Skip to main content
. 2022 Jan 5;142:105213. doi: 10.1016/j.compbiomed.2022.105213

Table 4.

The outcomes of Bayesian-based tuned CNN in scenario 2.

Iter Objective depth Learn rate Momentum L2Regularize Iter Objective depth Learn rate Momentum L2Regularize
1 0.17359 5 0.56005 0.89236 2.5293e-08 16 0.39151 1 0.85309 0.80126 0.0047163
2 0.086796 2 0.45045 0.9174 2.0423e-10 17 0.097876 1 0.048194 0.81467 1.1155e-10
3 0.19668 5 0.045905 0.86003 0.0030503 18 0.065559 1 0.015893 0.92199 3.0676e-07
4 0.09603 2 0.22518 0.85151 5.6765e-05 19 0.089566 1 0.20578 0.83616 1.0967e-10
5 0.66759 2 0.96209 0.97666 1.0098e-10 20 0.057248 1 0.055434 0.81781 6.2685e-06
6 0.0988 2 0.69253 0.82806 2.3652e-08 21 0.057248 2 0.010601 0.90455 4.7382e-06
7 0.051708 1 0.045746 0.89761 1.5974e-08 22 0.047091 1 0.060467 0.91755 2.3564e-10
8 0.064635 1 0.027362 0.80004 0.000474 23 0.090489 1 0.043747 0.8017 5.659e-07
9 0.051708 1 0.017239 0.90674 0.00070454 24 0.064635 1 0.029504 0.91162 1.0623e-06
10 0.17452 1 0.91842 0.87403 1.1245e-10 25 0.065559 1 0.010295 0.83171 0.0034166
11 0.11634 5 0.010243 0.80031 0.0015368 26 0.075716 1 0.010218 0.81136 0.00069518
12 0.045245 1 0.1452 0.90559 5.8502e-10 27 0.038781 1 0.042721 0.84845 5.3403e-07
13 0.073869 1 0.53902 0.8108 1.3185e-10 28 0.043398 1 0.010106 0.87598 0.00042163
14 0.057248 1 0.019588 0.90257 2.3604e-10 29 0.15605 4 0.25799 0.81222 1.2145e-10
15 0.3518 1 0.55331 0.90567 0.0022727 30 0.056325 1 0.065363 0.83903 1.1961e-05