Skip to main content
. 2022 Jan 6;309(1):347–363. doi: 10.1007/s10479-021-04441-1

Table 2.

Algorithm for finding Δ and s in the modified (sS) policy

Algorithm for finding Δ and s in the modified (sS) policy
Step 0: Initialization. Linf, Δinf, sinf, L^(1:Mmax)=inf, and s^(1:Mmax)=inf.
Step 1.1: For Δ=1:(Mmin-Dmax+1)+, calculate Pi,j by (EC.22) in the online appendix.
Step 1.2: Given Δ, s^(Δ)argmins[y,y+Mmin]L(Δ,s) and L^(Δ)L(Δ,s^(Δ)), where
L(Δ,s) is calculated as in Case 6. Then, go to Step 2.1.
Step 2.1: For Δ=(Mmin-Dmax+1)++1:min{Mmin,Mmax-Dmax+1}-1, calculate Pi,j by
(EC.14) in the online appendix.
Step 2.2: Given Δ, s^(Δ)argmins[y,y+Mmin]L(Δ,s) and L^(Δ)L(Δ,s^(Δ)), where
L(Δ,s) is calculated as in Case 4. Then, go to Step 3.0.
Step 3.0: If Mmax-Dmax+1Mmin, go to Sept 3.1;
Else go to Step 3.3.
Step 3.1: For Δ=Mmax-Dmax+1:Mmin, calculate Pi,j by (EC.19) in the online appendix.
Step 3.2: Given Δ, s^(Δ)argmins[y,y+Mmin]L(Δ,s) and L^(Δ)L(Δ,s^(Δ)), where
L(Δ,s) is calculated as in Case 5. Then, go to Step 4.1.
Step 3.3: For Δ=Mmin:Mmax-Dmax+1, calculate Pi,j by (1).
Step 3.4: Given Δ, s^(Δ)argmins[y,y+Δ]L(Δ,s) and L^(Δ)L(Δ,s^(Δ)), where L(Δ,s)
is calculated as in Case 1. Then, go to Step 4.1.
Step 4.1: For Δ=max{Mmin,Mmax-Dmax+1}+1:Mmax, calculate Pi,j by ((EC.8) in the
online appendix.
Step 4.2: Given Δ, s^(Δ)argmins[y,y+Δ]L(Δ,s) and L^(Δ)L(Δ,s^(Δ)), where
L(Δ,s) is calculated as in Case 2. Then, go to Step 5.
Step 5: ΔargminΔ[1,Mmax]L^(Δ), LL^(Δ), and ss^(Δ).