Algorithm 1.
Proposed H-DNN.
| Input: Genome data, D, with attributes, a |
| Output: Decision Tree with classes |
| 1. tree = { } |
| 2. minVal = 0 |
| 3. for each a ϵ D do://Considering Input Layer of ANN |
| 4. for each node n ∈ a and input xn do: |
| 5. outn = xn//Considering Hidden Layer of ANN |
| 6. for each hidden node h do: |
| 7. |
| 8. g = GiniIndex(outh, d) |
| 9. for each output node k do: |
| 10. |
| 11. Train ANN using Backpropagation(outh) |
| 12. if g < min Val then |
| 13. minVal = g |
| 14. tree′ = {a} |
| 15. partition(tree, tree′) |
| 16. repeat till all the partitions are processed |
| 17. return tree |