Skip to main content
. 2021 Dec 23;9:821410. doi: 10.3389/fpubh.2021.821410

Algorithm 1.

Proposed H-DNN.

Input: Genome data, D, with attributes, a
Output: Decision Tree with classes
1.   tree = { }
2.   minVal = 0
3.   for each a ϵ D do://Considering Input Layer of ANN
4.     for each node na and input xn do:
5.      outn = xn//Considering Hidden Layer of ANN
6.     for each hidden node h do:
7.      outh=n(whn.outn)
8.     g = GiniIndex(outh, d)
9.     for each output node k do:
10.     outk=k(wkh.outh)
11.    Train ANN using Backpropagation(outh)
12.    if g < min Val then
13.    minVal = g
14.    tree′ = {a}
15.  partition(tree, tree′)
16.  repeat till all the partitions are processed
17.  return tree