Table 5.
The outcomes of Bayesian-based tuned CNN in scenario-3.
Iter | Objective | Depth | Learn rate | Momentum | L2 Regularize | Iter | Objective | Depth | Learn rate | Momentum | L2 Regularize |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.073869 | 5 | 0.56005 | 0.89236 | 2.5293e-08 | 16 | 0.031394 | 1 | 0.3408 | 0.80021 | 2.085e-08 |
2 | 0.084026 | 2 | 0.45045 | 0.9174 | 2.0423e-10 | 17 | 0.061865 | 1 | 0.14746 | 0.80107 | 1.7148e-09 |
3 | 0.14681 | 5 | 0.045905 | 0.86003 | 0.0030503 | 18 | 0.1265 | 2 | 0.20049 | 0.97991 | 6.7533e-09 |
4 | 0.079409 | 2 | 0.22518 | 0.85151 | 5.6765e-05 | 19 | 0.34441 | 5 | 0.71311 | 0.97992 | 2.8196e-09 |
5 | 0.10249 | 4 | 0.57092 | 0.80002 | 5.0694e-05 | 20 | 0.065559 | 1 | 0.36462 | 0.80086 | 4.6695e-08 |
6 | 0.17359 | 5 | 0.60652 | 0.88909 | 2.5798e-08 | 21 | 0.13758 | 3 | 0.93362 | 0.84857 | 5.843e-09 |
7 | 0.078486 | 2 | 0.27832 | 0.87092 | 2.719e-07 | 22 | 0.056325 | 1 | 0.010313 | 0.84758 | 3.5044e-07 |
8 | 0.084026 | 2 | 0.64306 | 0.81325 | 5.4379e-09 | 23 | 0.054478 | 1 | 0.056957 | 0.92869 | 4.5579e-09 |
9 | 0.064635 | 3 | 0.020184 | 0.90189 | 1.1136e-10 | 24 | 0.048015 | 1 | 0.086999 | 0.81024 | 1.8238e-06 |
10 | 0.073869 | 1 | 0.99879 | 0.85691 | 3.9481e-10 | 25 | 0.056325 | 1 | 0.066059 | 0.97703 | 1.1357e-10 |
11 | 0.087719 | 3 | 0.082862 | 0.97899 | 1.7582e-07 | 26 | 0.028624 | 1 | 0.0104 | 0.80281 | 1.7329e-08 |
12 | 0.1145 | 1 | 0.30907 | 0.96899 | 4.8241e-09 | 27 | 0.058172 | 1 | 0.010883 | 0.80102 | 8.7027e-09 |
13 | 0.068329 | 3 | 0.022298 | 0.80173 | 1.6709e-08 | 28 | 0.037858 | 1 | 0.010189 | 0.88753 | 1.5256e-06 |
14 | 0.033241 | 3 | 0.016754 | 0.80022 | 2.0167e-06 | 29 | 0.2096 | 5 | 0.92303 | 0.80051 | 2.6785e-07 |
15 | 0.63343 | 4 | 0.39236 | 0.97969 | 4.2755e-06 | 30 | 0.058172 | 1 | 0.011612 | 0.97707 | 1.0257e-07 |