Table 4.
The outcomes of Bayesian-based tuned CNN in scenario 2.
Iter | Objective | depth | Learn rate | Momentum | L2Regularize | Iter | Objective | depth | Learn rate | Momentum | L2Regularize |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.17359 | 5 | 0.56005 | 0.89236 | 2.5293e-08 | 16 | 0.39151 | 1 | 0.85309 | 0.80126 | 0.0047163 |
2 | 0.086796 | 2 | 0.45045 | 0.9174 | 2.0423e-10 | 17 | 0.097876 | 1 | 0.048194 | 0.81467 | 1.1155e-10 |
3 | 0.19668 | 5 | 0.045905 | 0.86003 | 0.0030503 | 18 | 0.065559 | 1 | 0.015893 | 0.92199 | 3.0676e-07 |
4 | 0.09603 | 2 | 0.22518 | 0.85151 | 5.6765e-05 | 19 | 0.089566 | 1 | 0.20578 | 0.83616 | 1.0967e-10 |
5 | 0.66759 | 2 | 0.96209 | 0.97666 | 1.0098e-10 | 20 | 0.057248 | 1 | 0.055434 | 0.81781 | 6.2685e-06 |
6 | 0.0988 | 2 | 0.69253 | 0.82806 | 2.3652e-08 | 21 | 0.057248 | 2 | 0.010601 | 0.90455 | 4.7382e-06 |
7 | 0.051708 | 1 | 0.045746 | 0.89761 | 1.5974e-08 | 22 | 0.047091 | 1 | 0.060467 | 0.91755 | 2.3564e-10 |
8 | 0.064635 | 1 | 0.027362 | 0.80004 | 0.000474 | 23 | 0.090489 | 1 | 0.043747 | 0.8017 | 5.659e-07 |
9 | 0.051708 | 1 | 0.017239 | 0.90674 | 0.00070454 | 24 | 0.064635 | 1 | 0.029504 | 0.91162 | 1.0623e-06 |
10 | 0.17452 | 1 | 0.91842 | 0.87403 | 1.1245e-10 | 25 | 0.065559 | 1 | 0.010295 | 0.83171 | 0.0034166 |
11 | 0.11634 | 5 | 0.010243 | 0.80031 | 0.0015368 | 26 | 0.075716 | 1 | 0.010218 | 0.81136 | 0.00069518 |
12 | 0.045245 | 1 | 0.1452 | 0.90559 | 5.8502e-10 | 27 | 0.038781 | 1 | 0.042721 | 0.84845 | 5.3403e-07 |
13 | 0.073869 | 1 | 0.53902 | 0.8108 | 1.3185e-10 | 28 | 0.043398 | 1 | 0.010106 | 0.87598 | 0.00042163 |
14 | 0.057248 | 1 | 0.019588 | 0.90257 | 2.3604e-10 | 29 | 0.15605 | 4 | 0.25799 | 0.81222 | 1.2145e-10 |
15 | 0.3518 | 1 | 0.55331 | 0.90567 | 0.0022727 | 30 | 0.056325 | 1 | 0.065363 | 0.83903 | 1.1961e-05 |