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Linkage disequilibrium (LD) is the non-random association of alleles at different loci. Squared LD coefficients r2 (for phased
genotypes) and r2Δ (for unphased genotypes) will converge to constants that are determined by the sample size, the recombination
frequency, the effective population size and the mating system. LD can therefore be used for gene mapping and the estimation of
effective population size. However, current methods work only with diploids. To resolve this problem, we here extend the linkage
disequilibrium measures to include polysomic inheritance. We derive the values of r2 and r2Δ at equilibrium state for various mating
systems and different ploidy levels. For unlinked loci, Eð̂r2ΔÞ � 1

3ðNe�ηÞ for monoecious and dioecious (with random pairing) mating
systems or 3þf

3 1þfð Þ Ne�ηð Þ for dioecious mating systems (with lifetime pairing), where f is the number of females in a half-sib family and
η is a constant related to the ploidy level. We simulate the application of estimating Ne using unphased genotypes. We find that
estimating Ne in polyploids requires similar sample sizes and numbers of loci as in diploids, with the main source of bias due to
using 0.5 as the recombination frequency.
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INTRODUCTION
Linkage disequilibrium (LD) is the non-random association of
alleles at different loci within individuals in a given population
(Slatkin 2008), and can be influenced by many factors, such as
selection, mutation, recombination, genetic drift, and the mating
system (Nei 1987). Linkage disequilibrium can be measured by
several parameters, such as the correlation coefficient r, Lewon-
tin’s (1964) D’, Hill’s (1975) Q, Maruyama’s (1982) D*, Ohta’s (1980)
F*, and Brown et al.’s (1980) χ. The most frequently used measure
of LD is the squared correlation coefficient r2 (Hill and Weir 1994),
which is the weighted sum of the squared correlation coefficient
between alleles at two loci.
The influence of genetic drift on linkage disequilibrium in finite

populations has been extensively studied in diploids (Ohta and
Kimura 1969; Hill and Robertson 1968; Weir 1979; Weir and
Cockerham 1979; Weir and Hill 1980; Sved and Feldman 1973; Hill
1974). In general, previous work has shown that the squared
correlation coefficient r2 (for phased genotypes) or r2Δ (for
unphased genotypes) will converge to a constant after several
generations of random mating for unlinked loci, whereas more
generations are required to converge for linked loci. This constant
is determined by the sample size n, recombination frequency c,
effective population size Ne and the mating system. Based on
these four factors, LD has been incorporated into two major
applications: (i) gene mapping (Hill and Weir 1994; Devlin and
Risch 1995; Jorde 1995; Hosking et al. 2002; Hästbacka et al. 1992)
and (ii) the estimation of effective population size (England et al.
2006; Hill 1981; Waples et al. 2014; Hayes et al. 2003; Sved et al.
2013), which enable either c or Ne to be solved when the other

three factors are known, respectively. However, current methods
work only with organisms that are diploid.
Many plant species are polyploid, with 30–80% of angios-

perm species being at least partially polyploid (Burow et al.
2001), with evidence for paleo-polyploidy in most plant
lineages (Otto 2007). Although rare, polyploidy is also present
in animals, such as in some salamanders, flatworms, leeches,
brine shrimps, frogs and fishes. Polyploidy is also important in
the evolution of both wild and cultivated plants, and plays a key
role in plant breeding (Sattler et al. 2016; Udall and Wendel
2006). However, to date the effects of ploidy on LD has not
been extensively studied.
Polysomic inheritance is expected in autopolyploids but not in

allopolyploids, although complex mechanisms can lead to a
mixture of disomic and polysomic inheritance in the same
genome (segmental allopolyploids, Stift et al. 2008). There are at
least three typical features in polysomic inheritances: (i) multi-
valents may be formed during meiosis (Rieger et al. 1968),
resulting in a particular phenomenon in polysomic inheritance,
termed the double-reduction (Butruille and Boiteux 2000), in
which a gamete may inherit a single gene copy twice; (ii) the
chromosomes are randomly paired and exchange their chromatid
segments during meiosis, in which the recombination frequency c
is 1−1/v if the corresponding loci are located on different
chromosomes (v is the ploidy level), ≤ 0.5 (in bivalent pairing) or
0.75 (in multivalent pairing) if the corresponding loci are located
on the same chromosome (Fisher 1947; Sved 1964); (iii) the decay
coefficient of heterozygosity (i.e., the ratio of single non-identity
coefficients in the next and the current generations in the absence

Received: 23 December 2020 Revised: 13 October 2021 Accepted: 18 October 2021
Published online: 4 January 2022

1Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China. 2Department of Forest and Conservation Sciences,
University of British Columbia, Vancouver, BC V6T1Z4, Canada. 3Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
Associate editor Olivier Hardy. ✉email: baoguoli@nwu.edu.cn

www.nature.com/hdy

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41437-021-00482-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41437-021-00482-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41437-021-00482-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41437-021-00482-1&domain=pdf
http://orcid.org/0000-0002-8357-117X
http://orcid.org/0000-0002-8357-117X
http://orcid.org/0000-0002-8357-117X
http://orcid.org/0000-0002-8357-117X
http://orcid.org/0000-0002-8357-117X
https://doi.org/10.1038/s41437-021-00482-1
mailto:baoguoli@nwu.edu.cn
www.nature.com/hdy


of mutation and migration) is 1� 1
vNe

in polyploids (Ne is the
effective population size).
Here, we extend both the linkage disequilibrium measure D and

Burrow’s Δ statistic to account for polysomic inheritance, and calculate
their corresponding squared correlation coefficients r2 and r2Δ. We also
extend Weir and Hill’s (1980) double non-identity framework to
account for polysomic inheritance, and derive the expressions of
these double non-identity coefficients under five mating systems. On
this basis, we are able to derive Eð̂r2Þ and Eð̂r2ΔÞ at equilibrium state,
and these two expectations are approximated by d2 and δ2,
respectively. Both approximations are closely related to the mating
system together with the effective population size Ne and the
recombination frequency c. We study the behavior of the squared
correlation coefficient estimators r̂2 and r̂2Δ during genetic drift,
investigate the influence of recombination frequency c on d2 or δ2,
simulate the application for estimating effective population size Ne,
and evaluate the statistical performance of estimating N̂e. We discuss
the relationship between r2 and c (or between r2Δ and c), and that
between r2 and v (or between r2Δ and v). We enable the estimation of
Burrow’s Δ, the testing of linkage disequilibrium based on Burrow’s Δ,
and the estimation of effective population size using our software
package POLYGENE V1.3 (Huang et al. 2020), which is freely available via
http://github.com/huangkang1987/polygene.

THEORY AND MODELING
LD measurements
We denote A and B for two alleles each from a different locus. The
generalized LD measurement D between A and B is defined as the
difference between the observed and the expected frequencies of
the haplotype AB, where a haplotype is defined as a combination
of alleles at multiple loci from a single set of chromosomes. We
slightly revise the notations of both Weir and Cockerham (1979)
and Weir and Hill (1980) and define five specific variants of D: (i)
DAB
s (for the same haplotype), (ii) DAB

d (for two different haplotypes
within the same individual), (iii) DAB

w (for the within-individual
component), (iv) DAB

b (for the between-individual component) and
(v) DAB (for the usual LD measurement). These measurements can
be defined by symbols as follows:

DAB
s ¼def PABs � pAqB;

DAB
d ¼def PABd � pAqB;

DAB
w ¼def PABs � PABd ;

DAB
b ¼def PABd � pAqB;

DAB ¼def DAB
w þ DAB

b ;

where PABs is the probability that the alleles in the same haplotype
are A and B, PABd is the probability that alleles in different
haplotypes within the same individual are A and B, and pA and qB
are respectively the probabilities of A and B.
According to these definitions, the following expressions hold:

DAB
w ¼ DAB

s � DAB
d ; DAB

b ¼ DAB
d andDAB ¼ DAB

s :

The usual LD measurement DAB is the covariance between A and B
in the same haplotype, i.e., DAB ¼ CovðBA;BBÞ, where BA ¼ 1 if the
first allele in the haplotype is A, otherwise BA ¼ 0, and the
meaning of BB is analogous.
The values of DAB may be negative, and its range is influenced

by the probabilities of A and B. It is therefore more intuitive to use
Pearson’s correlation coefficient rAB to measure LD to convert the

range to [−1,1]:

rAB ¼ DABffiffiffiffiffiffiffiffi
QAB

p ¼ CovðBA;BBÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðBAÞVarðBBÞ

p :

where QAB ¼ Var BAð ÞVar BBð Þ ¼ pApXqBqX (X represents any allele
distinct from both A and B, and thus pX= 1−pA and qX= 1−qB).
The values of rAB may also be negative. However, the squared

correlation coefficient r2AB ranges from 0 to 1. We will adopt the
average value of r2AB across all allele pairs to evaluate the LD between
two loci for the situation of phased genotypes. For diallelic loci, the
averaged r2AB across all allele pairs is equal to that of any allele pair.
The above LD measurements are applicable for phased

genotypes although unphased genotypes are more common.
For unphased genotypes, Burrows’s Δ statistic (Cockerham and
Weir 1977) can be used, and we will extend this to account for
polysomic inheritance. By using DAB

w and DAB
b , Burrows’s Δ statistic

between A and B can be defined as ΔAB ¼defDAB
w þ vDAB

b , which is
also equal to DAB

s þ ðv � 1ÞDAB
b . Moreover, for two-locus unphased

genotypes, Burrow’s Δ statistic can be expanded to:

ΔAB ¼
Xv
i¼1

Xv
j¼1

ij
v
GAiXv�i

BjXv�j

 !
� vpAqB; (1)

where X is an arbitrary allele distinct from both A and B, with each
GAiXv�i
BjXv�j

denoting a two-locus unphased genotypic frequency whose
superscript (or subscript) is an unphased genotype containing
exactly i copies of A (or j copies of B). In Supplementary
Appendix A, we use triploids to illustrate how ΔAB is expanded.
Substituting the observed values of pA, qB and GAiXv�i

BjXv�j into Eq. (1),
ΔAB can be estimated.
Burrows’s Δ is also 1/v times the covariance between the allele

dosages of A and B within individuals, i.e., ΔAB ¼ Cov CA; CBð Þ=v,
where CA and CB are the allele dosages of A and B, respectively
(Gao et al. 2008). In other words, CA ¼Pv

i¼1 BAi and
CB ¼

Pv
i¼1 BBi , where i enumerates haplotypes within individuals.

Similarly, it is more intuitive to use Pearson’s correlation coefficient
rΔAB to measure LD for unphased data, which is also equal to the
correlation coefficient between CA and CB :

rΔAB ¼ ΔABffiffiffiffiffiffiffi
RAB

p ¼ CovðCA; CBÞ=vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðCAÞVarðCBÞ

p
=v

:

where Cov CA; CBð Þ and Var CAð Þ can be derived by

CovðCA; CBÞ ¼ EðCACBÞ � EðCAÞEðCBÞ

¼ Pv
i¼1

Pv
j¼1

ijGAiXv�i

BjXv�j

 !
� v2pAqB;

VarðCAÞ ¼ EðC2AÞ � E2ðCAÞ
¼Pv

i¼1

Pv
j¼1

EðBAiBAjÞ � v2p2A

¼Pv
i¼1

EðBAiÞ þ
P
i≠j

EðBAiBAjÞ � v2p2A

¼ vpA þ vðv � 1Þ½FpA þ ð1� FÞp2A� � v2p2A:

In the expression of VarðCAÞ, F is the inbreeding coefficient and
can be solved from the relation PAA ¼ FpA þ ð1� FÞp2A, where
PAA is the probability of sampling two copies of A within the same
individual without replacement. F can be obtained by

F ¼ PAA � p2A
pApX

:
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Substituting the expression of F into rΔAB, a simplified
expression of

ffiffiffiffiffiffiffi
RAB

p
can be obtained

ffiffiffiffiffiffiffi
RAB

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðCAÞVarðCBÞ

p
=v

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½pApX þ ðv � 1ÞðPAA � p2AÞ�½qBqX þ ðv � 1ÞðPBB � q2BÞ�
p

:

(2)

Likewise, rΔAB may be negative, but the squared correlation
coefficient r2ΔAB ranges from 0 to 1, which can also be used to
evaluate the LD between two loci for unphased genotypes.
In the following text, for simplicity, we will use Dw, Db, D, Δ, Q, R,

r and rΔ to replace DAB
w , DAB

b , DAB, ΔAB, QAB, RAB, rAB and rΔAB in turn.
Due to genetic drift, D2 and Q (or Δ2 and R) converge to zero after
an infinite number of generations. However, the ratio r2 of D2 to Q
(or the ratio r2Δ of Δ2 to R) converges to a constant, whose value is
determined by the mating system together with the recombina-
tion frequency c and the effective population size Ne (Weir and Hill
1980). Therefore, the effective population size can be estimated
from r̂2 (or r̂2Δ) if the relationship between Eð̂r2Þ (or Eð̂r2ΔÞ), mating
system, c and Ne can be derived.
The values of r̂2 and r̂2Δ can be calculated by

r̂2 ¼ D̂2

Q̂
and r̂2Δ ¼ Δ̂2

R̂
;

where D̂; Δ̂; Q̂, and R̂ can be calculated from the samples. However,
these statistics are correlated, such that Eð̂r2Þ and Eð̂r2ΔÞ is hard to
derive. If such correlations can be reduced or even eliminated (this
can be done by some weighting scheme when multiple loci are
used), then Eð̂r2Þ and Eð̂r2ΔÞ can be approximated by the ratio of two
expectations, we denoted these ratios by d2 and δ2.

Eð̂r2Þ � EðD̂2Þ
EðQ̂Þ ¼ d2 and Eð̂r2ΔÞ �

EðΔ̂2Þ
EðR̂Þ ¼ δ2: (3)

In the following sections, we extend Weir and Hill’s (1980)
double non-identity framework, to obtain the expressions of d2

and δ2.

Double non-identity coefficients
The double non-identity coefficients can be used to derive the
moments of various LD measurements. The term identity means
identical-by-descent (IBD), i.e., two alleles are identical because
they are inherited from a common ancestor. Based on Weir and
Hill (1980), we establish 22 two-locus allele configurations for
polysomic inheritances (Table 1) The observed and expected
frequencies of these 22 configurations are denoted by Pi and Ei,
respectively; and Ei is derived by the non-identity coefficients
assuming no initial LD (Table 1). The descriptions of the non-
identity coefficients, and the derivations of Ei are provided in
Supplementary Appendix B. The moments of LD measurements
can be expressed by Ei (Supplementary Appendix C), and can be
further expanded as linear combinations of the double non-
identity coefficients (Table 2).
The expressions of various moments can now be expressed

uniformly by matrices. Let M be the row vector consisting of the 7
moments (header row of Table 2), and let Φ be the column vector
consisting of the 13 double non-identity coefficients (header column
of Table 2). Denote A as a 13 × 7 matrix, whose ith column consists of
the ith column divided by the last column of Table 2. Then

M ¼ ΦTA: (4)

We call M the moment vector, and Φ the double non-identity
vector.

Transition matrix of double non-identity coefficients
The transition matrix of double non-identity coefficients can be
used to describe the behavior of double non-identity coefficients
due to genetic drift.
Let Φ be the double non-identity column vector in the

current generation, and let Φ′ be that in the next generation
and Φ′ can be expressed as Φ′= ΩΦ. We call Ω the transition
matrix from Φ to Φ′.
Let Φ0 be the double non-identity vector in the founder

generation and let Φt be that in the tth generation. This gives
Φt=ΩtΦ0. If a population is allowed to reproduce for several
generations, the vector sequence is: Φ0, Φ1, Φ2, …, Φt, … and will
reach a steady state as t increases. In other words, this sequence
will converge to a constant vector, denoted by Φ∞. This limit
vector Φ∞ is independent to the initial vector Φ0 if Φ0 ≠O.
To simplify the model for polysomic inheritance, we established

a virtual mating system, named the haplotype sampling (HS)
mating system. In this mating system, it is assumed that each
individual is reproduced by randomly sampling v haplotypes with
replacement from the previous generation. The genes in an
offspring therefore come from a maximum of v parents. Because
the haplotypes within (or among) individuals are randomly
sampled, there is no difference among dihaplotypic, trihaplotypic
and quadhaplotypic double non-identity coefficients, symbolically
Θ1=Θ2, Γ1= Γ2= Γ3= Γ4 and Δ1= Δ2=…= Δ7. Therefore, the
transition matrix Ω in the HS mating system can be simplified as a
3 × 3 matrix, which is derived in Supplementary Appendix D. The
full and simplified Ω are listed in Supplementary Table S3 and
Table 3, respectively.
It is noteworthy that the sum of the combination coefficients

of 1 in each column in Table 3 is exactly one, but the sum of each
row of Ω is less than one. This indicates that the transition (i.e., a
generation of random mating) will gradually reduce the double-
nonidentity coefficients, and their values will eventually con-
verge to zero, i.e., Ω∞= O. This also holds for the other mating
systems and demonstrates the loss of heterozygosity and the
fixation of alleles.
Although Φ∞ will eventually converge to zero, the ratio of the

moments EðD̂2Þ to EðQ̂Þ, and of the moments EðΔ̂2Þ to EðR̂Þ will
converge to some constants. This can be considered as the double
non-identity vector Φ reaches a relatively stable state so the
direction of Φ is constant during reproduction, symbolically
Φ′= νΦ. The direction of Φ (say ω) and the scale factor ν can be
solved by performing eigen-value decomposition for Ω, i.e.,
solving Ωω= νω. It is also noteworthy that there are multiple
eigenvalues, with the highest eigenvalue be of our interest.
Therefore, d2 and δ2 can be calculated from Eq. (4) by substituting
Ω with ω, i.e., Mω=ωTA. We denote the elements in Mω as Eω(⋅),
e.g., EωðD̂2Þ, then the exact d2 and δ2 are as follows:

d2 ¼ EωðD̂2Þ
EωðQ̂Þ

and δ2 ¼ EωðΔ̂2Þ
EωðR̂Þ

: (5)

Approximations
Weir and Hill (1980) adopted a matrix decomposition technique to
approximate ν and ω for disomic inheritance and also to
approximate d2 and δ2. We follow this approach to derive
the approximate expressions of d2 and δ2 for the HS mating
system and four additional mating systems.
Let Ω be the simplified transition matrix for the HS mating

system, as detailed in Table 3. If N is large enough, the values of
the terms with N−2 and N−3 in Table 3 will be small, then Ω can be
decomposed to:

Ω ¼ Tþ N�1SþO N�2
� �

:
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For the matrices T and S in the principal part of Ω, with Ω given
in Table 3 we obtain

T ¼
c21 �2c1c c2

0 �c1 c

0 0 1

2
64

3
75 and

S ¼
c2
v1
� 1þ2c1c

v
4c 2c�1ð Þ

v � 2c2
v1

2c2 3�2vð Þ
v1v

� c1
v

6c�3
v � 5c

v

0 4
v � 6

v

2
664

3
775;

where ci= c− i and vi= v− i. Similarly, ν and ω can be
decomposed to

ν ¼ 1þ N�1r þO N�2
� �

;

ω ¼ 1þ N�1xþO N�2
� �

;

where 1= [1, 1, 1]T and x= [x1, x2, x3]
T. According to Ωω= νω, we

obtain a matrix equation as follows:

T1þ N�1Txþ N�1S1 ¼ 1þ N�1xþ N�1r1þO N�2
� �

:

Because T1= 1, if the term O N�2ð Þ is omitted, we obtain

S� rIð Þ1 ¼ I � Tð Þx:

This matrix equation is a linear equation set with 3 equations
and 4 unknowns, the solutions of which are as follows:

r ¼ �2=v; x1 ¼ c2v þ 1� 2cð Þv1
2� cð Þcv1v þ ζ; x2 ¼ ζ; x3 ¼ ζ ðζ is any numberÞ:

If we let ζ= 0, we obtain a special solution: r=−2/v and x ¼
c2vþ 1�2cð Þv1

2�cð Þcv1v ; 0; 0
h iT

: Replacing this solution into the expressions of

Table 1. Allele configurations and their expected frequencies.

Allele configuration Freq. notation Double non-identity Expectation Expectation notation

pAqB pAqBðpX þ qX Þ pApXqBqX
Digenic

ZA¼
B¼ P1 1 E1

ZA�¼
�B¼ P2 1 E2

ZA¼j�¼
�¼jB¼

P3 1 E3

Trigenic

ZAA¼
B�¼ ; ZA�¼

BB¼ P4 2 �P E4

ZAA¼j�¼
�¼jB¼ ; Z�¼jA¼

BB¼j�¼
P5 2 �P E5

ZA¼jA¼
B¼j�¼ ; ZA¼j�¼

B¼jB¼
P6 2 �Π E6

ZA�¼jA¼
�B¼j�¼ ; ZA�¼j�¼

�B¼jB¼
P7 2 �Π E7

ZA¼A¼j j�¼
�¼j�¼jB¼ ; ZA¼ �¼j j�¼

�¼jB¼jB¼
P8 2 �Π E8

ZAA�¼
�B¼ ; ZA��¼

�BB¼ P9 2 �P E9

Quadgenic

Dihaplotypic

ZAA¼
BB¼ P10 Θ1 1 �P Θ1 E10

ZA¼jA¼
B¼jB¼

P11 Θ2 1 �Π Θ2 E11

Trihaplotypic

ZA¼jA�¼
B¼j�B¼

P12 Γ1 1 �Π Γ1 E12

ZAA¼j�¼
B�¼jB¼ ; ZA�¼jA¼

BB¼j�¼
P13 Γ2 2 �P � Π 2Γ2 E13

ZA¼jA¼j�¼
B¼j�¼jB¼

P14 Γ3 1 �Π Γ3 E14

ZAA�¼
B�B¼ P15 Γ4 1 �P Γ4 E15

Quadhaplotypic

ZA�¼jA�¼
�B¼j�B¼

P16 Δ1 1 �Π Δ1 E16

ZAA¼j��¼
��¼jBB¼

P17 Δ2 1 �P Δ2 E17

ZA�¼jA¼j�¼
�B¼j�¼jB¼

P18 Δ3 1 �Π Δ3 E18

ZAA¼j�¼j�¼
��¼jB¼jB¼ ; Z��¼jA¼jA¼

BB¼ �¼j j�¼
P19 Δ4 2 �P � Π 2Δ4 E19

ZA¼jA¼j�¼j�¼
�¼j�¼jB¼jB¼

P20 Δ5 1 �Π Δ5 E20

ZAA��¼
��BB¼ P21 Δ6 1 �P Δ6 E21

ZAA�¼j�¼
��B¼jB¼ ; Z��A¼jA¼

BB�¼j�¼
P22 Δ7 2 �P � Π 2Δ7 E22

Z denotes an allele configuration, P and Π denote the single non-identity coefficient within and between individuals. Superscripts and subscripts denote the
genotype patterns at two target loci, respectively. The vertical bars separate individuals, · denotes an allele copy in any form, and¼denotes the remaining
allele copies. The allele copies in the same position are in the same haplotype. For example, ZA¼

B¼ , ZA�¼
�B¼ and ZA¼ j�¼

�¼ jB¼ denote the two target alleles are in the
same haplotype, different haplotypes in the same individual, and different individuals, respectively.
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ν and ω yields

ν � Nv � 2
Nv

andω � 1þ c2v þ 1� 2cð Þv1
2� cð ÞcNev1v

; 1; 1

� �T
:

Now, by substituting Φ with ω and A with A1 ¼ lim
n!1A in Eq. (4),

it can be calculated that

Eω D̂2
� � ¼ Eω Δ̂2

� � � c2v þ 1� 2cð Þv1
2� cð ÞcNev1v

and Eω Q̂
� � ¼ Eω R̂

� � � 1:

Therefore, the approximated d2 and δ2 are as follows:

d2HS �
c2v þ 1� 2cð Þv1
2� cð ÞcNev1v

and δ2HS �
c2v þ 1� 2cð Þv1
2� cð ÞcNev1v

:

To include the effect of finite sample size, higher order terms in
A should be included. We derive the approximations of d2HS and
δ2HS by ignoring higher order terms of A, and find that d2HS and δ2HS
converge to

d2HS �
c2v þ ð1� 2cÞv1
ð2� cÞcNev1v

þ 1
vn� 1

; (6a)

δ2HS �
c2v þ ð1� 2cÞv1
ð2� cÞcNev1v

þ 1
n� 1

; (6b)

where Ne and N are equivalent under the HS mating system, n is
the sample size. The additional terms 1/(vn− 1) and 1/(n− 1) are
corrections for finite sample size (see Supplementary Appendix E
for details). The results from Eqs. (6a) and (6b) accord with those of

Ohta and Kimura (1969) and Weir and Hill (1980) for the
monoecious selfing mating system in diploids.
The transition of single non-identity coefficients satisfies the

relations: P0 ¼ Nv�1
Nv P and π0 ¼ Nv�1

Nv π. Moreover, if two loci are
located at the two extremities on the same chromosome under
bivalent pairing, and the thirteen double non-identity coefficients
are all equal to P2 and Φ0 ¼ Nv�1

Nv

� �2
Φ, and thus also the

corresponding eigenvalue ν ¼ Nv�1
Nv

� �2� Nv�2
Nv . By comparing with

the previous conclusion of ν � Nv�2
Nv by substituting ζ= 0, we see

that r=−2/v is a good approximation to the rate of loss of
heterozygosity at the pairs of independent loci.
We follow Weir and Hill (1980) to establish four additional

mating systems. Two are monecious mating systems: (i) selfing
being allowed (termed MS), and (ii) selfing being excluded
(termed ME). In both of these mating systems, the effective
population size Ne is the same as the population size N. The other
two mating systems we use are both dioecious systems: (i)
dioecious with random pairing (termed DR), and dioecious with
lifetime pairing (termed DH). In DR, each offspring is produced
from a new pairing. In DH, each individual remains in a single
reproductive unit for its entire lifetime. Moreover, in both DR and
the DH, there are M males and F females in the population for
each generation and F= fM, the effective population size is
calculated by Ne ¼ 4MF

MþF.
The transition matrix Ω for each of the four additional

mating systems (MS, ME, DR and DH) is a 13 × 13 matrix, whose
element expressions are derived in Supplementary Appen-
dices F–H. The matrices T and S in the principal part of Ω for all
five mating systems are listed in Supplementary Appendix I.
The approximate expressions of d2 and δ2 for additional

Table 2. Essential factors of moment expressions.

EðD̂2
wÞ EðD̂2

bÞ EðD̂wD̂bÞ EðD̂2Þ EðΔ̂2Þ E Q̂
� �

E R̂
� �

Divisor

Φ1Θ1 n2v2 ´
ð2þ vv2Þ

λ7 �nv ´
ðvv1 þ λ1Þ

v21λ5 2v2n21v
2
1 2v21 2v2n21v

2
1 n3v3v1=Q

Φ2Θ2 n2v2 2 �nv λ5 v2λ2 2 2v2 n3v2=n1Q

Γ1 �2n2v2 �2λ1 nvð1þ λ4Þ �2v1λ3 2v2v1λ2 4v1 4v2v1 n3v2=n1Q

Γ2 0 �2λ1 �nvv2 �2v1λ3 �4v2n1v1 4v1 �4v2n1v1 n3v2=2n1Q

Γ3 0 4 �nv �2λ3 �2v2n2 4 4v2 n3v=n1n2Q

Γ4 �2n2v2v2 2λ1λ4 λ6 �2v21λ3 4v2n21v
2
1 4v21 4v2n21v

2
1 n3v3v1=v2Q

Δ1 n2v2 λ7 �nvλ4 2v21 v2v21λ2 2v21 2v2v21 n3v2=n1Q

Δ2 0 1 0 1 v2 1 v2n21 n3v2=n1v21Q

Δ3 0 �2λ1 nv 4v1 �2v2n2v1 4v1 4v2v1 n3v=n1n2Q

Δ4 0 v1 0 v1 v2v1 v1 �v2n1v1 n3v=2n1n2Q

Δ5 0 1 0 1 v2 1 v2 n3=n1n2n3Q

Δ6 n2v2 λ24 �nvλ4 v21 v2n21v
2
1 v21 v2n21v

2
1 n3v3v1=v2v3Q

Δ7 0 �2λ4 nv 2v1 �2v2n1v1 2v1 �2v2n1v1 n3v2=2n1v2Q

For brevity, we denote n� i by ni and v � i by vi , and let λ1 ¼ n2v þ 2, λ2 ¼ nn2 þ 2, λ3 ¼ nv � 2, λ4 ¼ vn1 þ 1, λ5 ¼ 2þ nvλ3 , λ6 ¼ nv½2þ λ3 � λ4ð Þ 1þ λ4ð Þ�,
λ7 ¼ 2þ 2n2v þ λ2v2 .

Table 3. Simplified ΩT for HS mating system.

1 N−1 1 N−1 N−2 1 N−1 N−2 N−3

(1−c)2 c2
v�1 � 1þ2c c�1ð Þ

v
0 1�c

v
2c�1
v2 0 0 2

v2 � 2
v3

2c (1−c) 4c 2c�1ð Þ
v � 2c2

v�1
1−c 6c�3

v
2�8c
v2 0 4

v � 12
v2

8
v3

c2 2c2 3�2vð Þ
v v�1ð Þ

c � 5c
v

6c
v2 1 � 6

v
11
v2 � 6

v3

Each element of ΩT is a combination of 1, N−1, N−2 and N−3 with the combination coefficients in the corresponding cell. The combination coefficients are zero
for unpresented terms.
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mating systems can be derived with the same method (details
can be found in Supplementary Appendix J) and are shown
as follows:

d2MS=ME=DR �
8c2c2 � 4c2cv 5c � 1ð Þ þ 2v2 7c2c2 þ c þ 2ð Þ � 3c21v

3 c þ 1ð Þ
c2c cv2 þ vð Þ 3v � 4ð Þv2Ne

þ 1
vn� 1

;

δ2MS=ME=DR �
v2 4� 3v þ 8c2 � 14c � cv 2c2 þ 4c � 13ð Þ þ c2cv2 c þ 1ð Þ½ �

c2c cv2 þ vð Þ 3v � 4ð Þv2 Ne � ηð Þ þ 1
n� 1

;

d2DH �
n

1þ fð Þ cv 3v2 þ 2v � 8ð Þ � v2 3v � 4ð Þ½ �
þc2 3v � 4ð Þ v2 � 10v þ 4þ f v2 � 8v þ 4ð Þ½ �
�c3v2 3v2 � 10v þ 4þ f 3v2 � 8v þ 4ð Þ½ �

o
= c2c 1þ fð Þ cv2 þ vð Þ 3v � 4ð Þv2Ne½ � þ 1

vn�1 ;

δ2DH � v2
n
c3 3þ fð Þv2v � 1þ fð Þ 3v � 4ð Þ

�c2 3v2 � 8þ f v2 þ 4v � 8ð Þ½ �
�c f 2v2 � 13v þ 14ð Þ þ 3 2v2 � 7v þ 6ð Þ½ �

o
= c2c 1þ fð Þ cv2 þ vð Þ 3v � 4ð Þv2 Ne � ηð Þ½ � þ 1

n�1 :

The approximate expressions of d2 and δ2 from disomic to
decasomic are presented in Supplementary Tables S5 and S6. They
follow a general pattern:

d2 ¼ C
Ne

þ 1
vn� 1

and δ2 ¼ C
Ne � η

þ 1
n� 1

: (7)

where η is equal to 0 for the HS mating system, 2 v�2ð Þ v�1ð Þ
v2 for the

MS mating system, or 4 v�1ð Þ2
v2 for the ME/DR/DH mating systems.

The values of C for approximated d2 and δ2 between unlinked loci
located on either the same chromosome (c= 0.5) or different
chromosomes (c= 1− 1/v) are presented in Table 4.

SIMULATIONS AND EVALUATIONS
Behaviors of r̂2 and r̂2Δ
In this section, we discuss the behaviors of the squared correlation
coefficient estimators r̂2 and r̂2Δ during reproduction and provide
the exact and the approximate values of d2 or δ2 for reference.
Due to the correlation between D̂2 and Q̂ (or between Δ̂2 and R̂),

E(̂r2) (or E r̂2Δ
� �

) is not equal to d2 (or δ2), which introduces some

biases when few loci are used. To solve this problem, Waples
(2006) used an empirical equation to adjust r̂2Δ for di-allelic loci,
which can be extended to multi-allelic loci by collapsing alleles.
We use an alternative method to eliminate such correlations and
bias. Assuming all locus pairs share the same parameters (c, n, Ne, v
and mating system), then their d2 (or δ2) are respectively the same,
and their r̂2 (or r̂2Δ) can be weighted to approximate d2 (or δ2). The
multi-locus estimates of r̂2 and r̂2Δ are calculated by

r̂ ¼
P

ðl1;l2Þ
P

A2l1;B2l2 D̂
2
ABP

ðl1;l2Þ
P

A2l1;B2l2 Q̂AB
and r̂2Δ ¼

P
ðl1 ;l2Þ

P
A2l1;B2l2 Δ̂

2
ABP

ðl1;l2Þ
P

A2l1 ;B2l2 R̂AB
; (8)

where (l1,l2) is taken from all locus pairs, the symbol A ∈ l1 (or
B∈ l2) represents A (or B) is taken from all alleles at the first (or the
second) locus in (l1,l2).
We adopt a Monte-Carlo method to simulate the behavior of r̂2

and r̂2Δ. During simulation, a population with the MS mating system
is generated, which contains 40 or 80 individuals with a ploidy level
of either 2 or 4. Next, the individuals generated are genotyped at
200 linked diallelic loci pairs, with a recombination frequency 0.1
for each locus pair. Although we generate 400 loci, only 200 loci
pairs with c= 0.1 are used in calculating r̂2 and r̂2Δ. The population
is then allowed to reproduce for 250 generations. For each
generation, by using the data of genotypes of all individuals under
various situations, r̂2 and r̂2Δ are calculated by Eq. (8), and the exact
and the approximate d2 and δ2 are also calculated by Eqs. (5) and
(6a, 6b), respectively. This process is performed 300,000 times in
total. The results are shown in Fig. 1.
Figure 1 shows that the approximate d2 or δ2 are both slightly

higher than their exact value, and both the exact and the
approximate d2 or δ2 decrease as Ne or v increases. The values of r̂2

and r̂2Δ are both initially 1, and reduce respectively to exact d2 and
δ2 values after about 40 generations. Henceforth, r̂2 and r̂2Δ both
achieve a relatively stable state and remain around the exact
values of d2 and δ2 for several generations. In particular, if the
ploidy level is four, these values will both converge to the exact d2

and δ2 values as the number of generations increases.
Due to genetic drift, some loci become fixed and are excluded

from the simulation, causing the number L of locus pairs used for
genotyping to decline. The correlation between the numerator
and the denominator in each of both formulas in Eq. (8) therefore
increases, such that r̂2 and r̂2Δ correspondingly decrease. The
duration of a stable state depends on three factors: (i) ploidy level
v, (ii) effective population size Ne and (iii) the number L of locus
pairs. As the value of each of these factors increases, the longer
the duration of the stable state of both r̂2 and r̂2Δ.

Table 4. Coefficient C for approximated d2 and δ2 .

v HS MS/ ME/DR DH

d2 & δ2 d2 δ2 d2 δ2

Same chromosome c= 0.5 2 1
3

1
3

1
3

3þ2f
6 1þfð Þ

3þf
3 1þfð Þ

4 1
9

61
480

1
3

75þ61f
480 1þfð Þ

3þf
3 1þfð Þ

6 1
15

19
252

1
3

22þ19f
252 1þfð Þ

3þf
3 1þfð Þ

8 1
21

559
10560

1
3

627þ559f
10560 1þfð Þ

3þf
3 1þfð Þ

10 1
27

277
6825

1
3

609þ554f
13650 1þfð Þ

3þf
3 1þfð Þ

Different chromosomes (c= 1− 1/v) 2 1
3

1
3

1
3

3þ2f
6 1þfð Þ

3þf
3 1þfð Þ

4 1
15

439
5280

109
330

673þ439f
5280 1þfð Þ

343þ109f
330 1þfð Þ

6 1
35

1147
30870

579
1715

1747þ1147f
30870 1þfð Þ

1779þ579f
1715 1þfð Þ

8 1
63

22357
1068480

5662
16695

33921þ22357f
1068480 1þfð Þ

17226þ5662f
16695 1þfð Þ

10 1
99

18529
1383525

18775
55341

56093þ37058f
2767050 1þfð Þ

56845þ18775f
55341 1þfð Þ
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We also simulate the behaviors of r̂2 and r̂2Δ during reproduction
for five mating systems (including cases with f being set to either 2
or 5 for the DR and the DH mating systems). The simulation process
is as follows. First, a population for each of the five mating systems is
generated, which contains 40 individuals with a ploidy level of either
2, 4, 6 or 8. Next, these 40 individuals are genotyped as described
for the previous simulation. Then, the population is allowed to
reproduce for 50 generations. For each generation, by using data of
the genotypes of all individuals under various situations, r̂2 and r̂2Δ
are calculated. The exact and approximate d2 and δ2 values are also
calculated. The process is repeated 30,000 times. The results are
shown in Supplementary Fig. S1, and are similar to those shown in
Fig. 1. However, the approximate values of d2 and δ2 deviate more
from their exact values for some mating systems.
Finally, we also simulate the behaviors of r̂2 and r̂2Δ for the MS

mating system under different recombination frequencies (set
Ne= 80, v= 2 or 4, L= 200 and c= 0.001, 0.002, 0.004, 0.01, 0.02,
0.04, 1 or 2). The simulation process is similar to the previous
method and is performed 20,000 times. The population is
allowed to reproduce for 100 generations. For each generation,
r̂2 and r̂2Δ are calculated, with the results shown in Supplementary
Fig. S2. This shows that the convergent rates for r̂2 or r̂2Δ among
different ploidy levels differ little as the number of generations
increase, but are strongly affected by the recombination
frequency: the higher the recombination frequency, the faster
the rate of convergence.

Recombination frequency
To investigate the influence of the recombination frequency c on d2

and δ2, the exact and the approximate d2 and δ2 are calculated for
each mating system under different recombination frequencies (set
Ne= 100, n= 100, v= 2, 4, 6 or 8, f= 1 for DR and f= 2 or 5 for DH).
The recombination frequency c ranges from 0 to 1. The results for the
MS mating system are shown in Fig. 2, and the results for all mating
systems (including MS) are uniformly shown in Supplementary Fig. S3.
Figure 2 shows that d2 or δ2 are high at a low recombination

frequency and decrease gradually to a relatively low value as c
increases. The rate of decrease steepens as the ploidy level
increases. However, after c reaches ~0.5, d2 (at v= 2) or δ2 (at all
ploidy levels) both begin to increase. The approximate values of d2

are close to their exact values, whilst the difference between the
approximate and the exact values of δ2 are more obvious,
especially when c > 0.5.

The exact values for d2 and δ2 for the unlinked loci located on
the same or different chromosomes are calculated for all five
mating systems (set Ne= 100, n= 100, v= 2, 4, 6, 8 or 10, c= 0.5
or 1− 1/v and f= 1, 2 or 5 for DR /DH). Moreover, the error rates
for d2 or δ2 under different conditions are also calculated. The
results are presented in Supplementary Table S7. It is clear that the
difference between δ2c¼0:5 and δ2c¼1�1=v is low under all conditions,
but the difference between d2c¼0:5 and d2c¼1�1=v is ~50 to 100 times
higher. For example, for tetraploids, the error rate is about 13% for
d2 but only 0.13% for δ2.

Estimation of effective population size
In this section, we estimate the effective population size Ne from
unphased genotypes. We derived the relationships among v, c, n, Ne

and δ2 in the Theory and modeling section, e.g., Eq. (6b), where v and n
are known, δ2 can be substituted by r̂2Δ, N̂e can be solved if c is known.
Close-linked loci take a long time to reach a mutation-drift

equilibrium (Supplementary Fig. S2) and provide past information
regarding Ne. Some estimators use this feature to estimate the time
series of Ne, but need a priori information about recombination
frequency (e.g., Tenesa et al. 2007; Santiago et al. 2020; Hollenbeck
et al. 2016). For contemporary Ne, some estimators (e.g., England et al.
2006) assume that all loci are unlinked, and they use a recombination
frequency 0.5 for all loci pairs. In polysomic inheritances, the
recombination frequency is 1− 1/v between two loci located on
different chromosomes. Because δ2c¼0:5 and δ2c¼1�1=v are close, with
the error rate at most 1.5% (Supplementary Table S7), we assume the
recombination frequency c= 0.5 between any two loci.
We preliminarily solve Ne using the approximated δ2 by Eq. (7):

N̂e;initial ¼ C
r̂2Δ � 1=ðn� 1Þ þ η; (9)

where r̂2Δ is calculated by Eq. (8).
We further optimize the solution using the exact δ2, i.e., Eq. (5).

The exact δ2 is related to the double non-identity coefficients and
the effective population size Ne. Therefore, the exact δ2 can be
regarded as a function of Ne, denoted by δ2(Ne) such that N̂e is the
root of the following equation:

δ2 N̂e
� �� r̂2Δ ¼ 0;

and we solve N̂e with Newton’s method using N̂e;initial as the initial
solution. This approach is denoted as NEWTON’S approach. Accord-
ing to Eq. (8) and the central limit theorem, r̂2Δ can be
approximated with a normal distribution when there are many
loci. Substituting δ2 with r̂2Δ and Ne with N̂e in Eq. (7) and assuming
r̂2Δ � N μ; σ2ð Þ, it can be found that r̂2Δ � 1= n� 1ð Þ� �

=C is accord
with N μ� 1= n� 1ð Þ; σ2=C2� �

and is equal to 1/(N̂e−η). Therefore,
N̂e−η is in accordance with an inverse normal distribution whose
expectation is undefined (Robert 1991). It is thus meaningless to
evaluate the statistical performance of N̂e because its expected
value is not defined. To avoid this problem, we instead evaluate

Fig. 1 The behaviors of r̂2 and r̂2Δ during reproduction for the MS
mating system (set Ne= 40 or 80, v= 2 or 4, L= 200 and c= 0.1).
Each of the two columns shows the results of a different ploidy level,
and each of the two rows shows the results of a different effective
population size. Solid gray lines denote approximate d2 or δ2, dotted
gray lines denote exact d2 or δ2, and solid lines denote r̂2 or r̂2Δ,
where the lines representing δ2 (or r̂2Δ) are above those representing
d2 (or r̂2) for each situation.

Fig. 2 The relationship between d2 (or δ2) and the recombination
frequency c for the MS mating system (set Ne= 100, n= 100 and
v= 2, 4, 6 or 8). The solid, dashed, dash-dotted and dotted lines
denote the values for diploids, tetraploids, hexaploids and
octoploids in turn, and the gray and the black lines denote the
exact and the approximate values, respectively.
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the statistical performance of 1/N̂e , which is approximately
unbiased according to Eq. (9).
We use a Monte-Carlo method to simulate the estimation of

effective population size Ne from unphased genotypes, and then
evaluate the statistical performance of NEWTON’S approach under
different ploidy levels, numbers of loci, numbers of alleles and
sample sizes. Two types of markers are used during simulation: (i)
SNP (diallelic) and (ii) SSR (hexa-allelic). For simulation, first a
founder population with 200 individuals all with a ploidy level of
either 2, 4, 6 or 8 is created. To avoid the fixation of alleles, each
allele in the founder generation is set as being unique. Second, the
200 individuals are genotyped at 100 or 200 diallelic SNPs, or at 20
or 40 hexa-allelic SSRs. These loci are assumed to be isometrically
distributed on 10 chromosomes, and the length of each chromo-
some is 100 cM. Third, the founder population is allowed to
reproduce for a fixed number of generations to reach the linkage
equilibrium; the number of generations is 44 or 86 for SNP, and 11
or 19 for SSR; during meiosis, it is assumed that the chromosomes
form bivalents. Fourth, after the final generation has been attained,
to reduce the number of alleles k, we repeat collapsing two
randomly selected alleles until the value of k is less than 2 (for SNP)
or 6 (for SSR). Fifth, for the final generation, 400 individuals are
created in total, and n individuals are randomly sampled from this
generation, where n= 40, 80, …, 400 (interval 40). Finally, using the
data of unphased genotypes of the n individuals sampled (n= 40,
80, …, 400), N̂e can be estimated by using NEWTON’S approach. We
use the MS mating system as an example and performed 2000
replicates for each configuration. If we subsequently let V̂ ¼ 1=N̂e,
the bias and the RMSE of V̂ can be calculated, the results being
shown in Fig. 3 and Supplementary Fig. S4. The simulated bias and
RMSE of N̂e are shown in Supplementary Fig. S4.
Figure 3 shows that the results for SNP are more biased than

those for SSR, with V̂ slightly increasing as the number of loci L
also increases. The bias of V̂ is small, and is generally less than 2 ×
10−3, especially less than 3 × 10−4 for the hexasomic and the
octosomic inheritances, thus V̂ is nearly unbiased, as expected.
Supplementary Fig. S5 shows that the RMSEs of V̂ decrease as n

increases, the values of which are similar among different ploidy
levels. Moreover, the RMSEs for polyploids are slightly smaller than
that for diploids. In general, the performances of SNPs and SSRs
are similar.

DISCUSSION
LD test
We here follow the method proposed by Weir and Cockerham
(1979) to extend two LD measures, D and the Burrow’s Δ, to
account for different levels of polysomic inheritance. These two

measures can be used to perform the LD test. The null hypothesis
of a LD test is that a pair of loci is under linkage equilibrium, which
is equivalent to all DAB (or all ΔAB) values being equal to zero.
For a sample with n individuals, there are nv haplotypes. The

observed and the expected occurrences of a haplotype AB are,
respectively, nvPABs and nvpAqB. Because DAB= PABs Ps

AB−pAqB, the
χ2 statistic for the LD measure D can be established as follows:

χ2D ¼ nv
X
AB

D̂2
AB

pAqB
with d:f: k1 � 1ð Þ ´ k2 � 1ð Þ;

where d.f. is the number of degrees of freedom, ki is the number
of alleles among the allele copies in those haplotypes at the ith

locus (i= 1, 2), A is taken from all k1 alleles at the first locus, and B
is taken from all k2 alleles at the second locus.
Next, for a sample with n individuals, there are nv2 allele pairs,

the observed and the expected occurrences of an allele pair AB are
respectively nvPABs + nv(v− 1) PABd and nv2pAqB. Because ΔAB= PABs
+ (v− 1)PABd −vpAqB, the χ2 statistic for Burrow’s Δ statistic can be
established as follows:

χ2Δ ¼ n
X
AB

Δ̂2
AB

pAqB
with d:f: k1 � 1ð Þ ´ k2 � 1ð Þ:

d2 and δ2

In this study, various moments of LD measures are derived by
extending Weir and Hill’s (1980) double non-identity coefficients,
and thus the exact d2 can be obtained by using the moments
E(D̂2) and E(Q̂) under various mating systems. The exact δ2 can also
be obtained by using the moments E(Δ̂2) and E(R̂). Hence the value
of r̂2 (or r̂2Δ) can be approximately replaced by that of d2 (or δ2)
under each mating system at the equilibrium state. Moreover, the
approximate expressions of d2 and δ2 under various mating systems
are derived by using the transitional matrix, and several relation-
ships are discussed, such as the relationship between r̂2 (or r̂2Δ) and
the number of generations during reproduction, the relationship
between d2 (or δ2) and the recombination frequency c, and so on.
Figure 1 shows that after the population has been allowed to

reproduce for about 40 generations, r̂2 (or r̂2Δ) reaches a relatively
steady state, remaining close to the exact d2 (or δ2) for several
generations. Then, r̂2 (or r̂2Δ) begins to decrease again, due to both
the fixation of alleles and the positive correlation between D̂2 and
Q̂ (or between Δ̂2 and R̂). As the number of loci decreases, the
number of terms in the numerator or the denominator in Eq. (8) is
reduced, due to the weighted scheme in Eq. (8) being unable to
effectively eliminate the correlation. The number of generations at
which r̂2 (or r̂2Δ) begins to decrease again depends on v, Ne, L and
the initial heterozygosity.
Supplementary Fig. S2 shows that regardless of r̂2 or r̂2Δ, the

smaller the recombination frequency, the slower the rate of
convergence. Generally, r̂2 and r̂2Δ decrease to a relatively steady
state after about �4:21= ln 1� cð Þ generations. Moreover, under
the same recombination frequency, the convergent rates of r̂2 (or
r̂2Δ) are similar for all levels of ploidy but differ markedly under
different recombination frequencies.
Figure 2 (and Supplementary Fig. S3) shows that the relation-

ship between d2 (or δ2) and the recombination frequency c has
two main features: (i) if c is small (e.g., <0.25), both d2 and δ2 for
polysomic inheritance decreases more rapidly than those for
disomic inheritance and (ii), the difference between d2c¼0:5 and
d2c¼1�1=v under polysomic inheritance is considerable (the error
rate ranges from 10% to 23%), whereas the difference between
δ2c¼0:5 and δ2c¼1�1=v is negligible (the error rate is less than 1.5% for
non-HS mating systems).
For (i), this infers that a higher density genetic map is required

to detect any linkage in polyploids. A rough estimate would be the

Fig. 3 The relationship between the bias of V̂ and the sample size
n (set Ne= 200, v= 2, 4, 6 or 8, L= 100 or 200 for SNP and L= 20
or 40 for SSR). The results are obtained from the unphased
genotypes of 40–400 individuals (interval 40). The solid, dashed,
dash-dotted and dotted lines denote results for disomic, tetrasomic,
hexasomic and octosomic inheritances in turn.
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locus density in tetraploids (hexaploids or octoploids) to be 1.58
(2.16 or 2.67) times of that for diploids (estimated by the threshold
δ2= 0.2, see Fig. 2). However, if the locus density is sufficient, the
gene mapping in polyploids may be more accurate than that in
diploids due to the steep slope of the curve at a low c.
For (ii) this indicates that it is unnecessary to distinguish

whether two loci are located on the same chromosome or not if
the effective population size Ne is estimated by r̂2Δ. From this
reason, we can simply let the recombination frequency between
any two loci be equal to 0.5, as is assumed in other methods (e.g.,
England et al. 2006). However, it is necessary to assume that two
loci are located on different chromosomes if Ne is estimated by r̂2

using phased genotypes.

Effective population size
Among the parameters v, n, r2, r2Δ, Ne, c and f, the first two v and n are
known, the next two r2 and r2Δ can be estimated from the genotype
data, and the mating system and the ratio f can be obtained from
either a priori information, field observations or experiments. The
remaining two parameters Ne and c are the parameters we usually
need to estimate, and one can be estimated if the other is known.
After simulation, we evaluate the RMSE and the bias of V̂ (i.e.,

1/N̂e). The curves of RMSE among different ploidy levels are
similar, indicating that estimating Ne in polyploids requires similar
numbers of samples and loci as in diploids. The performance of
100/200 diallelic SNPs is as good as that of 20/40 hexa-allelic SSRs
(Supplementary Fig. S5), indicating that the RMSE is mainly
determined by the number

PL
l kl � 1ð Þ of independent alleles.

The results for polyploids may be better than for diploids due to
smaller biases (Fig. 3).
Some possible sources of this bias of V̂ are enumerated as

follows. (i) According to Eq. (9), r̂2Δ−1/(n− 1) is proportional to 1/
(Ne− η), not 1/Ne, indicating that the estimation of 1/(Ne− η) may
be unbiased, but the estimation of 1/Ne is biased. (ii) The
recombination frequency between two loci located on the same
chromosome is less than 0.5, but it is assumed to be 0.5. (iii) The
recombination frequency between two loci located on different
chromosomes is 1− 1/v, but it is also assumed to be 0.5.
We suggest that (ii) is the main source of this bias. This is because

the bias is largely influenced by both the number L of loci used and
the ploidy level v (Fig. 3). Because the length of each chromosome is
100 cM, the loci become denser at higher levels of L. The value of δ2

between two close loci (implying smaller c) therefore increases in
the deviation from δ2c¼0:5 (Fig. 2). In addition, the simulation results
for polyploids are less biased. This is because the curve of δ2 at a
higher ploidy level is flat for most situations (e.g., c > 0.2). To validate
our prediction, we use unlinked loci to regenerate the results in
Fig. 3, where the loci are on the same chromosome and the distance
between two neighboring loci is long (1030 cM). The results show
the bias is reduced to 10−5 (Supplementary Fig. S6).
The bias sources (ii) and (iii) can be reduced if the a priori

information is available: (i) if the combination frequency between
any two loci is known, the exact δ2 can be calculated between all
loci pairs and averaged. In this case, Eq. (8) should use the
arithmetic mean of r̂2 and r̂2Δ; (ii) if the lengths of chromosomes
(in centimorgan) are known, assuming the loci are uniformly
distributed on the chromosomes, then the exact δ2 can be
calculated; (iii) if the genome size and the number of chromo-
somes are both known, we can assume the length of the
chromosomes accord with a particular distribution (e.g., triangular
or uniform) and obtain the exact δ2 (Waples et al. 2016); With
NEWTON’S approach as we described, the exact δ2 can be considered
a function of the true Ne, then Ne can be estimated; (iv) if the
genetic data are sufficient, it is possible to cluster the loci into
some linkage groups, and the loci in different lineage groups will
be used to perform the estimation of Ne. This can be achieved
using a specific software package designed for diploid Ne

estimation, i.e., NEESTIMATOR V2 (Do et al. 2014).

Non-independent samples
Non-independent samples can also be a potential bias source
(Waples, personal communications). For non-independent sam-
ples due to random sampling, there is not extra bias. For non-
independent samples due to non-random sampling, e.g., the
relatives are more likely to be together sampled, extra bias is
introduced.
We performed a simple simulation to show such bias, the results

with different sampling strategies (random sampling, pair sampling
of relatives) are compared. The bias of V̂ is increased under non-
random sampling at a low sample size and approaches that under
random sampling as n increases (Supplementary Fig. S6). Such bias
is mainly due to the overestimation of r̂2Δ and Δ̂2 .
We derived the LD moments under pair sampling of clones in

Supplementary Appendix K. The LD moments under non-random
sampling are related to the sample size, the probability of non-
random sampling, the types of relatives, the single and the double
non-identity coefficients, the allele probability product pq, and
the heterozygosities. Therefore, d2 and δ2 cannot be derived by
the method used in this manuscript, i.e., Eq. (5), and the
elimination of such bias can be a direction of future studies.
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