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Wastewater-based epidemiology (WBE) is utilized globally as a tool for quantifying the amount of Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) within communities, yet the efficacy of community-level waste-
water monitoring has yet to be directly compared to random Coronavirus Disease of 2019 (COVID-19) clinical testing;
the best-supported method of virus surveillance within a single population. This study evaluated the relationship
between SARS-CoV-2 RNA in raw wastewater and random COVID-19 clinical testing on a large university campus
in the Southwestern United States during the Fall 2020 semester. Daily composites of wastewater (24-hour samples)
were collected three times per week at two campus locations from 16 August 2020 to 1 January 2021 (n = 95) and
analyzed by reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) targeting the SARS-CoV-2 E
gene. Campus populations were estimated using campus resident information and anonymized, unique userWi-Fi con-
nections. Resultant trends of SARS-CoV-2 RNA levels in wastewater were consistent with local and nationwide pan-
demic trends showing peaks in infections at the start of the Fall semester in mid-August 2020 and mid-to-late
December 2020. A strong positive correlation (r = 0.71 (p < 0.01); n = 15) was identified between random
COVID-19 clinical testing and WBE surveillance methods, suggesting that wastewater surveillance has a predictive
power similar to that of random clinical testing. Additionally, a comparative cost analysis between wastewater and
clinical methods conducted here show that WBE was more cost effective, providing data at 1.7% of the total cost of
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clinical testing ($6042 versus $338,000, respectively). We conclude that wastewater monitoring of SARS-CoV-2
performed in tandem with random clinical testing can strengthen campus health surveillance, and its economic
advantages are maximized when performed routinely as a primary surveillance method, with random clinical testing
reserved for an active outbreak situation.
Neighborhood-level monitoring
Maintenance hole
1. Introduction

The early stages of the COVID-19 pandemic introduced amyriad of test-
ing and monitoring challenges associated with novel coronavirus
infections, including development, production, distribution, cost, and
reporting (Arvisais-Anhalt et al., 2021; Smyrlaki et al., 2020; Tromberg
et al., 2020). Wastewater-based epidemiology (WBE), having successfully
aided inmonitoring pathogens such as influenza, hepatitis A, and norovirus
(Choi et al., 2018; Lorenzo and Picó, 2019; Sims and Kasprzyk-Hordern,
2020), was utilized early in the pandemic tomitigate these barriers, provid-
ing near real-time, community-level assessments of SARS-CoV-2 in popula-
tions around the world (Ahmed et al., 2020a; Haramoto et al., 2020; Hart
and Halden, 2020; Polo et al., 2020; Sherchan et al., 2020). At university
campuses across the United States, wastewater-based epidemiology has
been primarily used as an indicator for targeted clinical testing
(Betancourt et al., 2021; Gibas et al., 2021; Reeves et al., 2021; Scott
et al., 2021; Travis et al., 2021). This method has been celebrated for pre-
venting outbreaks (Harris-Lovett et al., 2021), however, wastewater sur-
veillance has only been limitedly evaluated in comparison to random
surveillance COVID-19 testing.

As individual COVID-19 testing has become increasingly available, ran-
dom testing has been hailed as an effective way to drastically reduce trans-
mission (Müller et al., 2020; Padula, 2020; Piguillem and Shi, 2020).
However, there are concerns surrounding the legitimacy of mandatory test-
ing of individuals in the United States and elsewhere (ThunstrÖM et al.,
2021), and economic constraints can create barriers to implementation
(Lyng et al., 2021). University campuses may serve as close to ideal proving
grounds for comparing the efficacy of WBE and universal random test-
ing, due to their high degree of administrative autonomy and the short
in-sewer travel durations of biomarkers between the time of excretion
and sample collection (Gushgari et al., 2018; Gressman and Peck,
2020). University campuses also introduce the potential risk of increas-
ing pathogen transmission in the school's community (Gressman and
Peck, 2020; NPR, 2020) and in the students' local communities upon
returning home (Mangrum and Niekamp, 2020), further emphasizing
the importance of closely monitoring school campuses. However, during
the Fall 2020 semester, only about one in four college campuses employed
a random surveillance testing or regular testing program for its students
(NPR, 2020).

The goal of this study was to conduct SARS-CoV-2 monitoring in cam-
pus wastewater and compare those measurements to the results of
COVID-19 random clinical testing in the student and staff population on a
large U.S. university campus. We hypothesized that if the two indepen-
dently collected sets of data presented as moderately or strongly correlated,
wastewater virus monitoring would be further validated as an effective
method for SARS-CoV-2 surveillance. Furthermore, the implications of
the effectiveness and efficiency of wastewater SARS-CoV-2 monitoring
could support new surveillance efforts, especially in communities without
the tools or resources to conduct regular COVID-19 testing.

2. Materials and methods

2.1. Study location

The study was performed throughout the 2020 Fall academic semester
on a large university campus in the southwestern U.S. with over 50,000 en-
rolled students and more than 10,000 employees. During the study, classes
were available in a hybrid learning environment (online and in-person) and
on-campus housing populations were ~10% lower than in pre-pandemic
2

years. Two independent wastewater catchments cover approximately
90% of the total geographic campus area.

2.2. Wastewater sample collection

Flow-weighted, 24-hour composites of raw wastewater were collected
using refrigerated autosamplers (Avalanche, Teledyne ISCO, Lincoln, NE)
placed in permanent aboveground sampling locations across the participat-
ing campus. Each of the two locations were outfitted with a conduit
through which a suction line of the autosampler traversed into an adjacent
maintenance hole location, which also housed a laser flowmeter. Samplers
were timed to start collection early in the morning and operated for 24 h
prior to sample collection on Tuesdays, Thursdays, and Saturdays of each
week. Total collection volume within each sampler varied, however ap-
proximately 2 L of wastewater was transferred to high-density polyethylene
bottles in the field, stored on ice after collection while transported to the
laboratory, and processed on the sameday to avoid degradation. Additional
location details related to the pipe network are outlined in Table S1.

2.3. Wastewater sample processing and analysis

In the lab, each wastewater sample was mixed thoroughly and approx-
imately 150 mL filtered through a 0.45 μm polyethersulfone vacuum
filtration unit (Fisherbrand, Waltham, MA). The filtrate was then concen-
trated using two Millipore Sigma Amicon Ultra Centrifugal Filter Units
(Burlington, MA) with a 10,000molecular weight cut-off with~15mL vol-
umes centrifuged consecutively five times at 2200g for 15 min. The resul-
tant concentrate from each filter was aggregated and well-mixed, with
200 μL subsequently extracted for total RNA using a Qiagen RNeasy Mini
Kit (Hilden, Germany) following the protocol for centrifugation of animal
cells with molecular-grade β-mercaptoethanol (Burlington, MA). All resul-
tant volumes (filtrate, filtrate concentrated, resultant concentrate) were re-
corded for quantification purposes. SARS-CoV-2 RNA was quantified using
the Invitrogen SuperScript III Platinum One-Step qRT-PCR Kit (Carlsbad,
CA) and Applied Biosystems QuantStudio 3 Real-Time PCR System (Foster
City, CA) using Charité/Berlin (World Health Organization) designed
primers and probe for E (envelope) SARS-CoV-2 RNA gene target; probes
and primerswere purchased from IntegratedDNATechnologies (Coralville,
IA) (Corman et al., 2020; Holland et al., 2020). The whole genome syn-
thetic positive control was purchased from Twist Bioscience (San Francisco,
CA). Standard curves ranged from 106 to 102 copies μL−1 with method ef-
ficiency of 92%. Triplicate standard curves were analyzed for each new
batch of assay reagents and were used to quantify samples. Negative con-
trols included whole and molecular process blanks with DNAase/RNAase-
freewater. Spike-and-recovery tests were performed usingmurine hepatitis
virus as a surrogate (Ahmed et al., 2020b) (200,000 copies added into sew-
age before filtration) with an average recovery of 25 ± 17%. Additional
qPCR method details are included in Tables S2 and S3.

2.4. Campus population estimates

Campus populations were estimated using online publicly available
housing data updated monthly based on the total number of student hous-
ing contracts. Additionally, daily university affiliateWi-Fi connectionswere
also used to approximate commuting students and employees. Unique
Wi-Fi connections from handheld devices or personal computers longer
than 30 min and shorter than 16 h during the wastewater collection period
of 7:00 a.m. to 6:59 a.m.were counted as commuting individuals present on
campus that day. The on-campus resident populations were weighted by
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30% to account for university residential buildings outside the catchment
areas and those previously captured in campusWi-Fi data.WBE researchers
had access only to unique connection counts to protect the privacy of cam-
pus visitors and prevent any possibility of tracing unique users.

2.5. Campus clinical testing data

COVID-19 clinical test results from the university were obtained from
weekly public online releases. The participating university was conducting
saliva secretion PCR processing at a Clinical Laboratory Improvement
Amendments (CLIA)-certified laboratory. A statistically significant random
selection of students and employees were required to complete a COVID-19
saliva test eachweek (1206±166 tests per week, 11±5%of total campus
population estimates), and the number of total random tests and positive
random tests for on-campus students and employees were used in this
study.

2.6. Data analysis

Measured concentrations in each sewer catchment were transformed to
viral load (VL) per day (SARS-CoV-2 genome copies per day) using the fol-
lowing equation:

Viral load genome copies day−1
� � ¼ C � Q (1)

where C (SARS-CoV-2 RNA copies L−1) is the measured concentration and
Q is the total daily volumetric wastewater flow rate (L day−1). Population
normalized viral load (SARS-CoV-2 genome copies day−1 per 1000 people)
was calculated using the following equation:

VL per 1000 genome copies day−1 per 1000 people
� �

¼ C � Qð Þ=Pop½ � ∗ 1000 (2)

where Pop is the total number of people contributing to the catchment de-
fined by the methodology in Section 2.5. Statistical analysis was performed
using Microsoft Excel (Redmond, WA) and MATLAB (MathWorks, Natick,
MA) using population corrected SARS-CoV-2 wastewater data and percent
positivity to control for the variable population on the university campus
throughout the study period. Price estimates were taken directly from the
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Fig. 1. SARS-CoV-2 genome copies day−1 in wastewater on individual days across a la
genome copies L−1 per 1000 people) (B). Note viral loads are the summation of b
population estimates were not available until mid-September 2020, so population norm
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internal SARS-CoV-2 analysis cost from the ASU laboratory and added to es-
timated labor costs for field collection. Clinical testing costs were estimated
based on internal correspondencewith the participating clinical laboratory.

3. Results and discussion

This studymeasured SARS-CoV-2 RNA in rawwastewater on a U.S. uni-
versity campus with the goal of comparing wastewater-derived trends to
the campus' COVID-19 random surveillance testing. Ninety-five samples
were collected throughout the duration of the study with viral RNA de-
tected in 68% of samples (Fig. SI). When detected, concentrations were
on average 0.97 ± 1.14 million genome copies per day. Results showed a
general trend of increasing quantities of SARS-CoV-2 viral loads in the
wastewater early in the semester (mid-August through early September)
(Fig. 1A), coinciding with the influx of students at the start of the academic
year. The localized increases of coronavirus levels in campus wastewater
coincided with new clinical cases within the city's zip code. This suggests
that the incoming student population was driving the observed SARS-
CoV-2 RNA signal increase in wastewater, likely through the influx of in-
fected students at the start of the semester, and exacerbated by close living
quarters and socialization at campus events. Similar trends of elevated
SARS-CoV-2 measurements in wastewater were seen by other universities
throughout the U.S. (Gibas et al., 2021; Travis et al., 2021), and counties
with large student populations also had high virus presence in August/
September despite lower state-wide values (New-York-Times, 2021). In
this study, the remainder of the semester saw smaller increases in SARS-
CoV-2 RNA viral loads in wastewater approximately 2 weeks after
Halloween (31 October) and 1 week after Thanksgiving (26 November).

The result of normalizing wastewater derived SARS-CoV-2 viral load
data with population had the effect of increasing virus data in the month
of Decembermonth as compared to othermonths because of the lower cam-
pus population at that time (Fig. 1B). The campus residential population
was generally stable from September through early December 2020, with
population estimates averaging 9084 ± 182 (Fig. 2), whereas Wi-Fi data
ranged from a high in September of 10,000 unique users, declining to
4000 by the end of the semester, with a low of 355 people on Christmas
Day. These values revealed a higher population on campus duringMondays
and Wednesdays and a significant drop on Fridays, as was expected with
class and workweek schedules. The sewage contributions from the
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Fig. 3. Relationship between average weekly population normalized viral loads
(SARS-CoV-2 genome copies per day per 1000 people) and the percent positive
random COVID-19 clinical tests during each week of the Fall 2020 semester at a
large U.S. university campus. Relationships are illustrated through (A) chronological
trends and (B) linear correlations. Each presented wastewater value is six samples
(major and minor catchments collected over three days). Note on the week of 23
November 2020, only one sample was collected due to the holiday and was
below the detection limit (nd). The Pearson Correlation Coefficient was r = 0.71
throughout the entire duration of the study (n = 15 comparison, n = 76
wastewater samples).
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commuter populations are generally more challenging to estimate due to
unpredictable in-person attendance. While previous studies have used
other excreted biomarkers to estimate populations, metabolites can often
be unstable or not validated in small populations (Thai et al., 2019). This
challenge herewasmet successfully by combining the relatively stable cam-
pus resident population with unique, fully anonymized Wi-Fi connection
data from personal devices such as cell phones or laptop computers.

Weekly aggregated population normalized SARS-CoV-2 data were com-
pared to the percentage of positive tests obtained in random COVID-19
clinical surveillance (Fig. 3). Random COVID-19 clinical test results were
reported once a week by the university, so wastewater population
normalized viral loads were aggregated over the three sampling days for
a temporally comparable assessment. When trends in wastewater virus
measurements were compared with random COVID-19 clinical test results,
a strong positive correlation resulted, with a Pearson correlation coefficient
of r = 0.71 (p < 0.01). It is important to note, that on the week of the
Thanksgiving holiday, only a single sample was collected (Tuesday),
which was non-detect for SARS-CoV-2 RNA. This data point was omitted
from the correlation. There is a relatively high degree of correlation be-
tween these two entirely independent methods of monitoring, which sug-
gests these two metrics could be used interchangeably or jointly to obtain
more robust data, resources permitting.

To assess the feasibility of this based on cost, we compared the clinical
and wastewater sample processing and analysis throughout the duration of
the study. Random clinical testing for the university began the week of 10
September and continued throughout the conclusion of 2020 with approx-
imately 19,300 people tested. With costs at $17.50 per test (including
labor), this equates to ~$338,000 USD. The wastewater-based laboratory
assay used in this study is $62.50 per sample (consumables and labor).
An additional $17 in field-labor was added to account for sample collection
time, for a total study cost of $6042.00 for samples processed during the
equivalent time period. Consequently, the cost of wastewater testing was
1.7% that of its clinical testing counterpart and for the cost of clinical test-
ing, wastewater testing could be increased by over 50×. The purpose of
this comparison is not to rank one method as superior over the other, but
rather to provide perspective for areas where implementing randomized
clinical testing of individuals raises financial and ethical or cultural con-
cerns (Jacobs et al., 2021). Wastewater could serve as a sentinel matrix to
assess what is happeningwithin a community at a relatively low cost before
more targeted testing is implemented if a problem is identified.

There are important limitations that are worthy of noting in this study.
Sampling within the sewershed brings challenges with a dynamic popula-
tion; we were able to improve our estimates using Wi-Fi connectivity
data, without which correlations with clinical testing were reduced (r =
4

0.47 vs. 0.71). However, challenges with residential population estimates
occurred at the end of the semester, when the university transitioned
from hybrid learning to online for the single remaining week after the
Thanksgiving holiday. Anecdotally, students left the week of November
23 and did not return until January, even though housing contracts were
active through the end of December 12. Additionally, ~10% of the
geographic footprint of campus is not captured by those two wastewater
sampling points, with ~5% of student housing residing in that area. Al-
though small, if recorded cases occurred with those residents, it would
not necessarily be reflected as a signal in wastewater, unless sewer contri-
butions occurred elsewhere on-campus. More generally, wastewater
captures all campus visitors, even those not included in the pool of individ-
uals selected for random testing. Finally, viral shedding times vary over
days to weeks (Yan et al., 2021), a challenge faced by other wastewater
assessments when comparing to clinical cases (Bowes et al., 2021; Wu
et al., 2020).

The type of monitoring performed in this study is considered
neighborhood- or catchment-level monitoring, and is distinct from
building-level monitoring that is also being implemented on university
campuses (Brooks et al., 2021; Gibas et al., 2021). In this study, hundreds
to thousands of people are contributing to the sewershed, the SARS-CoV-
2 RNA signal is generally always measurable, and the challenge is discern-
ing a potential outbreak from baseline measurements. Determining a trig-
ger for action is often complex and specific to the catchment under
investigation. This brings to the fore the importance of understanding
changes in wastewater-derived measurements as the field of WBE moves
into the future.
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4. Conclusions

The correlations between SARS-CoV-2 RNA measured in wastewater
and random clinical surveillance testing are promising in support of waste-
water monitoring as an effective method for quantifying viral presence at
the sewershed level on university campuses and other neighborhood-
leveling sampling campaigns. As we move forward with wastewater moni-
toring within sewer systems, collection should be noted as a viable alterna-
tive to the more common city-level treatment plant sampling. The strong
correlation of the two different approaches further suggests that in
resource-poor situations it may be prudent to conduct WBE routinely and
random clinical testing optionally only when WBE data hint at an uptick
in infections that needs to be managed.
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