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Pathophysiological pathways that are induced by chronic hyperglycemia negatively impact lipid metabolism. Thus, diabetes is
commonly accompanied by varying degrees of dyslipidemia which is itself a major risk factor for further macro- and
microvascular diabetes complications such as atherosclerosis and nephropathy. Therefore, normalizing lipid metabolism is an
attractive goal for therapy in patients with diabetes. Incretin-based medications are a novel group of antidiabetic agents with
potent hypoglycemic effects. While the impact of incretins on glucose metabolism is clear, recent evidence indicates their
positive modulatory roles on various aspects of lipid metabolism. Therefore, incretins may offer additional beneficial effects
beyond that of glucose normalization. In the current review, how these antidiabetic medications can regulate lipid homeostasis
and the possible cellular pathways involved are discussed, incorporating related clinical evidence about incretin effects on lipid

homeostasis.

1. Introduction

Diabetes mellitus (DM) is an increasingly prevalent meta-
bolic disorder, the major sign and symptom being hypergly-
cemia and polyuria, respectively [1]. This chronic disease is a
major underlying cause for severe debilitating conditions
such as cardiovascular disorders and renal failure [2]. Aber-
rations in the normal physiological metabolic pathways of
most substrates, including lipids, are present in DM, and
the disordered metabolism can induce the onset and pro-
gression of metabolic disorders [3-5]. Many diabetic com-
plications involve dyslipidemia, and lipid homeostasis has
obvious impacts on the function of most organs, important
examples being the kidneys, heart, blood vessels, the neuro-

nal network, and testes [6]. Therefore, normalizing lipid
metabolism in the diabetic milieu is an important goal for
prevention of diabetes-induced complications [3, 6].
Incretin-based medications are a new class of antidia-
betic drugs that effectively lower circulating glucose, acting
through various cellular pathways [7]. These antihyperglyce-
mic agents have significant effects on body metabolism and
increase insulin sensitivity via multiple molecular mecha-
nisms [7]. Although some evidence indicates beneficial
effects of these drugs on adipocytes and lipids [8], their exact
role in lipid homeostasis is, to date, poorly understood.
Should incretins be able to normalize lipid homeostasis, this
would extend their therapeutic effects beyond their hypogly-
cemic role in diabetic patients. Therefore, in the current
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study, we present an update on current knowledge regarding
the impact of incretins on lipid homeostasis.

2. Incretin-Based Antidiabetic Drugs

Incretins are a family of intestinal hormones that includes
glucagon-like peptide-1 (GLP-1) and gastric inhibitory pep-
tide (GIP) and that exerts their antidiabetic effects via
diverse mechanisms such as glucagon release inhibition,
stimulating insulin secretion, causing delay in gastric empty-
ing and appetite suppression, reducing the absorption of
intestinal nutrients, improving lipid metabolism, and pro-
moting pancreatic 3-cell function (Figure 1) [9-13]. GLP-1
is mainly secreted by intestinal enteroendocrine L-cells (as
well as certain neurons within the nucleus of the solitary
tract), while GIP is synthesized in the gastrointestinal tract
by K cells located in the mucosa of the duodenum and jeju-
num [9-13]. The GLP-1 peptide acts by binding to its spe-
cific receptor, the GLP-1 receptor (GLP-1R), that is mainly
located on pancreatic S-cells [11, 14]. GLP-1 binding to
GLP-1R is followed by an increase in production of cyclic
adenosine monophosphate (cAMP), cellular depolarization,
and intracellular calcium augmentation, leading to insulin
secretion from pancreatic S-cells [11, 14].

Two main classes of incretin antidiabetic drugs have
been developed, the GLP-1 receptor agonists (GLP-1RAs)
and dipeptidyl peptidase-4 inhibitors (DPP-4is) (Table 1)
[9, 15]. Besides antidiabetic actions, incretin-based drugs
have a plethora of beneficial effects on body organs
[16-23]. GLP-1RAs reduce blood glucose by stimulating
glucose-dependent insulin release from the pancreatic islets,
while DPP-4i increase the circulatory level of endogenous
GLP-1 by inhibiting the protease enzyme DPP-4, a serine
exopeptidase which is physiologically responsible for GLP-
1 metabolism and inactivation [9, 15]. DPP-4 inhibitors
and GLP-1RA have similar hypoglycemic effects, although
they may have some differences in pharmacological effects
such as influence on body weight and risk of adverse effects
[24] (Table 1).

3. Lipids, Physiology, and Metabolism

Lipids are hydrocarbonated micromolecules that are not sol-
uble in water but can be dissolved in nonpolar solvents [26].
Due to differences in structure and function, there are
numerous types of lipids: triglycerides (TG), phospholipids
(PL), cholesterol (CLS), and lipidemic molecules such as
sphingolipids, glycolipids, and prostaglandins [27]. TGs
and the PLs consist of free fatty acids (FFA) (simple long-
chain hydrocarbon organic acids with the common formula
CyHyCOOH), whilst CLS has no complete fatty acid in its
structure [27]. However, CLS has many of the biochemical
properties of the lipids since its nucleus is made of fatty
acid-like biomolecules [27]. Lipids have many physiological
functions, including energy storage, signaling activities, and
structural functions [27]. Lipids are incorporated into the
eukaryotic cell membrane structure by forming a double
layer membrane known as a lipid bilayer [27]. They are also
involved in the structure of many steroids and steroid hor-
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FIGURE 1: The major metabolic effects of incretins.

mones such as vitamin D,, prostaglandins, sex hormones,
and adrenal steroids (glucocorticoids and mineralocorti-
coids) [27]. Therefore, lipids and their derivatives are closely
involved in homeostasis and are vital for human health.

Adipose tissue (AT), a metabolic organ involved in
energy homeostasis in the body, consists of fat that is largely
composed of TGs and PLs [26, 28]. Originally considered to
be inert tissue formed from storage of excess energy, AT was
later shown to have important biological function, synthesiz-
ing biomolecules such as adipokines and adiponectins and
releasing them into the circulation [28]. These peptides have
significant hormonal effects on most metabolic pathways,
and hence, AT is now recognized as an endocrine organ with
significant metabolic impacts [6].

Lipid metabolism encompasses the processes of absorp-
tion, synthesis, polymerization, conversion, and degradation
of the lipid molecules [26]. These processes are finely tuned,
exhibiting a delicate dynamic equilibrium (in the healthy
physiologic state) which ultimately determines the total fat
mass of the body [26]. While some types of lipids are con-
stantly being oxidized to provide for the metabolic needs
for the body, others are being synthesized, replaced, and
stored [26, 29]. Lipid metabolism is under the influence of
many endogenous and exogenous factors [29] and is regu-
lated by hormones such as growth hormone, sex steroids,
adipokines, adrenal steroids, and thyroid hormones as well
as neuronal stimuli [30]. Many physiological, pathological,
and social stimuli, such as exercise, the intensity of physical
activity, feeding habits, and stressors, are able to modulate
lipid metabolism [30].

4. The Importance of Lipid Homeostasis in
Health and Disease

Lipid homeostasis is critical for the function of most physi-
ologic systems, examples being the cardiovascular system,
kidneys, retina, and nervous system, and is therefore impor-
tant for overall physical health [31]. A strong body of evi-
dence links dyslipidemia to many life-threatening disorders
such as atherosclerosis, nephropathy, fatty liver disease,
and thrombosis [31, 32]. For example, hypercholesterolemia
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TaBLE 1: The two main classes of incretin-based antidiabetic drugs.
Classes Approved forms Mechanisms of action Ref.
GLP-1RA Exenatide (exendin-4), Albiglutide, liraglutide, lixisenatide, semaglutide, dulaglutide Agonists of intrinsic incretins  [9, 15]
DPP-4i Sitagliptin, saxagliptin, vildagliptin, linagliptin Inhibit incretin inactivation  [24, 25]
TaBLE 2: The impact of incretin-based medications on lipid metabolism.

- . . . Clinical

Lipid metabolism Effects of incretin-based therapy Ref. .
evidence

Lipogenesis and . . . [57-61, 63, [63, 70, 107,
lipolysis Reduces lipogenesis mainly thru an AMPK-dependent pathway 74] 108]

- N e e 1 . . [21, 80-82,
Lipid peroxidation Inhibits lipid peroxidation and reduces lipotoxicity 84] [88]
Fatty acid oxidation Induces and promotes fatty acid oxidation [49, 95] [93]
Cholesterol synthesis Inhibits HMG-CoA reductase and cholester(?l biosynthesis, reduces atheroma [98, 100, [102]

plaque formation 101]

Lipid absorption Commonly reduces intestinal lipid absorption [103, 104] [105]

is an underlying cause of atheroma plaques, atherosclerosis,
and myocardial infarctions [33]. Dyslipidemia also nega-
tively impacts renal sufficiency [34] and retinal functions
[35, 36]. In the diabetic state, conditions are more conducive
for dyslipidemia and dysregulated fat metabolism [32], and
it is likely that all diabetic complications are in some ways
associated with dyslipidemia [37, 38]. Dyslipidemia can pre-
cipitate and progress diabetic complications via several path-
ologic pathways [38]. Therefore, the majority of patients
with diabetes are prescribed lipid-modulating drugs in addi-
tion to antidiabetic agents to improve lipid homeostasis and
help prevent the onset of diabetic complications [39].

5. Incretins and Lipid Homeostasis

Beyond their hypoglycemic effects, incretin-based drugs
exert modulatory effects on various steps of lipid metabolism
[40, 41] (Table 2). These effects can help diabetic patients to
normalize fat metabolism whilst concurrently normalizing
glycemic levels [39]. In the following sections, we will discuss
these metabolic effects.

5.1. Lipogenesis and Lipolysis. Lipolysis and lipogenesis are
the two main metabolic processes in lipid metabolism [42].
They are key determinants of adiposity, and the amount of
stored lipids is achieved by promoting or reducing lipid
reserves in adipocytes [43]. Lipogenesis is the metabolic pro-
cess in which FFA and TG are synthesized from different
substrates, such as carbohydrate, acetyl-coenzyme A
(CoA), and glycerol [44]. FFAs are synthesized in the cyto-
plasm of the cells (specifically the mitochondria) from
acetyl-CoA (in a process known as the de novo pathway),
whilst TG synthesis takes place mainly in the membrane of
the smooth endoplasmic reticulum (SER) [44]. Both pro-
cesses occur primarily in the liver and adipose tissue, but
in individuals with a high caloric diet and where there is
high carbohydrate availability, adipose tissue functions as
the major site of lipogenesis [44]. However, other tissues,

such as the kidneys, brain, lung, and gut, may also produce
lipids to some extent [45]. Lipogenesis is a highly controlled
metabolic process [46, 47] and is influenced by both
stimulatory and inhibitory factors such as transcriptional
elements, hormones, and metabolic enzymes [47]. Uncon-
trolled or pathological lipogenesis is directly linked to meta-
bolic disorders and obesity, and therefore, many lipogenesis-
modulating pharmacologic agents have been developed [48].

Lipolysis (or the degradation of lipid molecules into their
constituent parts) is the other key lipid metabolic process
which uniquely occurs in white adipocyte tissue [43]. In this
process, TGs break down into their constituent molecules, as
FFAs and glycerol, via hydrolysis [43]. Lipolysis takes place
mainly at the surface of cytosolic lipid droplets in adipocytes
and releases the FFAs and glycerol for use by other tissues
[43]. During fasting, lipolysis is induced in order to supply
the required FFAs for oxidative metabolism [49]. Lipolysis
also prevents serum FFA increase which may result in lipo-
toxicity [50]. As with lipogenesis, the lipolytic process is
under the influence of many stimuli and imbalances impact-
ing lipid metabolism may induce a wide array of metabolic
disorders such as obesity, insulin resistance, atherosclerosis,
nonalcoholic fatty liver disease (NAFLD) and DM [51].
Therefore, the appropriate lipolytic balance is of great
importance in diabetes to prevent downstream complica-
tions [51].

Incretin-based drugs are able to modulate both lipogen-
esis and lipolysis [42]. Sancho et al, in an in vivo study,
found that GLP-1 impacts kinases, such as PI3K, p44, and
p42 MAPKSs and possibly PKC, that are involved in lipolytic
and lipogenic processes [42]. They found that GLP-1 and its
agonists greatly impact lipogenesis and lipolysis in rat adipo-
cytes [42]. Recent evidence confirms that GLP-1 interacts
with the major lipid metabolic enzymes such as lipase [52,
53], pyruvate dehydrogenase [54], acetyl-CoA carboxylase
[55, 56], and fatty acid synthase [57].

Ben-Shlomo and colleagues in 2011 demonstrated that
GLP-1 inhibits lipogenesis via an AMPK-dependent



pathway in high fat diet (HFD) rats [58]. They found that
GLP-1 therapy suppressed lipogenic enzymes such as sterol
response element binding protein-1c (SREBP-1c), stearoyl
CoA desaturase-1 (SCD-1), fatty acid synthase (FAS), and
carnitine palmitoyl transferase-1 (CPT-1) in hepatic cells
of experimental rats [58]. Parlevliet et al. in 2012 provided
further evidence demonstrating that both GLP-1RA
(CNTO3649) and DPP-4i (exendin-4) decrease hepatic lipo-
genesis in HFD mice [59]. They found that GLP-1 therapy
downregulates the genes involved in lipogenesis such as
SREBP-1c¢, FAS, diacylglycerol O-acyltransferase 1 (Dgatl),
and apolipoprotein B synthesis (ApoB) [59]. Moreover,
Ideta and coworkers in 2015 reported that the DPP-4i tene-
ligliptin reduces hepatic lipogenesis by an AMPK-dependent
process in mice [60]. They showed that teneligliptin therapy
activates the AMPK pathway and attenuates expression of
lipogenic genes to improve NAFLD in a mouse model
[60]. A signaling axis between GLP-1 and lipogenesis was
suggested by more studies in which incretin-based medica-
tions ameliorate lipogenesis via AMPK activation pathway
[57, 61]. GLP-1 therapy may also increase postprandial chy-
lomicron synthesis, thereby increasing fat storage and nor-
malizing serum lipid levels [62]. The weight of evidence
therefore suggests that GLP-1 therapy is promising for mod-
ulation of lipogenesis in diabetic patients [63].
Incretin-based medications may also be able to modulate
lipolysis [64]. GLP-1 agonists reduce adiposity by induction
of lipolysis [65]. The first evidence for this was reported by
Ruiz-Grande et al. in 1992 [66]. They found that GLP-1
[1-36] exerts lipolytic effects on cultured adipocytes of rats
via stimulating different receptors than for the glucagon hor-
mone [66]. Yaney et al. in 2001 demonstrated that GLP-1
induces lipolysis and releases FFAs in a cAMP-dependent
manner in clonal pancreatic beta cells [67]. In another study,
GLP-1 was able to induce lipolysis only at high doses in
human isolated adipocytes [68]. In this study, GLP-1 exerted
dual effects on lipid metabolism via inhibition of lipolysis
and promotion of lipogenic pathways at a low concentration
[68]. Xu and colleagues in 2016 provided further evidence
demonstrating that exendin-4 promoted lipolysis via poten-
tiation of antioxidative defenses in 3T3-L1 adipocytes [49].
They found that exendin-4 increases phosphorylated
hormone-sensitive lipase (HSL), a major hallmark of lipoly-
sis [49]. Other evidence by Patel et al. in 2017 established
that a synthesized agonist of GLP-1R (known as Aib2 C24
chimera) controlled lipolysis and modulated dyslipidemia
in obese hamsters [69]. Recent clinical evidence from 2019
reported that liraglutide, a GLP-1RA, reduced adiposity
and body fat mass by promoting lipolysis in obese patients
with type 2 diabetes mellitus (T2DM) [70]. More recent evi-
dence presented by Pereira et al. indicated that GLP-1R
induction increases lipolysis and reduces adiposity in human
adipocytes [71]. A study by Rago and coworkers in 2020
reported that human sperm possess GLP-1R that enables
them to control lipid metabolism via lipogenic and lipolytic
pathways [72], a finding that emphasizes the role of these
receptors in lipid homeostasis [72]. Thus, incretin-based
therapies could be promising agents for improving dyslipid-
emia and lipid homeostasis [73] by altering the balance
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between lipogenesis and lipolysis toward lower adiposity
and prevention of diabetes-related dyslipidemia-induced
complications such as diabetic nephropathy [74, 75] and
beta cell dysfunction [76].

5.2. Lipid-Peroxidation/Lipotoxicity. Lipid peroxidation is an
injurious cellular event caused by oxidative degradation of
lipids in which free radical species procure electrons from
cell membrane lipids and, in turn, produce toxic byproducts
such as lipid hydroxides [77]. Different forms of these
byproducts, such as malondialdehyde (MDA), F2-isopros-
tanes, and 4-hydroxynonenal (HNE), are increased in oxida-
tive stress and are therefore recognized as biomarkers of
oxidative damage [77]. These byproducts are also able to
bind to DNA at specific points and promote mutations by
forming DNA adducts, thereby producing additional bio-
markers such as 8-oxo-2'—de0xyguanosine (80x0dG) [78].
These events most commonly occur in environments with
weakened antioxidant capacity such as diabetes [79].

GLP-1 mimetics have varying abilities to protect against
lipid peroxidation [80]. These drugs have potent direct and
indirect antioxidative capacities (such as antioxidant defense
system (ADS) potentiation, prooxidant inhibition, steroid
receptor coactivator (SRC) protein suppression, and
improvement in mitochondrial function) that enable them
to prevent oxidative stress-induced lipid peroxidation [21].
Patel and colleagues in 2013 reported that GLP-1 therapy
prevented lipid peroxidation via improving oxidative stress
in mice [80]. Another study reported that exenatide reduced
MDA content (a marker of lipid peroxidation) in patients
with T2DM [81]. A recent article confirmed these reports
and demonstrated that the GLP-1 mimetic, myricetin (a
novel DPP-4i), reduced lipid peroxidation in the oxidative
milieu of diabetic mice [82]. Therefore, clear evidence indi-
cates that incretin-based therapies inhibit lipid peroxidation
via increasing ADS potency and reducing oxidative stress.

GLP-1 mimetics have also been suggested as key thera-
peutic agents for prevention of lipotoxicity [83], functioning
through several pathways (Figure 2). These drugs combat
excess serum lipid levels through their potent anti-
inflammatory and antioxidative actions [83]. Huang and
coworkers in 2015 demonstrated that liraglutide mitigates
inflammation and oxidative stress and promotes beta cell
proliferation and improved islet function [83]. Armstrong
et al. in 2016 reported that liraglutide inhibits lipotoxicity
in patients with NAFLD by increasing insulin sensitivity in
adipocytes and improving liver function [84]. Gu et al. in
2016 demonstrated that exendin-4 attenuates lipotoxicity
through ERK1/2 activation and improvements in mitochon-
drial function [85]. Another proposed mechanism of action,
as reported by Somm et al. in 2021in mice, is through preven-
tion of ceramide accumulation [86]. Liu et al. in 2020
reported that GLP-1 therapy reduces lipotoxicity by suppres-
sion of the inflammatory mediator NF-xb in mice [87].

It has also been suggested that impaired GLP-1 secretion
is associated with dyslipidemia (hypertriglyceridemia) and
the degree of lipotoxicity [88]. Wang and colleagues in
2018 found that diabetic patients with dyslipidemia have
impaired GLP-1 secretion that directly correlated with
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lipotoxicity [88]. Moreover, GLP-1 secretion may be
increased in response to lipotoxicity and dyslipidemia in
an effort to mitigate them [89]. In summary, incretin-based
medications have pharmacological properties that enable
them to inhibit lipotoxicity and thereby help to prevent
lipotoxicity-dependent disorders, especially renal and car-
diovascular complications [90].

5.3. Fatty Acid B-Oxidation. Fatty acid 3-oxidation is a poly-
phasic enzymatic process in which FAs (long-chain acyl-
CoA) are broken down to acetyl-CoA to produce energy
[91]. This catabolic process occurs in mitochondria (as well
as peroxisomes) to generate acetyl-CoA followed by nicotin-
amide adenine dinucleotide (NADH) and flavin adenine
dinucleotide 2 (FADH2) which, in turn, enter the citric acid
cycle and the mitochondrial electron transport chain, pro-
ducing energy as adenosine triphosphate (ATP) [91]. This
process consumes the FAs, thereby lowering serum FA levels
and the overall body fat supply; it therefore plays a signifi-
cant role in lipid homeostasis and determining the amount
of fat in body tissues [91] as well as maintaining tissue
energy balance [92]. Fatty acid f-oxidation is regulated at
two major levels: transcriptional and posttranscriptional or
allosteric [91]. While transcriptional regulation is performed
by key proteins such as peroxisome proliferator-activated
receptors (PPARs), sterol regulatory element-binding pro-
tein 1 (SREBPI), and peroxisome proliferator-activated
receptor-y coactivator-1la (PGC-1«), allosteric control is car-
ried out by the level of by-products produced which may
negatively or positively affect the relevant metabolic
enzymes [91]. Some evidence indicates that incretin-based
medications can interact with these regulators [49, 93].

Xu and colleagues in 2016 demonstrated that exendin-4
induces fatty acid oxidation via a sirtuin 1- (SIRT-1-) depen-
dent signaling pathway in 3T3L1 adipocytes [49]. They
found that GLP-1 signaling improves oxidant capacity
which, in turn, increases FA oxidation in cultured adipocytes
[49]. A clinical study in 2019 demonstrated that liraglutide
induces lipid oxidation and reduces adiposity in obese
patients with T2DM [70]. Timper et al. in 2020 found that
GLP-1R signaling promotes FA f-oxidation in cultured
astrocytes which, in turn, improves lipid homeostasis and
memory efliciency, suggesting that GLP-1 signaling is
important to energy homeostasis and brain function
through FA B-oxidation-dependent pathways [94]. Further
studies have suggested that GLP-1 signaling exerts protective
effects on energy homeostasis by promoting fatty acid oxida-

tion [92]. GLP-1 can improve insulin sensitivity in hepato-
cytes by promoting hepatic fatty acid oxidation in both
human and rat liver biopsies [95]. GLP-1 signaling induces
an intrinsic signal to increase fatty acid oxidation and reduce
insulin resistance in the diabetic state [96]. GLP-1 also
interacts with genes involved in FA $-oxidation [93]. Recent
evidence suggests that GLP-1 receptors expressed on cardio-
myocytes provide cardioprotection through interactions that
increase fatty acid beta-oxidation that, in turn, reduce epi-
cardial adipose tissue thickness and improve cardiac func-
tion [93]. Taken together, this evidence demonstrates that
GLP-1 signaling has a significant impact on fatty acid oxida-
tion and may provide some of its beneficial effects as an
insulin sensitizer and cardioprotective agent through modu-
lation of FA f-oxidation.

5.4. Cholesterol Synthesis. Cholesterol is a lipid molecule
which is synthesized by most eukaryotes [97]. It is involved
in many important biologic activities, such as hormone syn-
thesis and cell membrane formation [97]. However, in
higher concentrations, it becomes a risk factor for cardiovas-
cular disease [75]. Therefore, maintaining cholesterol in the
physiologic range is critically important [75]. Recent evi-
dence suggests that GLP-1 mimetics have a modulatory role
on cholesterol homeostasis and may improve impaired cho-
lesterol metabolism [98, 99].

Yao et al. in 2018 found that GLP-1 affects both choles-
terol transport and synthesis, modulating cholesterol
homeostasis via upregulation of ABCA-land downregula-
tion of miR-19b in isolated hepatocytes [98]. Kim et al. in
2020 demonstrated that GLP-1 improves brain function via
improvement in cholesterol metabolism, suggesting that
GLP-1’s ability to regulate cerebral blood flow is dependent
upon cholesterol homeostasis [99]. A study in 2018 demon-
strated that the GLP-1 analogue liraglutide reduced circulat-
ing cholesterol levels in mice on a high fat diet [100]. Similar
evidence from 2018 showed that GLP-1 receptor agonists
reduce cholesterol synthesis by suppressing the HMG-CoA
reductase (a key enzyme in cholesterol synthesis) and
SREBP-1C [101]. These transcriptional effects of GLP-1 are
cardioprotective by reducing atheroma plaque formation
[101]. Clinical evidence from 2018 demonstrated that GLP-
1 administration reduces serum cholesterol levels and
improves dyslipidemia by inhibition of HMG-CoA reduc-
tase in T2DM patients [102]. These findings strongly suggest
that GLP-1 mimetics have a positive modulatory impact on
cholesterol metabolism and, in turn, dyslipidemia and
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atheroma plaque formation and therefore provide further
protective lipid-modulating effects beyond their antidiabetic
effects.

5.5. Lipid Absorption. Incretins are key regulators of intesti-
nal lipid absorption [8]. GLP-1 has regulatory effects on sati-
ety through the melanocortin 4 receptor- (MC4R-) mediated
sympathetic system and by reducing lipid storage in both
hepatic and adipose tissues [103]. Since GLP-1 is produced
and secreted by intestinal L-cells and acts directly on the
small intestine, it was suggested as likely that it affected
intestinal lipid absorption [103]. Further studies showed that
GLP-1 reduces postprandial chylomicron and TG circula-
tory levels by reducing intestinal lipid absorption [104].
GLP-1R agonists, such as exendin-4 (but not GIP), reduced
intestinal lipid absorption and circulating levels of both tri-
acylglycerol and ApoB-48 in an animal model on high fat
diet [105]. GLP-1 also reduced intestinal lymph flow and
TG absorption [106]. These findings suggest that endoge-
nous GLP-1 regulates postprandial lipaemia through several
pathways in addition to controlling lipid absorption [105].

6. Conclusion

Incretin-based medications are a novel class of antidiabetic
drugs that provide potent modulatory effects on glucose
metabolism. However, much evidence suggests that they also
regulate lipid metabolism. Since most diabetic patients have
some degree of dyslipidemia, the lipid-modulatory effects of
incretins provide further pharmacological benefits for dia-
betic patients. Our review demonstrates that incretin-based
therapies modulate lipid metabolism via at least five cellular
pathways: lipogenesis and lipolysis, lipid peroxidation, lipid
absorption, cholesterol biosynthesis, and fatty acid beta-
oxidation (Figure 3). We also present clinical evidence sup-
porting the experimental findings. However, more experi-
mental and clinical studies are still needed to further
elucidate the molecular targets that are affected by incretin-
based therapeutics to modulate lipid and lipoprotein metab-
olism. Moreover, evidence from lipoprotein tracer kinetic
studies will pave the way towards elucidation of the impact
of incretin-based agents on lipoprotein biogenesis and catab-
olism. There is also a lack of enough clinical evidence about
the effects of incretin-based therapies on the risk of diabetic
macrovascular and microvascular complications. Finally, the
possible role of combining incretin-based drugs with com-
mon lipid-lowering agents in nondiabetic individuals
remains open to question.

Taken together, this body of evidence suggests that
incretin-based medications are effective antidiabetic thera-

pies especially in patients with dyslipidemia, as they have
the potential to normalize lipid metabolism in diabetes.
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