Skip to main content
. 2022 Jan 5;142:105213. doi: 10.1016/j.compbiomed.2022.105213

Table 5.

The outcomes of Bayesian-based tuned CNN in scenario-3.

Iter Objective Depth Learn rate Momentum L2 Regularize Iter Objective Depth Learn rate Momentum L2 Regularize
1 0.073869 5 0.56005 0.89236 2.5293e-08 16 0.031394 1 0.3408 0.80021 2.085e-08
2 0.084026 2 0.45045 0.9174 2.0423e-10 17 0.061865 1 0.14746 0.80107 1.7148e-09
3 0.14681 5 0.045905 0.86003 0.0030503 18 0.1265 2 0.20049 0.97991 6.7533e-09
4 0.079409 2 0.22518 0.85151 5.6765e-05 19 0.34441 5 0.71311 0.97992 2.8196e-09
5 0.10249 4 0.57092 0.80002 5.0694e-05 20 0.065559 1 0.36462 0.80086 4.6695e-08
6 0.17359 5 0.60652 0.88909 2.5798e-08 21 0.13758 3 0.93362 0.84857 5.843e-09
7 0.078486 2 0.27832 0.87092 2.719e-07 22 0.056325 1 0.010313 0.84758 3.5044e-07
8 0.084026 2 0.64306 0.81325 5.4379e-09 23 0.054478 1 0.056957 0.92869 4.5579e-09
9 0.064635 3 0.020184 0.90189 1.1136e-10 24 0.048015 1 0.086999 0.81024 1.8238e-06
10 0.073869 1 0.99879 0.85691 3.9481e-10 25 0.056325 1 0.066059 0.97703 1.1357e-10
11 0.087719 3 0.082862 0.97899 1.7582e-07 26 0.028624 1 0.0104 0.80281 1.7329e-08
12 0.1145 1 0.30907 0.96899 4.8241e-09 27 0.058172 1 0.010883 0.80102 8.7027e-09
13 0.068329 3 0.022298 0.80173 1.6709e-08 28 0.037858 1 0.010189 0.88753 1.5256e-06
14 0.033241 3 0.016754 0.80022 2.0167e-06 29 0.2096 5 0.92303 0.80051 2.6785e-07
15 0.63343 4 0.39236 0.97969 4.2755e-06 30 0.058172 1 0.011612 0.97707 1.0257e-07