAD algorithm. The first one is confusion matrix 
commonly used for summarizing the performance of a classification 
algorithm. It is specifically used for the cases if there is a big difference 
between the classes. A binary data set is used here and in the test dataset, 
there are 271 instances which are 25% of 1081 total instances. 253 of 
these are declared as “0”, meaning NOT death, and 18 of these are “1” in 
the test part as seen in Fig. 9. Anyway, proportions are being preserved 
as they are on the whole. 

Receiver Operating Characteristic (ROC) curve is also another 
parameter to evaluate classifier output quality. One characteristic of 
ROC curves is that the “true positive rate”s are placed on the Y axis, 

while “false positive rate”s are on the X-axis. In other words, the top left 
corner of the plot is the “ideal” point - a false positive rate of zero, and a 
true positive rate of one. However, this point is an extreme, but the 
closer the better. It implies that a larger Area Under the Curve (AUC) is 
simply preferable. 

The AUC in the proposed algorithm is evaluated as 0.722 and the 
blue line shows no sign of classification capability or random selectivity 
while the red line shows the E-ADAD’s performance. This implies a 
reasonable and remarkable classification has been achieved between the 
classes of the binary dataset as seen in Fig. 10. 

Fig. 5. Sample Efficiencies of Datasets.  
Fig. 6. Fitness Times of Datasets.  
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5. Conclusion and future work 

In this study, an Adaptive Boost Algorithm using a Decision Tree 
estimator is proposed. After making trials, a tuning process is done to a 
classifier, and a binary classification problem is solved. 

AdaBoost is popular and well-known technique in this field. 

Moreover, it is improved for binary and multi-class classifications. It is 
seen that the proposed learning model substantially can achieve a good 
performance both in execution and the average prediction rates. Even 
for binary classification problems, the algorithm produces way better 
results than state-of-the-art algorithms. This study is also believed to be 
used and implemented for other real-life situations during epidemic 
conditions. 

Additionally, for different data and conditions, the E-ADAD algo-
rithm seems to be a good candidate to be benefited. Among its rivals, it 
seems to predict and achieve in short periods. This is thought to be an 
outstanding capability and speciality. As a result, E-ADAD achieves the 
highest accuracy for predicting output classes. 

For future studies, E-ADAD can be tuned to get more successful re-
sults with multi-class classifications. There is a wide range of research in 
this field. Especially for regression problems, E-ADAD needs to be 
searched much for getting far better results. There are many ML fields in 
new models, and classifiers are proposed and put forward for better 
results. 

Additionally, ensemble algorithms are very promising for proposing 
new models. Probable newly proposed models with different classifiers 
can be very beneficial while solving other types of real-life problems. An 
ensemble algorithm integrated can be useful for especially unsupervised 
learning and unlabeled data. 

Table 5 
The description of Covid-19 Dataset  

No Feature Name Description 

1 id ID of patient 
2 location The place where patients live 
3 country The country patients belong to 
4 gender The gender of patients 
5 age The ages of patients 
6 sym_on The date patients show the symptoms 
7 hosp_vis The date patients visit hospital 
8 vis_wuhan Whether the patients visited Wuhan, China 
9 from_wuhan Whether the patients come from Wuhan, China 
10 symptom1 Name and type of symptoms 
11 symptom2 Name and type of symptoms 
12 symptom3 Name and type of symptoms 
13 symptom4 Name and type of symptoms 
14 symptom5 Name and type of symptoms 
15 symptom6 Name and type of symptoms  

Fig. 7. Performance of the model.  

Fig. 8. Accuracy graph of the algorithms for Covid dataset.  
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