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Genetic variance is a central parameter in quantitative genetics and breeding. Assessing changes in genetic variance over time as
well as the genome is therefore of high interest. Here, we extend a previously proposed framework for temporal analysis of genetic
variance using the pedigree-based model, to a new framework for temporal and genomic analysis of genetic variance using
marker-based models. To this end, we describe the theory of partitioning genetic variance into genic variance and within-
chromosome and between-chromosome linkage-disequilibrium, and how to estimate these variance components from a marker-
based model fitted to observed phenotype and marker data. The new framework involves three steps: (i) fitting a marker-based
model to data, (i) sampling realisations of marker effects from the fitted model and for each sample calculating realisations of
genetic values and (jii) calculating the variance of sampled genetic values by time and genome partitions. Analysing time partitions
indicates breeding programme sustainability, while analysing genome partitions indicates contributions from chromosomes and
chromosome pairs and linkage-disequilibrium. We demonstrate the framework with a simulated breeding programme involving a
complex trait. Results show good concordance between simulated and estimated variances, provided that the fitted model is
capturing genetic complexity of a trait. We observe a reduction of genetic variance due to selection and drift changing allele
frequencies, and due to selection inducing negative linkage-disequilibrium.
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INTRODUCTION
This study analyses temporal and genomic trends of additive
genetic variance in different stages of a breeding programme.
Genetic variance is one of the critical parameters in a breeding
programme because it determines the potential for selection
(Lush 1937; Falconer and Mackay 1996; Lynch and Walsh 1998;
Walsh and Lynch 2018). Estimation of genetic variance has
therefore received considerable attention in the literature (Lynch
and Walsh 1998; Walsh and Lynch 2018), where most of the
attention is on statistical models and approaches for estimation.
Surprisingly, far less attention has been given to temporal trends
in genetic variance, even though such trends indicate the
sustainability of a breeding programme. Recent ability to
genotype individuals at scale has renewed interest in analysing
genetic variance. This study extends previously proposed frame-
work for temporal analysis of genetic variance using the pedigree-
based model of Sorensen et al. (2001), to a new framework for
temporal and genomic analysis of genetic variance using marker-
based models.

The estimation of genetic variance in breeding programmes has
a long history and a recent revival with the advent of genomic
information. Historically, the genetic variance was estimated with
an analysis of variance (ANOVA) method in optimised experi-
mental designs, ranging from simple parent-offspring or sib
groups to North Carolina and diallel designs (Falconer and Mackay
1996; Lynch and Walsh 1998; Bernardo 2002; Awata et al. 2018).
With these designs, we partition phenotypic variance into variance

between and within groups and ‘translate’ these components into
genetic variance based on expected genetic relationships within
and between groups. Animal breeders have soon moved from
such experimental designs to a general pedigree-based model to
analyse their observational data (Henderson 1976). Nearly 30 years
later, plant breeders have also adopted the pedigree-based model
(Oakey et al. 2006, 2007; Piepho et al. 2008). There were many
reasons for this late adoption. One reason is that with the
pedigree-based model, we estimate genetic variance between the
founders of a pedigree (Sorensen and Kennedy 1984; Kennedy
et al. 1988), while genetic variance between their descendants is
arguably more relevant for breeding (Piepho et al. 2008). The
advent of genomic information revived interest in the estimation
of genetic variance and spurred active development of genome-
based models (Bernardo 1994, 1996; Meuwissen et al. 2001;
VanRaden 2008). The genome-based model replaces expected
relationships from the experimental designs or pedigree with
realised relationships measured by marker genotypes. The
estimate of genetic variance from the genome-based model
pertains to genotyped individuals (Hayes et al. 2009) or their
relatives (VanRaden 2008). It can be obtained using either a
genome-based model with genetic values or with marker effects
(marker-based model) (Stranden and Garrick 2009). We note,
though, that the resulting ‘genomic variance’ is estimating genetic
variance only under certain conditions (Gianola et al. 2009; de los
Campos et al. 2015; Rawlik et al. 2020). Specifically, the genome-
based model assumes that markers are sufficiently linked to
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quantitative trait loci (QTL) to capture their effects, and that
genetic values at different QTL are uncorrelated. The second
assumption about independence will not hold when there are
population processes that induce linkage-disequilibrium as a
function of QTL (Lynch and Walsh 1998; Walsh and Lynch 2018;
Rawlik et al. 2020; Bulmer 1971). We expand on this second
assumption in the methods and discussion.

In parallel to the development of data sources and correspond-
ing statistical models, there has been active development in
statistical and computational approaches to estimate genetic
variance. The three most used are the method of moments,
likelihood, and Bayesian approach. The method of moments used
with the ANOVA is computationally simple but can yield biased
estimates outside of the parameter space. With the likelihood
approach, we specify a probability distribution for observed data
and find the most likely value of model parameters that would
give rise to the observed data (Meyer 1985; Thompson et al. 2005;
Thompson 2019). The Bayesian approach improves the likelihood
approach in two ways. First, it incorporates prior knowledge for all
model parameters (means and variances), improving estimation
(Sorensen and Gianola 2007; Hem et al. 2021). Second, it treats all
model parameters in a probabilistically consistent manner such
that estimation uncertainty is propagated to all estimated model
parameters (Sorensen and Gianola 2007). However, the full
probabilistic treatment is computationally demanding, despite
the availability of sampling methods such as the Monte Carlo
Markov Chain (MCMC) (Gilks et al. 1995; Brooks et al. 2011). We
can handle this computational issue with an empirical Bayesian
approach. In the marker-based model, the empirical Bayesian
approach estimates model variances from the data at hand and,
conditional on these, estimates all marker effects jointly to
account for the uncertainty of estimating marker effects
(uncertainty of estimating model variances is ignored) (Sorensen
and Gianola 2007; Efron 1996). The full Bayesian approach
accounts for uncertainty in estimating model variances and
marker effects; however, MCMC on genome-based models with
many individuals or markers can be time-consuming. To this end,
various dimensionality-reduction approaches have been pro-
posed, for example, singular value decomposition (SVD) of marker
genotypes where we fit a small number of principal components
that capture a majority of variance in marker genotypes (Tusell
et al. 2013; @degard et al. 2018).

Variances from pedigree and genome-based models do not
inform about temporal and genomic trends in genetic variance
because they pertain to a specific group of individuals and
encompass the whole genome (Sorensen and Kennedy 1984;
Kennedy et al. 1988; Hayes et al. 2009). However, these models
can be used for temporal and genomic analyses of genetic
variance with some post-processing. Sorensen et al. (2001)
showed how to analyse a temporal trend in genetic variance.
They fitted a pedigree-based model and inferred genetic
variance for several time partitions by sampling realisations of
genetic values from the fitted model and calculating the variance
of the realisations partitioned in time groups. They used the
Bayesian approach and MCMC, but their concept is general and
can be used with other statistical and computational approaches.
The critical distinction here is between model fitting to estimate
statistical/model parameters and post-processing to estimate
quantitative genetics parameters. This distinction enables flex-
ibility to fit a generic model, for example, the LASSO (Tibshirani
1996), and to estimate quantitative genetics parameters by post-
processing posterior samples or internally within an analysis
programme. It also gives a potential to (partially) address issues
with the interpretation of estimated ‘genomic variance’ from
genome-based models (Gianola et al. 2009; de los Campos et al.
2015; Rawlik et al. 2020). Lehermeier et al. (2017) used the same
approach with the marker-based model and analysed the
contribution of linkage-disequilibrium to genetic variance.
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Recently, Allier et al. (2019) also used the marker-based model
on data from a maize breeding programme to infer trends in
genetic mean and genetic variance as well as the contribution of
allele diversity (genic variance) and of linkage-disequilibrium to
genetic variance (Lynch and Walsh 1998; Walsh and Lynch 2018;
Bulmer 1971).

This work aims to (i) build and validate a flexible framework
based on the work of Sorensen et al. (2001), Lehermeier et al.
(2017) and Allier et al. (2019), (i) show how to evaluate the
temporal and genomic analysis of additive genetic variance in
different stages of a breeding programme, and (iii) indicate
population processes that change genome. We also show how
different statistical approaches affect the results. To this end, we
have validated our work with a simulated breeding programme,
used a marker-based model to estimate marker effects and, based
on these, estimated temporal and genomic trends in additive
genetic variance. The results show that the framework works well
and gives valuable insights, provided that the fitted model
captures the trait's genetic complexity.

MATERIALS AND METHODS

In this section, we present study material and methods in seven parts: (1)
simulation of a breeding programme where we generate true genetic
values and corresponding variances, and simulated phenotype and
marker genotype data, (2) theory for the temporal and genomic analysis
of genetic variance assuming we know QTL genotypes and their effects,
(3) statistical analysis where we describe marker-based model fitted to
the simulated phenotype and marker genotype data, (4) statistical and
computational approaches to estimate marker effects, genetic values and
variances, (5) validation of the framework with different genetic
architectures of a simulated trait, (6) summarising the results and (7)
software implementation.

Breeding programme simulation

We simulated an entire wheat breeding programme considering additive
genetic architecture for a quantitative trait. We have performed one
simulation replicate for most analyses to focus on one dataset, but we also
evaluated the consistency of estimates for a subset of analyses on ten
simulation replicates. We followed a breeding programme described by
Gaynor et al. (2017) with 21 years of a conventional phenotypic selection
for yield (Fig. 1). We started with a coalescent simulation of whole-genome
sequences for 21 chromosome pairs and extracted random 600 biallelic
single-nucleotide polymorphisms (SNP) as markers per chromosome, and
randomly assigned 100 SNP as QTL per chromosome. We assumed that the
2100 QTL had an additive effect on yield and sampled their effects from a
normal distribution. We coded genotypes as 0 for reference (ancestral)
homozygote, 1 for heterozygote and 2 for alternative (derived) homo-
zygote. From the simulated whole-genome sequences, we created 70
inbred lines. The additive genetic variance between these inbred lines was
set to 0.1. We crossed the inbred lines to generate 100 biparental
populations. Each population had 100 F; that had their genome doubled
and planted in headrows (altogether 10,000). In the headrows, we visually
evaluated the lines (trait heritability of 0.1) and advanced the best 500 into
a preliminary yield trial. In the preliminary yield trial, we evaluated the lines
in an unreplicated trial (trait heritability of 0.2) and advanced the best 50
into an advanced yield trial. In the advanced yield trial, we evaluated the
lines in a small multi-location replicated trial (trait heritability of 0.5) and
advanced the best 10 into an elite yield trial. In the elite yield trial, we
evaluated the lines for two consecutive years in a large multi-location
replicated trial (trait heritability of 0.67) and released one variety. We used
the best lines from the advanced and elite yield trials as parents to
start a new breeding cycle. During the breeding programme simulation
process, we generated fully inbred individuals (except in the F;) and,
as a consequence, we assumed only additive genetic variation
because dominance variance is not visible in inbred individuals,
while epistasis variance is generally small (e.g, Hem et al. 2021;
Gonzalez-Dieguez et al. 2021).

We have saved phenotype and marker genotype data throughout the
simulation to generate a training population for genomic modelling. For
simplicity, we did not use the genomic data in simulation of selection but
only saved it for a retrospective statistical analysis of temporal and
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Fig. 1
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Simulated wheat breeding programme with parents, F1 progeny (F1), headrows (HDRW), preliminary yield trial (PYT), advanced

yield trial (AYT), elite yield trial (EYT) and a released variety. The shaded rectangle indicates individuals included in the training population

for statistical modelling, from year 16 to year 21.

genomic trends of genetic variance. To this end, we have constructed a
training population that spanned the last 6 years of the simulation, from
years 16 to 21. This training population covered 3070 lines with
preliminary, advanced and elite yield trial phenotypes (altogether 3420
phenotypes) and corresponding genotypes at 10,500 markers.

Temporal and genomic analysis of genetic variation

Here we describe a theoretical approach to temporal and genomic
analysis of genetic variation, assuming we know the QTL genotypes and
their effects. In the following sub-sections, we present a framework for
temporal and genomic analysis of genetic variation that closely matches
this theoretical approach; however, it uses observed phenotypes and
marker genotypes to analyse the genetic variation. The theoretical
approach consists of four steps. First, we define whole-genome genetic
values from QTL genotypes and their effects, and then, we partition
individuals and their genetic values by time to calculate genetic variances
over these time partitions for temporal analysis. Finally, we partition
whole-genome genetic values into chromosome and locus genetic values
to calculate genetic variances and covariances over these genomic
partitions for genomic analysis. This calculation involves three ‘layers’ of
variances: (a) total (whole-genome) genetic variance, (b) chromosome
variances alongside linkage-disequilibrium covariances between chromo-
somes and (c) locus genic variances alongside locus linkage-
disequilibrium covariances within chromosomes and locus linkage-
disequilibrium covariances between chromosomes. Fourth, we combine
temporal and genomic analyses.

First, let Q be n;x ny matrix of QTL genotypes for n; individuals at n,
QTL, with Q[i, /1 denoting QTL genotype of individual i at locus /. Also, let
a be ng x 1 vector of QTL additive effects, with a[/] denoting QTL additive
effect at locus I. Whole-genome genetic values of n; individuals are a
linear combination of QTL genotypes and their effects, a = Qa, with a[i]
denoting genetic value of individual i and ali:j] denoting genetic values
of a set of individuals spanning from the jth individual to the jth
individual, inclusive, in the a. Variance of these genetic values is genetic
variance, Var(a) =1/n>"7, (a;—1/n> 7, a,~)2. Note that this variance
pertains to all n; individuals and might not be an informative measure if
these individuals span multiple stages and years of a breeding
programme. In fact, directional selection or population structure will
likely inflate this variance measure and mislead breeders in over-
estimating the amount of genetic variance. This is why we need temporal
analysis of genetic variance.

Second, for the temporal analysis of genetic variance we partition the
vector of genetic values by time and calculate variance for each time
partition (Sorensen et al. 2001). For example, assume that individuals and
their genetic values are ordered by time and that we partition them
into time groups as {a[1:k], al(k+1):/, al(/+ 1):m], ... }. Then the
temporal analysis of genetic variance is obtained by calculating variance
for each time partition: o2 = Var(a[l:k]), o2 =Var(al(k+1):1)),
o2 = Var(al(l+1) : m]), ....

Third, for genomic analysis of genetic variance we initially partition
whole-genome genetic values a into an n; x n. matrix of n. chromosome
genetic values A, such that the sum over chromosome genetic values
gives whole-genome genetic values a =3 7, Ac[:,c]. We obtain these

Heredity (2022) 128:21-32

Chr 2
eeee. .0 -

° (XX X BN )
(] ]
i
. e
ce
Qs
L)
[Jwhole-genome genetic variance
: Chromosome genetic variance
t (] [JChromosome genic variance
510 [ Within-chromosome LD
° [ Between-chromosome LD
[ J
O
e
=
ce
(G
°

Fig. 2 Genomic variance partitioning. lllustrative scheme of
genomic partitioning of whole-genome genetic variance by
chromosomes and loci into genic, and within- and between-
chromosome linkage-disequilibrium (LD) components.

chromosome genetic values by summing locus genetic values A, on each
chromosome, A, c]=%Qli Nall] for | running over n, QTL on a
chromosome c. Note that a = ZZ; Agl:.q) = >0 S AqL:, 1] for | running
over n;, QTL on a chromosome c. To calculate genetic variances over these
genomic partitions we will use the variance sum rule Var(x + y) = Var(x) +
Var(y) + 2Cov(x,y) and the variance product rule Var(xa) = Var(x)a>.
Partitioning of the genetic variance o2 by chromosomes gives the sum
of n. chromosome variances (ogvc) and n¢x (nc — 1) covariances between
chromosomes (0(q.c)(ac)):

Nc
Var(a) = 02 = Var (EAC[:, c]> =02, +0+ - +02, +
C
2(0(@)@n) +* + Oani@n—1));

with covariances between chromosomes being between-chromosome
linkage-disequilibrium covariances (Fig. 2). Partitioning of a chromosome

- - 2 . - 2
genetic variance o; . by loci gives the sum of nj_ locus variances (o; ;) and

nyx (ny — 1) covariances between loci (0(ac)ac):

Ug.c = ai,cj + Uz,c‘z +o+ Uﬁ.cn,( + Z(U(a,c.z)(a,c.w toet ‘7(a.c,n/‘)(a.amﬁ1))v

with locus variances being genic variances and covariances between loci
being within-chromosome linkage-disequilibrium covariances (Fig. 2)
(Lynch and Walsh 1998; Walsh and Lynch 2018; Bulmer 1971). Locus
genic variance is a function of variance in locus genotypes and their allele
substitution effects (Falconer and Mackay 1996; Gianola et al. 2009) (using
variance product rule):

oﬁ‘q, = Var(Aq[:,1]) = Var(Q[:, l|a[l]) = afl)"var(Q[:, ))a[l],
where we emphasise that we do not use the common Hardy-Weinberg

assumption of Var(Q[:,/]) = 2p,(1 — p;) with p, being allele frequency.
Instead, we advocate to calculate empirical variance in observed locus
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genotypes, Var(Q|:,/]). We will return to this point in the discussion. Note
that genetic variance at a single-locus is the same as the genic variance.
Locus linkage-disequilibrium covariance (=linkage-disequilibrium between
locus genetic values) is a function of covariance between genotypes at two
loci (=linkage-disequilibrium between locus genotypes) and their allele
substitution effects:

Otaciacy = alll Cov(Q[:, I, Q[ )alll.

We can now partition the whole-genome genetic variance over
chromosomes and loci as a sum of locus genic variances, within-

chromosome linkage-disequilibrium  covariances and  between-
chromosome linkage-disequilibrium covariances (Fig. 2):
ne N
o2=3>0 + (= genic variance )
c=1/=1
ne me—=1 ng
23 Y Y Oack)ach + (= within-chromosome linkage-disequilibrium ) (W]
=1 I=1 I'=I4+1
ne—1 ne e ny
23 3 30 0@cr)ach (= between-chromosome linkage-disequilibrium )
=1 d=c+1I=11=l

With n;=2100 QTL spread evenly over n.=21 chromosomes, the total
number of locus combinations is n;x n;= 4,410,000 and the total number
of chromosome combinations is n.x n.=441. The theoretical approach
partitions genetic variance into n,= 2100 locus genic variances (n.= 21
chromosome genic variances), ncx nj, x (n,, — 1) = 207,900 locus within-
chromosome linkage-disequilibrium covariances (n.=21 chromosome
within-chromosome linkage-disequilibrium covariances), and n;xn; —
nex g xn. =4,197,900 locus between-chromosome linkage-disequili-
brium covariances (n. x n. — n. = 420 chromosome between-chromosome
linkage-disequilibrium covariances). In this study we work only with the
genome and chromosome level partitioning of genetic variance. For a
genome region level partitioning, see Burch et al. (2021). We emphasise
these numbers because we often hear colleagues saying that there is no or
limited between-chromosome linkage-disequilibrium (due to the lack of
physical linkage). However, selection and other population processes can
generate non-zero within- and between-chromosome linkage-disequili-
brium covariance (Lynch and Walsh 1998; Walsh and Lynch 2018; Rawlik
et al. 2020; Bulmer, 1971). Even if the between-chromosome linkage-
disequilibrium covariances are very small, there is a very large number
of them and they can collectively have a sizeable effect on genetic
variance as we show in results. It is important to emphasise the
distinction between linkage-disequilibrium between locus genotypes
(Cov(Ql:,1],Q[:,1])) and linkage-disequilibrium between locus genetic
values (a[/')" Cov(Q[;,/],Q[:,/))a[l]). When looking at a whole-genome
level, to obtain a non-zero linkage-disequilibrium covariance contribution
to genetic variance, we require a non-zero linkage-disequilibrium between
locus genotypes and a population process that couples this linkage-
disequilibrium between locus genotypes with QTL effects. Selection or
assortative mating are two such population processes because they are
driven by QTL effects, while drift is not (Lynch and Walsh 1998; Walsh and
Lynch 2018; Rawlik et al. 2019, 2020; Bulmer 1971).

Fourth, for the joint temporal and genomic analysis, we perform
genomic partitioning and variance calculations for individuals and their
genetic values partitioned by time.

Statistical analysis of observed data

In the previous sub-section, we assumed we know the QTL and their
effects. However, in reality, we observe phenotypes and marker genotypes
and make inferences based on this information. To this end, we fitted the
marker-based model (Meuwissen et al. 2001; Whittaker et al. 2000; de los
Campos et al. 2013):

y =Xb+ZWm + e,
m~ N(0,1, 02), and e ~ N(0,1,0%),

"m~m ny~e

2

where, y is an n,x 1 vector of n, phenotypic values, X is an n,xn,
incidence matrix associated with the intercept and n, — 1 year effects b, Z
is an n, X n; incidence matrix for n; lines whose marker genotype data are
in an n; x n,, matrix W for n,, marker effects m, and e is an n, x 1 vector of
n, residuals. In this study n, was 3420, n, was 6, n; was 3070 and n,, was
10,500. We assumed that marker effects are a priori uncorrelated and
normally distributed with zero mean and variance component describing
variation between marker effects 02, (Eq. (2)). We further assumed that
residuals are uncorrelated and normally distributed with zero mean and
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residual variance oﬁ (Eg. (2)). We ignored that different yield trials had
different amount of replication and therefore different error variance.

The model (Eq. (2)) has location parameters (means) b and m and
dispersion parameters (variances) o2, and oﬁ. We emphasise that o2, is
variance between marker effects and note that the commonly used
approximation for ‘genomic variance’ 02, x 2 7" p.(1 — p,,) (VanRaden
2008; Hayes et al. 2009) is scaled variance between marker effects and not
genetic variance (Gianola et al. 2009; de los Campos et al. 2015; Rawlik
et al. 2020). The scaling factor is the sum of expected variances for marker
genotypes assuming Hardy-Weinberg equilibrium. Comparison of this
approximation with Eq. (1) shows that the approximation ignores linkage-
disequilibrium and non-Hardy-Weinberg components of genetic variance
as well as uses variance between marker effects instead of QTL effects.
However, linkage-disequilibrium affects the estimate of variance between
marker effects. At any rate, this estimate of genetic variance is not
amenable for our aim of doing temporal or genomic analyses. We view
variance between marker effects simply as a statistical/model parameter
that facilitates model fitting to observed data. We describe the model
fitting and estimation of variances in the next sub-section.

Statistical and computational approaches

We used the empirical and full Bayesian approach to estimate the model's

parameters (Eq. (2)) with marker genotypes or their leading principal

components. Given the variances oﬁ, and og, we can estimate fixed

effects b and marker effects m by solving Henderson’s mixed model

equations:

XX X'zw b Xy

Z’'wTy

= . 3)
W'Z'X ZTW'WZ +1020,2 | | m

_Specifically, the solution of Eq. (3) is the conditional expectation
(b,m) = E(b,mly, 02, 02). With these estimates we can obtain estimates
of genetic values as @ = Wm. These estimates have some error and
ignoring it in the framework will underestimate genetic variance. To see
this, imagine we have very little phenotypic information such that marker
estimates will effectively follow the prior Eq. (2). In that case, marker
estimates will effectively all equal zero and any variance calculation will
return a zero. As shown by Sorensen et al. (2001) and Lehermeier et al.
(2017), we can account for this uncertainty by estimating genetic variances
from posterior samples of genetic values or marker effects. For the model
(Eg. (2) and (3)), we can obtain posterior samples from the multivariate
normal distribution:

N (E(b,mly,c?.02),Var(b,mly, 0}, 02)), 4

m> e

where conditional variance Var(b, mly, o2,, 02) can be obtained by solving
the left-hand-side of the system of equations (Eq. (3)) (Sorensen and
Gianola 2007).

Once we obtained samples of marker effects from Eq. (4), we have
treated marker genotypes and marker effects respectively as if they were
QTL genotypes and QTL effects and analysed temporal and genomic
trends in genetic variance as described in the theoretical sub-section.
Specifically, for each sample of marker effects, we have estimated genetic
values and their variance for each group of individuals in the breeding
programme (parents, F; progeny, headrows, etc.) for each year for the
temporal analysis and further partitioned along the genome for the
genomic analysis. This procedure gave us posterior distribution for the
genetic variance of each group, time and genome partition.

When variances are unknown, we can use the empirical Bayesian
approach (Sorensen and Gianola 2007; Efron 1996) and estimate most
likely variances given the data and use them to calculate conditional
expectation and variance as well as draw samples from Eq. (4).
Alternatively, we can use the full Bayesian approach by specifying prior
distribution for all model parameters and obtain posterior distribution
p(b.m, a2, 02ly) o plylb,m. o2)p(b|o})p(m|o2,)p(c3 )p(03 )p(02) ~(Soren-
sen and Gianola 2007).

We fitted the model (Eq. (2)) both with the full and the empirical
Bayesian approach. We first used MCMC for the full Bayesian approach and
used one chain with 100,000 samples, 10,000 burn-in and saved every
100th sample to obtain 900 samples of all model parameters. For the
empirical Bayesian approach, we also obtained 900 samples but used
posterior mean for the marker effect and residual variances estimated from
the full Bayesian approach when sampling from Eq. (4).

Since genomic analyses can be time-consuming, we have also
investigated the use of approximation for marker genotypes with their
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leading principal components. We changed the model (Eq. (2)) into:
y=Xb+2ZTs +e,

s~ N(0,1,,0%), and e~ N(0, 1, 02), )
where T is an n;xn, score matrix obtained from a truncated SVD of
genotypes with the n, leading principal components such that
T(”rx”p) = U("rx”p)s(”px”!é) = U("rx”p)s(”px”p)v(Tnmxnp)v(”mx”p) = W("rxnm)v(”mx”p)'
s is an n, x 1 vector of n, principal component effects and o2 is variance
between principal component effects (Tusell et al. 2013; @degard et al.
2018; Hastie and Tibshirani 2004). The S matrix is a diagonal matrix with n,
singular values (square root of non-zero eigenvalues of W'W and ww'"),
the columns of U are left singular vectors, and the columns of V are right
singular values. This model is structurally the same as the model (Eq. (2))
and we fitted it in the same way. We approximated marker effect samples
by m'=Vs', where s' is the ith sample of principal component effects.
Once we approximated marker effect samples we used the same approach
as described above. We investigated different number of principal
components (10, 50, 100, 500, 1000, 2000 and 3420). In our simulation
these numbers of principal components respectively explained 14%, 38%,
52%, 84%, 94%, 99% and 100% of marker genotype variation in the first
replicate.

Sensitivity to genetic architecture

To test our framework's sensitivity to different genetic architectures, we
have done additional simulations by varying the number of QTL and by
adding genotype-by-environment interactions. Namely, the framework will
depend on the ability of the fitted statistical model to capture the genetic
complexity of the analysed trait. We have simulated an additive trait with
either 10, 100 or 1000 QTL per chromosome, respectively with 210, 2100 or
21000 QTL per genome. In addition, we have added variation in QTL
effects across years for genotype-by-environment interactions across years,
assuming that years represent different environments. The amount of this
additional phenotype variance due to genotype-by-year interactions was
set to 0.2. In total, this gave us six scenarios (three for the number of QTL
and two for absence/presence of genotype-by-year interactions). In each of
the scenarios, we used the standard model (Eq. (2)) that is ignorant about
the number of QTL or the presence of genotype-by-year interactions.

Summarising the results

We compared how obtained posterior distributions for genetic variances
and their components match the true values from simulation. We also
calculated the continuous ranked probability score (CRPS) (Gneiting and
Raftery 2007) to compare whole posterior distributions to true values to
assess both accuracy and precision and with this account for the
uncertainty of estimation. For an intuitive description of CRPS, see Selle
et al. (2019). Finally, we also calculated the concordance correlation
coefficient (CCC) (Lin 1989) to additionally assess agreement between the
true and estimated values of genetic and genic variance in some analyses.
We used CCC because it has two clear components—the Pearson
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correlation coefficient indicating precision (closeness to the best-fit line
between the true and estimated values) and the bias correction factor
indicating accuracy (closeness to the equality line between the true and
estimated values).

Software implementation

We have simulated the wheat breeding programme using the R package
AlphaSimR (Gaynor et al. 2021). We have fitted the model with the
AlphaBayes software (source code at https://github.com/AlphaGenes/
alphabayes) (Gorjanc and Hickey 2019). We used R (R Core Team 2019) for
post-processing the AlphaBayes marker effect samples and further
analyses. To calculate the CRPS (Jordan et al. 2019), we used the
scoringRules R package. To calculate the CCC (Lin 1989), we used the
DescTools R package (Signorell et al. 2021).

RESULTS

Overall, the results show that estimates from the data following
the framework were in concordance with the true values for
temporal and genomic analysis, provided that the fitted model is
capturing the genetic complexity of a trait. We separate the result
section into four areas to facilitate presentation: (1) temporal
analysis, (2) genomic analysis, (3) computational analysis and (4)
sensitivity to genetic architecture.

Temporal analysis
The genetic and genic variance changed through the breeding
cycle. We show this in Fig. 3 with the true and estimated genetic
and genic variances for different stages of one breeding cycle (see
breeding scheme on the left in Fig. 1). As expected, genetic
variation in F; progeny across multiple crosses was lower than in
the parents as this variance indicates variance in parent averages
between crosses. When we generated doubled haploids for these
full-sib families (HDRW stage), genetic variation was regenerated
to the level in parents due to recombination and complete
inbreeding. Genetic variation gradually reduced through the
breeding cycle due to the repeated selection from headrows to
elite yield trial. This change was particularly evident for genetic
variance but less for genic variance. Also, the genetic variance was
consistently smaller than the genic variance. The estimated
genetic and genic variance matched the true values well across
all breeding stages. There was more uncertainty in the estimates
of genetic variance in the elite yield trial than in other stages.
Genetic variation decreased over the years and genetic variance
was consistently smaller and more variable than genic variance
across years. We show this in Fig. 4 with the true and estimated
temporal trends of genetic and genic variances for different
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Fig. 3 Breeding analysis. Genetic (A) and genic (B) variance estimated with the full Bayesian approach for parents in year 16, F; progeny (F1)
in year 17, headrows (HDRW) in year 18, preliminary yield trial (PYT) in year 19, advanced yield trial (AYT) in year 20 and elite yield trial (EYT) in
year 21; black lines denote the true values and densities depict posterior distributions.
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Fig. 4 Temporal analysis. Temporal trends in genetic (A) and genic (B) variance estimated with the full Bayesian approach for parents,
F, progeny (F1), headrows (HDRW), preliminary yield trial (PYT), advanced yield trial (AYT) and elite yield trial (EYT); solid lines denote the true
value, dashed lines denote posterior means and polygons depict 95% posterior quantiles.
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Fig. 5 Genomic analysis. Whole-genome genetic and genic
variances, and within- and between-chromosome linkage-disequili-
brium (LD) covariances with the full Bayesian approach for headrows
(HDRW, year 18) and elite yield trial (EYT, year 21); genetic variance is
the sum of genic variance, within- and between-chromosome LD
(see Fig. 2); black lines denote true values and violins depict
posterior distributions.

breeding stages (see temporal scheme on the right in Fig. 1).
Variances between the breeding stages differed as mentioned
before, but in Fig. 4 we also see a consistent decrease over the
years, which was variable for genetic variance but not for genic
variance. Furthermore, this variability increased from early to late
breeding stages as fewer and fewer individuals were in a stage.
Thus, the genetic and genic variance estimates have matched the
true values very well across all breeding stages and years.

Genomic analysis

The genomic analysis enabled accurate partitioning of whole-
genome genetic variance into whole-genome genic variance and
whole-genome linkage-disequilibrium covariances. We show this
in Fig. 5 with true and estimated variances and covariances for
headrows and elite yield trial from one breeding cycle. Figure 5
shows, as previously described, differences in genetic and genic
variances as well as a substantial change in the between-
chromosome linkage-disequilibrium covariance, which was the
main driver of change in genetic variance between headrows and
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the elite yield trial. Specifically, genetic variance decreased from
0.0754 in headrows in year 18 to 0.0307 in the elite yield trial in
year 21, with a change of 0.0447 (59% reduction). This overall
change was due to 0.01 change in genic variance (22% of the
initial genetic variance), 0.0036 change in within-chromosome
linkage-disequilibrium covariance (8% of the initial genetic
variance) and 0.0311 change in between-chromosome linkage-
disequilibrium covariance (70% of the initial genetic variance). The
estimates matched the true values well. Supplementary Fig. S1
shows temporal trends for within-chromosome and between-
chromosome linkage-disequilibrium. Between-chromosome link-
age-disequilibrium varied more and decreased over time.

The genomic analysis also enabled accurate partitioning of
whole-genome genetic variance by chromosomes. We show this
in the Supplementary material with a series of Supplementary
Tables S1-S4 and Supplementary Fig. S2. These supplements
show genetic variance and its components (genic variance, within-
chromosome linkage-disequilibrium covariance and between-
chromosome linkage-disequilibrium covariance) by 21 chromo-
somes and how these values add up to the whole-genome
variance. Specifically, the genetic variance of a quantitative trait is
composed of (i) variation at the QTL genotypes (Supplementary
Table S1) and (ii) variation of QTL effects, which combined with
variation at the QTL genotypes gives the genetic variance of a
quantitative trait (Supplementary Table S2). However, in reality we
do not know QTL, we only know SNP markers, so we can only
calculate (jii) variation at the genotypes of SNP markers
(Supplementary Table S3) and (iv) estimate SNP marker effects,
which combined with variation at the SNP marker genotypes gives
an estimate of the genetic variance of a quantitative trait
(Supplementary Table S4). Therefore, we are showing partitioning
of genetic variance for QTL genotypes (Supplementary Table S1),
marker genotypes (Supplementary Table S3), true genetic values
(Supplementary Table S2) and estimated genetic values (Supple-
mentary Table S4). The variance at QTL genotypes (Supplementary
Table S1) and SNP marker genotypes (Supplementary Table S3)
will likely differ because they are respectively a function of the
number of QTL and SNP markers and their respective variation.
Supplementary Table S1 reports genetic variance of QTL
genotypes across all chromosomes of 1213.1 (this is based on
2100 QTL), while Supplementary Table S3 reports genetic variance
of SNP marker genotypes across all chromosomes of 6452.6 (this is
based on 10,500 SNP markers). Our aim is that the true genetic
variance for the quantitative trait (Supplementary Table S2) and its
estimate from SNP markers (Supplementary Table S4) will be
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Fig. 6 Statistical analysis. The empirical Bayesian approach versus the full Bayesian approach for posterior mean of genetic variance (A),
posterior mean of genic variance (B), posterior standard deviation of genetic variance (C) and posterior standard deviation of genic variance

(D); equal value is represented by the dashed red line.

similar. Supplementary Table S2 reports genetic variance for the
quantitative trait of 0.082 (the true value), while Supplementary
Table S4 reports estimated genetic variance from our framework
of 0.079. The true and estimated values match well and the same
holds for individual chromosomes, but there is larger variation,
which is expected because there is less information per
chromosome.

Supplementary Fig. S2 compares the true and estimated genetic
variances directly. The Supplementary material, along with Supple-
mentary Tables S1-S4, aims to demonstrate how we estimate
variation in true genetic values, which is driven by unknown QTL and
unknown QTL effects, by using marker genotypes and estimated
marker effects. We make five observations. First, the analysis of QTL
genotypes showed that whole-genome and chromosome genetic
variance in unselected headrows is largely driven by genic variance,
but there are some chromosomes with a substantial within-
chromosome or between-chromosome linkage-disequilibrium covar-
iance (Supplementary Table S1). Second, the magnitude of linkage-
disequilibrium covariances increased in the elite yield trial, which
reduced the whole-genome genetic variance; however, between-
chromosome linkage-disequilibrium was larger than within-
chromosome linkage-disequilibrium (Supplementary Table S1). Third,
the analysis of marker genotypes followed the same trends, but the
values were sustainability larger due to the larger number of markers
than QTL (Supplementary Table S3). Fourth, the analysis of true
genetic values resulted in much smaller values for variances than the
analysis of QTL genotypes because most QTL have small effects, but
the relative magnitude of variation and their partitioning were similar
(Supplementary Table S2). Fifth, the analysis of variance of estimated
genetic values followed the analysis of variance of true genetic values
closely—most deviations were observed for the elite yield trial, but
all posterior distributions encompassed the true value (Supplemen-
tary Table S4). This analysis pertains to one single dataset to show
that estimates are reasonable for a specific dataset.

Computational analysis

Full and empirical Bayesian approaches had similar posterior
mean estimates of variances, but the empirical Bayesian approach
had smaller posterior standard deviation. We show this in Fig. 6
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Table 1. Continuous ranked probability score (CRPS x 1000 - lower is
better: mean * standard deviation over 6 years and ten replicates) for
genetic and genic variance estimated by the full Bayesian and the
empirical Bayesian for parents, F; progeny, headrows (HDRW),
preliminary yield trial (PYT), advanced yield trial (AYT) and elite yield
trial (EYT).

Genetic Genic

Stage Full Empirical Full Empirical
Parents 59+40 60+ 41 300+93 351+97
Fq 42 +39 42 +40 40+ 44 48 £52
HDRW 45+ 32 46 + 37 297 £ 94 348 £ 99
PYT 6357 64 + 64 296 +£ 94 348 £ 98
AYT 66 + 63 66 + 64 294+ 92 344 £ 97
EYT 79+45 80+ 46 70+ 75 84+90

with a comparison of posterior means and posterior standard
deviations for genetic and genic variance between the two
approaches. The posterior means matched well for both types of
variances. However, the posterior standard deviation was smaller
with the empirical Bayesian approach, particularly for the genic
variance. Comparison with the true values, however, showed good
concordance with the empirical Bayesian posterior means
(Supplementary Figs. S3 and S4).

Additional evaluation with multiple replicates showed that the
full and empirical Bayesian results were consistently estimated for
genetic and genic variance. We show this in Table 1 with CRPS of
genetic and genic variances for full and empirical Bayesian
approaches by breeding stage. Note that CRPS is negatively
oriented—Ilower values indicate better estimates compared to the
true value in terms of accuracy and precision. CRPS for genetic
variance matched closely between the full and empirical Bayesian
approaches. On the other hand, they differ more for genic
variance, with better (lower) values for the full Bayesian approach,
albeit there was considerable variability across years and
replicates. Moreover, CRPS was larger (worse) for genic variance
than for genetic variance.
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Fig. 7 Approximation error with dimension reduction. Estimation error in genetic and genic variances as a function of the number of
principal components in parents in year 16, F; progeny (F1) in year 17, headrows (HDRW) in year 18, preliminary yield trial (PYT) in year 19,
advanced yield trial (AYT) in year 20 and elite yield trial (EYT) in year 21; horizontal dashed line represents no estimation error.

When we used a sufficient number of principal components,
approximation with leading principal components accurately
estimated genetic variance, but this was never the case for genic
variance. We show this in Fig. 7 with estimation error, defined as
the difference between the true and estimated value, for genetic
and genic variance as a function of the number of leading
principal components. The estimation error decreased as we
increased the number of leading principal components. It
decreased quickly for the genetic variance—there was no error
once we captured about 80% of the variation in marker
genotypes. In our simulated dataset from the first replicate, we
achieved this with 500 leading principal components. On the
other hand, the estimation error decreased slowly for the genic
variance, and we never recovered the true estimate, even if we
used all the principal components. The estimation error was
smallest in the F; progeny, followed by the elite yield trial, while
the largest estimation error was in the parents.

Sensitivity to genetic architecture

Our framework relies on a statistical model that can capture the
genetic complexity of an analysed trait. We have tested the effect
of using a sub-optimal statistical model by varying the number of
QTL and by adding genotype-by-year interaction in our simula-
tion, without accounting for these complexities in the statistical
model. Results in Supplementary Figs. S5 and S6 and Supplemen-
tary Table S5 show that variance estimates are very sensitive to
genotype-by-year interaction and less to the number of QTL.

For scenarios without genotype-by-year interaction, the esti-
mates of genetic and genic variance were very much in line with
the true values and largely insensitive to the number of QTL
(Supplementary Figs. S5 and S6 and Supplementary Table S5).
Furthermore, concordance correlation and its two components
(Pearson correlation and bias correction factor—Supplementary
Table S5) showed good agreement between the true and
estimated values for genetic and genic variances, with high
precision and low bias.

For scenarios with genotype-by-year interaction, we can see
substantial overestimation of genetic and genic variances
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(Supplementary Figs. S5 and S6). This overestimation decreased
as the number of QTL increased, but even with 21,000 QTL, we still
overestimated the variances by as much as 200%. Estimates of
genic variance showed systematically consistent overestimation,
while estimates of genetic variance were more variable. Con-
cordance correlation and its two components (Pearson correlation
and bias correction factor—Supplementary Table S5) showed low
to moderate agreement between true and estimated values for
genetic and genic variances. The Pearson correlation for genic
variance was high, which indicates precise estimation. Although
the true and estimated genic variances had a high linear
relationship (high Pearson correlation), their estimates were
biased (low bias correction factor) (Supplementary Table S5). For
genetic estimates, we can see a moderate Pearson correlation and
a moderate bias correction factor. Therefore, the addition of
genotype-by-year interaction biased the genetic and genic
variances estimates but decreased the precision for only genetic
variances.

DISCUSSION

The results show that the framework for temporal and genomic
analysis of genetic variation is flexible, accurate and enables
assessing the sustainability of a breeding programme as well as
population processes that change genetic variance. These results
highlight four topics for discussion in line with the structure of
results: (1) temporal analysis of genetic variance, (2) genomic
analysis of genetic variance, (3) computational aspects and (4)
assumptions of this study.

Temporal analysis

This study will help breeders assess the amount of genetic
variance in their programmes and better manage its utilisation for
future genetic gains. Genetic variance (specifically its square root)
is a key component of the breeder's equation for predicting
response to selection (Lush 1937; Falconer and Mackay 1996).
While breeding programmes routinely estimate genetic variance
for traits under selection, most estimates pertain to a group of
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individuals that is arguably not the most relevant for routine
breeding (Piepho et al. 2008). Specifically, with the pedigree-based
model, the estimate of genetic variance pertains to pedigree
founders, which can be several generations removed from
currently interesting individuals. Furthermore, pedigree founders
often span multiple generations due to incomplete pedigrees and,
as such, the corresponding estimate of genetic variance does not
have a clearly defined time point. Estimates of genetic variance
from genome-based models pertain to the group of individuals for
which the allele frequencies were computed—usually for the
genotyped individuals or base population, both of which again do
not have a clearly defined time point. In addition, the ‘genomic
variance’ is estimating genetic variance only under some
conditions (Gianola et al. 2009; de los Campos et al. 2015; Rawlik
et al. 2020; Schreck et al. 2019). Therefore, we propose an
alternative framework for temporal and genomic analyses of
genetic variation.

The framework builds on Sorensen et al. (2001), Lehermeier
et al. (2017) and Allier et al. (2019) to enable a straightforward
temporal analysis of a breeding programme. The framework uses
all the available data spanning multiple years (generations) to
estimate model parameters, which are used to infer genetic values
and their variances. Such flexibility of using all data but producing
estimates for any group of individuals is crucial to inform breeders
how much genetic variance they have at hand and to react
accordingly. Possible reactions to a temporal analysis by a breeder
could be (i) keeping the current breeding programme as it is, (ii)
implementing active management of genetic variance using
techniques such as optimal contribution selection (e.g., Woolliams
et al. 2015; Akdemir and Sanchez 2016; Gorjanc et al. 2018;
Akdemir et al. 2019), (iii) germplasm exchange with other
programmes or, in the extreme, (iv) introgressing landrace
germplasm (e.g., Gorjanc et al. 2016). For example, temporal
trends in genetic and genic variance enable straightforward trait-
specific estimation of effective population size (Gorjanc et al.
2018). Using this approach in this study, we estimate the effective
population size for the parents at 111. This estimate suggests that
the simulated breeding programme is sustainable (Falconer and
Mackay 1996; Lynch and Walsh 1998; Walsh and Lynch 2018; Hill
2016) as corroborated by small changes in genetic variance
between years.

There are also other approaches to the temporal analysis of
genetic variance. Tsuruta et al. (2004) used the random regression
to model genetic values and their variance over the years, and
Hidalgo et al. (2020) used sliding time intervals in the same
fashion. Both methods have some drawbacks—random regression
can be computationally demanding, while time intervals must be
sufficiently large to obtain accurate estimates. These two
approaches respectively enrich the model or slice the data to
estimate genetic variances over time as model parameters, while
our framework treats model variance parameters and genetic
variances over time separately. We will return to these differences
at the end of the discussion. Hidalgo et al. (2020) used sliding time
intervals to investigate changes in genetic (co)variances for a
breeding programme that recently implemented genomic selec-
tion. They observed rapid changes in genetic (co)variances with
the implementation of genomic selection. Their results highlight a
need for breeder’s reaction and further analysis. One such analysis
should be related to which components of genetic variance
changed due to genomic selection.

Genomic analysis

The proposed framework can estimate the size and trends for
genomic components of genetic variance. We have followed a
standard quantitative genetics decomposition of genetic variance
(Lynch and Walsh 1998; Walsh and Lynch 2018; Gianola et al. 2009;
Bulmer 1971). This decomposition involves variance of genotypes
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and their allele substitution effects at every locus (genic variance)
and covariance between genotypes and their allele substitution
effects between pairs of loci. The covariance can be further
partitioned into covariance between loci on one chromosome
(within-chromosome linkage-disequilibrium covariance) and cov-
ariance between loci on different chromosomes (between-
chromosome linkage-disequilibrium covariance). We showed this
decomposition for the variance of QTL genotypes (Supplementary
Table S1), marker genotypes (Supplementary Table S3), true
genetic values (Supplementary Table S2) and estimated values
(Supplementary Table S4), all at the whole-genome and chromo-
some level. These results confirmed the prediction of Bulmer
(1971) that directional selection on total genetic values or
downstream phenotypes induces negative linkage-disequilibrium
between QTL and other loci around them and that this
component can cause rapid and major changes in genetic
variance (Lynch and Walsh 1998; Walsh and Lynch 2018). We
note that this negative linkage-disequilibrium is a function of
genotype combinations between loci as well as their allele
substitution effects. Therefore, we have to distinguish two types
of linkage-disequilibrium: (i) linkage-disequilibrium between locus
genotypes (Cov(Q[:,/],Q[:,/])), which is a function of allele
frequencies at loci and correlation between loci (this linkage-
disequilibrium is trait agnostic); and (i) linkage-disequilibrium

between locus genetic values (a[l’]TCov(Q[:,l’],Q[:,l])a[l’]),

which is a function of allele frequencies at loci, correlation
between loci and allele substitution effects of the loci. Only
linkage-disequilibrium between locus genetic values contributes
to the genetic variance of a trait. As mentioned in methods,
linkage-disequilibrium between locus genetic values is induced by
population processes that are driven by QTL effects. For example,
selection on a trait will induce linkage-disequilibrium between
locus genetic values because the trait is influenced by QTL effects.
On the other hand, drift will induce linkage-disequilibrium
between locus genotypes, but not linkage-disequilibrium between
locus genetic values because drift is not driven by QTL effects.
While drift can generate sporadic linkage-disequilibrium between
locus genetic values, the sum of such terms will tend to
zero for traits with a large number of QTL. To see this behaviour,
consider linkage-disequilibrium between locus genetic values

(a[l’]TCov(Q[:.,/’],Q[:,l})a[/]) and summing such terms over all

pairs of loci. Even if there is non-zero linkage-disequilibrium
between locus genotypes, the multiplication with seemingly
randomly allocated QTL effects (since linkage-disequilibrium
between genotypes is not driven by QTL effects) will drive the
sum to zero. This ‘cancelling out’ will diminish when we analyse
smaller genome regions or traits with a smaller number of QTL.
The importance of linkage-disequilibrium in estimating genetic
variance with genomic data is growing (de los Campos et al. 2015;
Lehermeier et al. 2017; Allier et al. 2019). Our study added to this
literature with simulation and demonstrating temporal changes in
linkage-disequilibrium under selection both within one breeding
cycle (headrows to elite yield trial) (Fig. 3) and between breeding
cycles over the years (Fig. 4). We observed more considerable
changes within breeding cycles than between, which can be
explained by strong repeated selection within cycles and
recombination among parent genomes between cycles. Interest-
ingly, we observed large between-chromosome linkage-disequili-
brium covariance in comparison to within-chromosome (Fig. 5).
This observation is at odds with physical linkage between loci
within a chromosome and no physical linkage between loci on
separate chromosomes. Our explanation is that there are more
combinations between loci on separate chromosomes than within
chromosomes. Furthermore, limited recombination constrains
selection to induce large changes in linkage-disequilibrium within
chromosomes compared to between chromosomes. To put this
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into perspective, in the analysed example, we observed a 59%
change in genetic variance within a breeding cycle (headrows to
elite yield trial). Of this change, 13% (22% relative) was due to the
change in genic variance, 5% (8% relative) was due to the change
in within-chromosome linkage-disequilibrium covariance and
41% (70% relative) was due to the change in between-
chromosome linkage-disequilibrium covariance (Fig. 5). Even
though we randomly placed QTL and randomly allocated QTL
effects from one distribution (in the founding population before
selection), the components of genetic variance varied consider-
ably between chromosomes. These assumptions are likely too
simple. Indeed, Allier et al. (2019) observed substantial variation
between chromosomes in maize. These results indicate that
linkage-disequilibrium is an important component of the genetic
variance in line with the theoretical work of Bulmer (1971) and
Mather and Jinks (2013).

We expected underestimation of genic variance in this breeding
study but have not observed this. We have simulated a breeding
programme with directional selection, which induces negative
linkage-disequilibrium (Bulmer 1971) due to repulsion linkage of
QTL (Mather and Jinks 2013). We expected that repulsion linkage
would ‘hide’ variation in some genome regions (due to a lack of
variation in haplotypes) and, therefore, underestimate genic
variance. We likely did not observe underestimation because the
effective population was reasonably large (111), the selection was
not too strong or there was a sufficient number of markers.
However, across multiple replicates, the CRPS was worse for genic
than genetic variance, which indicates that estimating genic
variance is more challenging than for genetic variance.

The proposed framework for genomic analysis of genetic
variance will pave the way for analysing population processes
that change the variance. While selection induces linkage-
disequilibrium between loci, it also changes allele frequencies
(Lynch and Walsh 1998; Walsh and Lynch 2018; Bulmer 1971;
Gorjanc et al. 2015). Interestingly, we have not observed major
changes in genic variance, suggesting that allele frequencies have
not changed much. However, we must emphasise that we have
reported genic variance for all loci, i.e., the sum of all locus-specific
genic variances. This total genic variance is likely to change far less
than genic variance at individual loci because at some loci allele
frequency might change away from 0.5 (genic variance at these
loci will decrease), but at other loci, allele frequency might change
towards 0.5 (genic variance at these loci will increase) (Crow 2010).
Therefore, when we sum locus-specific genic variances, the total
genic variance will not change much. More research is needed to
study trends in allele frequencies for old and recent mutations,
their locus-specific genic variances, and total genic variance.

Another important population process is drift, which is always
present in breeding programmes due to small effective popula-
tion sizes. However, distinguishing between selection and drift in
such populations is difficult (Lynch and Walsh 1998; Walsh and
Lynch 2018; Gorjanc et al. 2015) and drift does not induce
significant linkage-disequilibrium covariance at the whole-
genome level. Assortative mating is yet another process, which
can induce significant linkage-disequilibrium covariance as the
whole-genome level (e.g., Lynch and Walsh 1998; Walsh and
Lynch 2018; Rawlik et al. 2020, 2019).

Similarly, population structure and admixture between popula-
tions can influence genetic variance and should be addressed in
the future. One way to treat population structure would be to
partition individuals by sub-population and calculate separate
genetic variances and covariances between sub-populations.
However, this approach breaks down with admixture. Admixture
could be approached by using whole population genome trees
with recombination (Kelleher et al. 2019) and labelling individuals
and genome segments with originating sub-populations, and
expanding the framework into a population analysis of genetic
variance. Finally, there is also the classic partitioning of genetic
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variance between and within families. An interesting line of future
research is how different types of directional selection (between
or within family and their combination) changes genic and
linkage-disequilibrium components of genetic variance.

A final note on genomic analysis is that the proposed
framework does not depend on the assumption of
Hardy-Weinberg and linkage equilibrium. It is common to see
expressions for genetic variance at a locus of the form 2p(1 — p)a?,
which assumes independent binomial sampling of alleles with
probability p (Hardy-Weinberg equilibrium). There is an excess of
homozygotes over heterozygotes in some breeding programmes,
particularly in plant breeding programmes that use inbreeding. In
this case, we have a clear deviation from the Hardy-Weinberg
equilibrium, and the expression 2p(1 — p)a* will underestimate
genetic variance at a locus. To see this considerp=0.5and a=1,
which gives 2p(1 — p)a* = 0.5, but if we only have reference and
alternative homozygotes (50% each) the actual variance is
doubled due to complete inbreeding (Wright 1931). While there
are expressions that involve inbreeding 2p(1 — p)(1 + F)a?, where
2p(1 — p)(1 + F) is the variance of genotypes under non-random
mating, we suggest a simpler straightforward calculation of the
variance of genotypes at a locus and multiplying that variance
with a®. Bulmer (1976) was aware of these differences and
partitioned genic variance into the value expected under
Hardy-Weinberg equilibrium (binomial sampling of alleles) 2p
(1 — p)a® and a deviation due to non-random mating 2p(1 — p)Fa’.

Computational aspects

The framework is based on Sorensen et al. (2001), Lehermeier et al.
(2017) and Allier et al. (2019) that used the full Bayesian approach
and MCMC sampling. We performed our analyses with the full and
empirical Bayesian approach and found a good concordance
between the two approaches and true values. However, there was
a tendency of the empirical Bayesian approach to underestimate
uncertainty of inferred genetic variances due to ignoring
uncertainty in estimating model variance parameters (Fig. 6). This
underestimation is expected, but it seems that the difference is
not large, though this will vary between datasets. There are also
frequentist approaches that account for the uncertainty of
estimating variance components (e.g. Kenward and Roger 1997).
The full Bayesian analysis with the marker-based model is not too
computationally demanding if the number of markers is not too
large (10-50K markers can be handled easily). The full Bayesian
analysis can be quite demanding with the genome-based model
on individuals if the number of individuals is large, but
equivalence with the marker-based model means we can fit one
or another model and back-solve desired effects (Stranden and
Garrick 2009), as long as we use normal prior distribution for
marker effects.

The observation that leading principal components under-
estimate genic variance (Fig. 7) requires further studies. We
expected that increasing the number of leading principal
components would reduce the estimation error, which we
observed for genetic variance. In contrast, we observed
consistent underestimation for genic variance—even with all
principal components. Since we had more markers than
individuals, this is likely because ‘null’ components would still
have some uncertainty in estimation, which we ignored and,
therefore, we underestimated genic variance. Methods presented
in the supplementary of Listgarten et al. (2012) could be used to
correct for this.

Assumptions

We made two assumptions. First, we assumed a sufficiently dense
panel of markers that collectively capture variation at QTL. An
insufficient number of markers will deteriorate the ability of the
framework to capture genetic variance at and between QTL. Our
simulation shows that with a medium marker density, we can
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estimate genetic variance in a breeding programme accurately.
Still, we highlight that we have simulated a simple genetic
architecture with randomly located QTL along the genome.
Second, we assumed that allele effects are constant over time
and across groups of individuals. This assumption is reasonable for
estimation in the sense that we used all the available data to
estimate average marker effects as accurately as possible and use
them across all individuals. However, allele effects can be time-,
environment- or population-specific. We tested how our frame-
work fares in such settings by extending the simulation with
genotype-by-year interactions. The results have shown that we
overestimate genetic and genic variance in those settings,
sometimes by as much as 200%. This miss-match is expected
because a too simple statistical model can capture too little
genetic variation or capture non-genetic effects as genetic and
lead to under- or overestimated genetic variances. While model
choice is clearly an issue, we note that the proposed framework
can be extended to models with effects such as genotype-by-year
interactions, for example, by using a model described in Tolhurst
et al. (2019). While estimating time-, environment- or population-
specific effects could better reflect reality, accurately estimating
such effects is challenging. The random regression and time
interval approaches (Tsuruta et al. 2004; Hidalgo et al. 2020) have
an advantage in this aspect compared to our framework but do
not have the flexibility for the genomic analysis of genetic
variance. Nuanced estimation of marker effects will likely be more
important for breeding programmes that operate in highly
variable environments and introgress germplasm from other
populations. Still, there will likely be limited data to estimate
separate effects accurately. Estimation of background-specific
effects is an active research area in genetics with growing datasets
across various populations (e.g., Tolhurst et al. 2019; Peterson et al.
2019; van den Berg et al. 2020). Relatedly, we assumed only
additive genetic effects. While both theory and data indicate that
the average effect of an allele substitution captures most of
genetic variance (Hill et al. 2008), recognition of dominance and
epistasis is growing (e.g., Hem et al. 2021; Varona et al. 2018; Alves
et al. 2019; Legarra et al. 2021). The estimation of non-additive
genetic effects and non-additive genetic variances is a very
challenging topic. The proposed framework can be expanded to
these settings as well and it is a subject of future research.

CODE AVAILABILITY
We provide simulation and analysis code at https://github.com/HighlanderLab/
llara_additive_genVar.
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