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Abstract

Both pleiotropic connectivity and mutational correlations can restrict the decoupling of traits under divergent selection, but it is unknown
which is more important in trait evolution. To address this question, we create a model that permits within-population variation in both
pleiotropic connectivity and mutational correlation, and compare their relative importance to trait evolution. Specifically, we developed an
individual-based stochastic model where mutations can affect whether a locus affects a trait and the extent of mutational correlations in a
population. We find that traits can decouple whether there is evolution in pleiotropic connectivity or mutational correlation, but when both
can evolve, then evolution in pleiotropic connectivity is more likely to allow for decoupling to occur. The most common genotype found in
this case is characterized by having one locus that maintains connectivity to all traits and another that loses connectivity to the traits under
stabilizing selection (subfunctionalization). This genotype is favored because it allows the subfunctionalized locus to accumulate greater ef-
fect size alleles, contributing to increasingly divergent trait values in the traits under divergent selection without changing the trait values of
the other traits (genetic modularization). These results provide evidence that partial subfunctionalization of pleiotropic loci may be a com-
mon mechanism of trait decoupling under regimes of corridor selection.
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constraints; subfunctionalization; metamerism

Introduction
One of the central problems in evolutionary biology is under-

standing the processes through which new traits arise. One pro-

cess that can lead to the creation of new traits is when existing

traits become differentiated from one another because they are

selected for a new purpose (Rueffler et al. 2012). There has long

been evidence that this can happen through gene duplication fol-

lowed by trait decoupling (Muller 1936; Ohno 1970; Rastogi and

Liberles 2005; Han et al. 2009). One example in vertebrates is the

differentiation of forelimbs from hindlimbs, where the same gene

that was responsible for both fore and hindlimb identity in devel-

opment diverged (Graham and McGonnell 1999; Minguillon et al.

2009; Petit et al. 2017). In this case, the paralogous genes Tbx4/

Tbx5 that encode transcription factors (TFs) for fore/hindlimb

identity likely evolved from the same ancestral gene, and their

expression differentiated after duplication (Minguillon et al.

2009). Somehow during selection for functional divergence, there

was a decoupling of genetically integrated traits, which allowed

them to respond to selection as independent genetic modules

(Wagner and Altenberg 1996; Hansen 2006). Genetic decoupling

was likely also responsible for the evolution of trait divergence in

vertebrate metameric segmentation into differentiated somites,

and the emergence of cell differentiation in multicellular organ-
isms (Holley 2007; Wagner et al. 2019; see also Newman 2020).

Although modular structures in phenotypic covariation
(where phenotypic variation is more correlated within groups of
traits than between them) are found in a wide range of organ-
isms, including yeast, round worms, mice, and humans (Jiang
et al. 2008; Wang et al. 2010; Hlusko 2016), the underlying genetic
architectures producing genetic integration between traits are
still uncertain. Genetic integration, constraining the decoupling
of traits, may arise from pleiotropic connections between loci and
traits, where they may or may not create genetic and phenotypic
covariation (Baatz and Wagner 1997; Kenney-Hunt et al. 2008;
Smith 2016). When selection favors the divergence of traits, the
constraining effect of pleiotropy may come in two forms: a pleio-
tropic connectivity effect or a mutational correlation effect (Stern
2000). A pleiotropic connectivity effect depends on how highly
pleiotropically connected a gene is. For instance, a gene product
(e.g. enzyme, TF, etc.) may affect more than one trait (or function)
by having multiple substrates or binding sites, thus affecting
multiple downstream processes. This may constrain the evolu-
tionary divergence of those traits because the effect of a muta-
tion beneficial for one trait may be deleterious for other traits
(when those other traits are under stabilizing selection). It is
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expected that the net fitness effect of a pleiotropic mutation is
decreased in proportion to the number of traits it affects (Orr
2000; Welch and Waxman 2003; Martin and Lenormand 2006).
Therefore, pleiotropic connections may constrain divergent trait
evolution even without creating genetic correlation among traits,
whereas, a mutational correlation effect is the effect of a
mutation affecting how correlated are the effects of mutations at
pleiotropic loci. Thus, a mutational correlation effect may induce
correlated changes in the traits affected by pleiotropic loci.
However, the strength of the correlational effect of the mutations
is not dependent on the number of traits affected but on the
properties of the genes, processes, or traits affected. When those
effects are correlated among traits, they can constrain trait
decoupling in addition to those caused by the dimensionality of
the pleiotropic loci (Lande 1979; Arnold 1992; Stern 2000).

Biological examples may help to illuminate the distinction
between the two types of pleiotropy that can hinder the decou-
pling of traits. Imagine a TF that has multiple target binding
sites affecting the expression of multiple genes, which in turn
affect several traits. If the binding sites have identical sequen-
ces, then mutations in the gene encoding the TF are expected to
be in perfect correlation with respect to their effects on the
traits. In this scenario, a mutational correlation mutation may
be a mutation in one of the binding sequences that leads to
differential binding of the TF (Figure 1). Now, that the binding
sites are no longer identical, mutations in the gene encoding the
TF may no longer have perfectly correlated effects on the traits.
As the name suggests, the mutational correlation mutation has
affected the correlation between effects of mutations in the TF’s
gene on the traits it affects, whereas another type of mutation
might affect a TF’s access to one of its binding sites by methylat-
ing the DNA in the region of that binding site or by changing the
TF’s binding specificity (Stewart et al. 2012; Pougach et al. 2014).
If this type of mutation causes the TF to affect more or less
traits than it did before the mutation, it would be considered a
pleiotropic connectivity mutation.

Both pleiotropic connectivity and mutational correlations can
evolve as a result of divergent selection and affect the ability of
traits to decouple from one another. Although previous models
have included either evolution in pleiotropic connections or mu-
tational correlation, their relative importance in constraining
trait decoupling remains to be seen (Jones et al. 2003, 2007; Melo
and Marroig 2015; Chebib and Guillaume 2017). Here, we attempt
to answer this question by using stochastic simulations, where
individuals in a population can vary in both pleiotropic connec-
tions and mutational correlations, while applying divergent se-
lection on some traits but not others, and then observing what
affects the decoupling of traits.

Methods
Simulation model
We modified the individual-based, forward-in-time, population
genetics simulation software Nemo (v2.3.46) (Guillaume and
Rougemont 2006) to allow for the evolution of pleiotropic connec-
tivity and mutational correlations. The simulations consisted of a
single population of size N of randomly mating, hermaphroditic,
diploid individuals, with a probability 1=N of self-fertilization,
similar to a classical Wright–Fisher population model. Each indi-
vidual had two pleiotropic quantitative trait loci (QTLs) affecting
four traits. The phenotypic value of each trait, zi, was calculated
by adding the allelic values at the two loci: zi ¼

PL
l¼1ðXi;l þ Yi;lÞ,

where X is the maternally inherited allele and Y the paternally
inherited allele, i is the trait number (i 2 ½1; 4�), and L is the locus
number (L 2 ½1; 2�)) (Figure 2). For simplicity, we assumed no envi-
ronmental variance (i.e. heritability is 1).

Generations were non-overlapping and consisted of three
main stages: mating, viability selection, and ageing. In the mating
stage, pairs of individuals were chosen to produce offspring (with
a mean fecundity of three offspring to ensure population size re-
plenishment). It was during the mating stage that recombination
between loci and mutations occurred. In the viability selection

Figure 1 The two types of mutations affecting pleiotropic effects using a transcription factor (TF) as an example. (A) A mutation in DNA-Binding Site 2
changes its sequence so that it is no longer identical with binding site 1. This mutational correlation mutation changes the correlation in effects of
mutations in the TF gene on traits 1 and 2. (B) A mutation affects a TF’s ability to access binding site 3. This pleiotropic connectivity mutation changes
the number of traits that are affected by the TF gene.
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stage, Gaussian stabilizing selection was applied on offspring and
determined the survival probability of individuals, whose fitness
was calculated as w ¼ exp � 1

2 ðz� hÞT �X�1 � ðz� hÞÞ
� ih

, where z is
the individual trait value vector, h is the vector of local optimal
trait values, and X is the selection variance–covariance matrix
(n� n, for n traits) describing the multivariate Gaussian selection
surface. The X matrix is a diagonal matrix with diagonal ele-
ments corresponding to the strength of selection, x2, on each
trait (where strength of selection scales inversely with x2), and
off-diagonal elements corresponding to the strength of correla-
tional selection, qxij, between traits i and j. In the ageing stage,
the adults were removed from the population and the offspring
matured into breeding adults for the next generation.

Three types of mutations (each with a separate mutation rate)
were possible: mutations at the additive QTL affecting the traits,
mutations at a set of modifier loci separately affecting the corre-
lation of the mutational effects at the additive QTL, and muta-
tions affecting the connectivity of the QTL to the traits, reducing
or increasing the pleiotropic degree (the number of traits a locus
affects) of each locus. The first type of mutations changed the al-
lelic values of a QTL by randomly drawing effects from a multi-
variate normal distribution, with variance–covariance matrix M.
The mutational effects were added to the existing allelic values
at the QTL (continuum-of-alleles model; Crow and Kimura 1964).
These mutations appeared at a rate given by l. The variance
of the mutational effect for all traits were constant and set at

a2 ¼ 0:1 in the diagonal of the M-matrix. Each pairwise trait co-
variance of the M matrix was governed by its own separate modi-
fier locus. We will refer to variance-standardized covariance
values, or mutational correlation qlij as the off-diagonal elements
of the M matrix. As M is a 4� 4 symmetrical matrix, the six qlij

coefficients were controlled by six diploid modifier loci, carried by
each individual and inherited in the same manner as the additive
QTL. Each individual thus carried its own M matrix. The second
type of mutation thus changed these mutational correlation alle-
lic values by randomly drawing from a uniform distribution
(�0:2 � log½1� Uð0; 1Þ�), and adding the effect to the existing allelic
value (which was bound between –1 and 1). These mutations
appeared at a rate given by lmutcor. In order to get a particular mu-
tational effect correlation, qlij, the two mutational correlation al-
lelic values of the corresponding modifier locus were averaged
together (Figure 3). All the pairwise mutational effect correlations
(qlij) were combined with mutational effect variances (a2

i ) to cre-
ate the M matrix for an individual, whenever a mutational effect
on a QTL that directly affected traits was required. The third type
of mutation affected the pleiotropic connections between QTLs
and traits, determining whether the allelic value of a QTL was
added to a trait value. A mutation of this type affected the pleio-
tropic connections between a trait and the maternally or pater-
nally inherited alleles separately. Thus, QTLs could be
“heterozygotes” in their pleiotropic degree depending on the
pleiotropic degree of the maternally and paternally inherited
alleles. These discrete mutations connecting or disconnecting al-
lelic effects from traits occurred at a rate given by lpleio (Figure 2).

Experimental design
To understand the impact of divergent selection on the structure
of genetic architecture, simulations were run with a population
of 500 individuals each having two additive loci underlying four
traits (Figure 4). The initial conditions were set to full pleiotropy
(each locus affecting every trait) and strong mutational correla-
tions between trait pairs (ql ¼ 0:99). This way, mutational effects
in phenotypic space were highly constrained to fall along a single
direction, and reducing variation for divergent selection. All traits
had an initial phenotypic value of 2 with equal allelic values of
0.5 at each allele of the two QTL.

Selection regimes were designed to mimic divergent selection
between trait modules, where trait module 1 included traits 1
and 2, and trait module 2 included traits 3 and 4. Initially, opti-
mum trait values, hk; ðk 2 1; 2; 3; 4Þ, were all set to 2 (the same as
the initial trait values). There was moderately strong stabilizing
selection on each trait (x2 ¼ 5), strong correlational selection be-
tween traits in the same trait module (qx12 ¼ qx34 ¼ 0:9), and no
correlational selection between traits in different trait modules
(qx13 ¼ qx14 ¼ qx23 ¼ qx24 ¼ 0). After this, divergent directional se-
lection proceeded by maintaining constant optimal trait values
for traits 3 and 4 (h3 ¼ h4 ¼ 2) and increasing the optimal trait val-
ues for traits 1 and 2 by 0.001 per generation for 5000 generations,
bringing the trait optima to h1 ¼ h2 ¼ 7 (corridor model of selec-
tion sensu Wagner 1984; Bürger 1986). These 5000 generations of
divergent, directional selection on traits 1 and 2 were then fol-
lowed by 5000 generations of purely stabilizing selection, to en-
sure that a mutation-selection equilibrium was reached.

To compare the differential effects of evolving pleiotropic con-
nectivity and evolving mutational correlations on trait decou-
pling, nine different simulations were run with all combinations
of three different rates of mutation in pleiotropic connectivity
and mutational correlations (lpleio and lmutcor ¼ 0, 0.001, or 0.01)
representing no evolution in genetic constraints, and mutation

Figure 2 Pictorial representation of quantitative trait locus (QTL) alleles
and the traits they affect with example values for illustration (the
experimental model has four traits and is described in the Experimental
design section). Here, trait 1 has a value of 1.89 determined by the sum of
allelic values (X1;1;Y1;1;and Y1;2) pleiotropically connected to it from
locus 1 (0.5þ 0.89) and locus 2 (0.5), where Y1;2 represents the maternally
inherited allele of locus 2 that affects trait 1. Trait 2 is affected
differently by the two loci and has a value of 1.32 (0.5þ 0.1þ0.22þ 0.5).
The allelic values of a QTL were affected by mutation at a rate of l. The
pleiotropic connections between a QTL and a trait could be removed or
added by mutation at a rate of lpleio, and toggled whether an allelic value
was added to a trait value or not.
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rates at and above the QTL allelic mutation rate (l ¼ 0.001), re-
spectively.

Simulations were also run with initial mutational
correlations between all pairs set to 0 (ql ¼ 0) to compare highly
constraining genetic architecture (within a corridor selection re-
gime) to ones with no constraints in the direction of mutational
effects.

We observed general patterns of average trait value divergence,
population fitness, genetic correlation, pleiotropic degree (the
number of traits a locus affects), and mutational correlation. In
the case of pleiotropic degree, the two loci affecting trait values
were sorted into a high and low pleiotropic degree locus for each
individual before averaging over populations or replicates so that

differential effects of the two loci were not averaged out in the fi-

nal analysis. Statistics were averaged over 50 replicate simulations

for each particular set of parameter values of lpleio, lmutcor, and

initial ql.

Results
Trait divergence and genetic modularity
evolution under constraints to genetic decoupling
In the absence of genetic architecture evolution (lpleio ¼ lmutcor ¼
0), traits are still capable of divergence, but do not follow trait

optima closely since traits 3 and 4 get pulled away from their

optima as traits 1 and 2 increase to follow theirs (Figure 5). With

the introduction of variation in genetic architecture through mu-

tation (lpleio, lmutcor > 0), average trait values follow their optima

more closely and the capability of trait divergence increases as

mutation rates in genetic architecture increases, which leads to

higher average population fitness values by generation 5000

(Figure 6). Also by generation 5000, simulations with higher pleio-

tropic connection mutation rates (lpleio � 0.001 or lmutcor ¼ 0.01)

have distinctly modular genetic correlation structures with stron-

ger correlations between traits 1 and 2 (and 3 and 4) than be-

tween traits of different modules (e.g. traits 1 and 4) (Figure 7). An

increase in pleiotropic connectivity variation has a greater impact

on trait divergence evolution and modularization of the genetic

architecture of the traits than the same increase in mutational

correlation variation, which is evident when either lpleio or lmutcor

is the same as the allelic mutation rate (l ¼ 0.001). Even when

the mutation rate for mutational correlation is at the highest

tested (lmutcor ¼ 0.01), an increase in the mutation rate for pleio-

tropic connections still improves the ability for traits to diverge,

which can be seen in the decrease in variance over replicate sim-

ulations (Figure 5).

Figure 3 Pictorial representation of the modifier loci that contained the allelic values for producing the pairwise mutational effect correlations (qlij)
between traits i and j. The allelic values of a modifier locus were affected by mutation at a rate of lmutcor, and were averaged together to produce the
corresponding correlation for the M matrix. The mutational effect variances, a2, remained static with a value of 0.1 for all traits. Each individual had its
own M matrix, which was used to create the multivariate distribution from which new mutational effects on the QTL’s allelic value could be drawn.

Figure 4 Pictorial representation of the genetic architecture modelled
within individuals at the start of the simulations, with two loci, four
traits, and full pleiotropic connectivity between them.
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Effects of pleiotropic connectivity and mutational
correlation evolution on rate and extent of trait
decoupling
When evolution of pleiotropic connections is possible (lpleio > 0),
the most common allele in almost all cases is one that maintains
connections to traits 1 and 2, but has lost connections to traits 3
and 4 after two mutational events. This allele is found in locus 1
or 2 at a frequency of 0.873 averaged over the populations of all
simulations where evolution of pleiotropic connections is possi-
ble. The allele goes to fixation or near fixation in one locus where
its pleiotropic degree decreases from four to two, and this hap-
pens more rapidly as lpleio increases (Figure 8). The decrease in
pleiotropic degree resulting from the increase in frequency of this
allele coincides with the modularization of genetic correlations,
the divergence of traits, and the increase in fitness. The propor-
tion of times in which this particular allele becomes common in
locus 1 or in locus 2 is approximately equal over all simulations

(0.491 and 0.509, respectively, over 300 simulations) and is never

observed in both loci in any one individual.
When the mutation rate for pleiotropic connectivity (lpleio) is

zero, mutational correlation evolution can still lead to trait selec-

tion response but this takes longer, does not diverge as fully, and

therefore leads to lower population mean fitness. Evolution of

the mutational correlation occurs by a general decrease in all

mutational correlations between traits at a rate determined by

the mutation rate of mutational correlations (Figure 9). When the

mutation rate at the mutational correlation loci is higher than

the pleiotropic mutation rate, then genotypic patterns do emerge

where one locus disconnected from trait 3 combines with lower

mutational correlations between traits 1 and 4 or 2 and 4, or a lo-

cus disconnected to trait 4 combines with lower mutational cor-

relations between traits 1 and 3 or 2 and 3 (at frequencies of 0.16

and 0.10 over 50 replicates, respectively). But even in the case

with a higher mutation rate for mutational correlation than the

Figure 5 Trait value divergence over 5000 generations of divergent selection on traits 1 and 2 (trait module 1), when all ql values are initialized to 0.99,
followed by 5000 generations of stabilizing selection for different combinations of mutation rate in pleiotropic connectivity (lpleio) and mutational
correlations (lmutcor). Orange—average values of traits 1 and 2; blue—average values of traits 3 and 4; black—trait value optima for trait modules 1 and 2.
Shaded regions show standard errors of the mean for 50 replicate simulations.
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pleiotropic connectivity mutation rates, full subfunctionalization

(one locus loses connections to traits 3 and 4) is a common out-

come occurring in 18% of 50 replicates after 5000 generations.

Effect of mutational correlation initial conditions
set to zero (ql ¼ 0 vs. ql ¼ 0.99)
In simulations where all mutational correlations are initialized at

zero, there is little to no constraint on trait response to selection

despite full pleiotropic connectivity. This can be observed in trait
values that follow their optima closely, leading to little reduction
in fitness as optima for traits 1 and 2 diverge from traits 3 and 4,
with little evolution in mutational correlations and pleiotropic
degree during divergent selection (Figure 10). There are still pat-
terns of genetic architecture evolution as alleles with lowered
pleiotropic degree still emerge in the populations, but fixation is
not common nor are any allelic patterns of mutational correla-
tions.

Discussion
Evolution in pleiotropic connectivity and
mutational correlation can lead to trait
divergence
Previous models of genetic architecture evolution have shown
that evolution in pleiotropic connections and mutational corre-
lation can influence genetic correlation between traits and
therefore responses to selection, but as far as we are aware this
is the first time both have been allowed to evolve in the same
model. When a genetic architecture is highly constraining to
the decoupling of some traits from others, then evolution of
the structure of the genetic architecture itself can clearly facili-
tate the rate and extent of a trait’s response to divergent selec-
tion. When the genetic architecture is constraining and cannot
evolve, traits may still diverge, but this occurs by the slow ac-
cumulation of less probable mutational effects changing some
trait values without affecting others. When genetic architec-
tures can evolve, they may do so through changes in pleiotro-
pic connectivity between genes and traits or in the mutational
correlations between traits, where the former leads to a greater
release of genetic constraints and faster adaptation to the cor-
ridor selection regime. Both result in two separate modules of
genetic correlation, but a qualitative distinction exists between
these two types of genetic constraints to decoupling for two

Figure 6 Average population fitness after 5000 generations of divergent
selection on traits 1 and 2 (trait module 1), when all ql values are
initialized to 0.99, for different combinations of mutation rate in
pleiotropic connectivity (lpleio), and mutational correlations (lmutcor). All
error bars represent standard errors of the mean for 50 replicate
simulations.

Figure 7 Genetic correlations between traits after 5000 generations of divergent selection on traits 1 and 2 (trait module 1), when all ql values are
initialized to 0.99, for different combinations of mutation rate in pleiotropic connectivity (lpleio), and mutational correlations (lmutcor). Red—higher
genetic correlation. White—no genetic correlation.
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reasons. First, genetic constraints based on mutational correla-
tion distributions are more difficult targets of selection com-
pared to pleiotropic connections because mutations on
modifiers of genetic correlations do not affect the trait pheno-
types directly, whereas a single allele that differs in its pleiotro-
pic connectivity does. Second, mutational correlations require
pleiotropic connections to be effectual on traits (there can be
no mutational correlations if a QTL affects only one trait),
whereas the latter can affect the rate of adaptation regardless
of mutational correlation (Baatz and Wagner 1997; Chebib and
Guillaume 2017).

The results of this study corroborate results from previous
models of pleiotropic evolution. We observe that divergent selec-
tion in the form of the corridor model leads to modular genetic
architecture with greater genetic correlations between traits
within trait modules and lower correlations between trait modules.
This was also the case in both Melo and Marroig (2015) and
Pavlicev et al. (2011) under the corridor model. Unfortunately, it is
unclear whether patterns of partial modular pleiotropy that were
responsible for the emergence of genetic modularity in our study

were also observed in these studies because they did not report
the most common resulting genotypes after corridor selection.
However, Melo and Marroig (2015) did vary the mutation rate in
pleiotropic connectivity (while keeping allelic mutation rate the
same) and found that when lpleio was 10 times greater than l,
there were higher within and between trait module correlation
compared to when lpleio and l were the same. Though our results
corroborate this relationship as well, we cannot deduce the state
of the pleiotropic connections that led to those results in their
simulations. Their study also did not include evolution in muta-
tional correlations so it is not possible to do a comparison on the
relative effects of mutational correlation and pleiotropic connec-
tivity evolution on patterns of genetic modularity. Pavlicev et al.
(2011) had a deterministic model with relationship quantitative
trail loci (rQTL) modifier loci that affected the correlations be-
tween traits directly instead of affecting the pleiotropic connec-
tions, making it difficult to compare patterns of partial modular
pleiotropic connectivity. Jones et al. (2007) found “extreme” varia-
tion among replicates in the average mutational correlation
observed when ql was capable of evolving, similar to what was

Figure 8 Average number of traits connected to each locus over 5000 generations of divergent selection on traits 1 and 2 (trait module 1), when all ql

values are initialized to 0.99, followed by 5000 generations of stabilizing selection for different combinations of mutation rate in pleiotropic connectivity
(lpleio) and mutational correlations (lmutcor). Loci are sorted so that locus with higher pleiotropic degree (locus H) is always shown above and lower
pleiotropic degree (locus L) shown below. Shaded regions show standard errors of the mean for 50 replicate simulations.
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observed in our study (as well as when simulations were run with
the same parameter values as the Jones et al. 2007 study;
Supplementary Figure S1). This variation of the evolution of mu-
tational correlation is likely due to an unstable equilibrium in the
adaptive landscape in which highly positive or negative muta-
tional correlations have a selective advantage over mutational
correlations closer to zero (Lande 1980; Zhang and Hill 2002;
Jones et al. 2007; Supplementary Figure S2).

In comparison to all the simulations where trait divergence
was initially constrained by strong mutational correlation, when
mutational effects were uncorrelated, there appeared to be no
constraints to trait divergence. Even when pleiotropic connectiv-
ity (or mutational correlations) could not change, traits could re-
spond on pace with selection. This result may not be unexpected,
even with pleiotropic connections between all loci and all traits,
because the uncorrelated mutational effects of pleiotropic loci do
not necessarily translate into genetic correlations. This was ob-
served previously in a study that compared patterns of genetic
correlation in fully pleiotropic loci with different degrees of

mutational correlation (Chebib and Guillaume 2017). These stud-
ies together suggest that regardless of the number of pleiotropic
connections, in the absence of mutational correlation, genetic
variation arises equally in all directions of trait space, allowing
for trait evolution to proceed unhindered.

Patterns of pleiotropy
What explains the emergence of one dominant genotype that
was observed with one locus losing its connections to traits 3 and
4, and the other locus maintaining full pleiotropy? When muta-
tional correlations are strong, genetic modularization should
arise so that mutational effects can increase traits 1 and 2 values
without also increasing traits 3 and 4 (especially when stabilizing
selection is strong compared to directional selection). If stabiliz-
ing selection had been weaker and/or directional selection been
much stronger, then more loci affecting the traits would have in-
creased the proportion of advantageous mutations allowing for
traits to respond to selection (Hansen 2003). For the same reason,
we do not observe complete genetic modularization with one

Figure 9 Average within and between trait module mutational correlation over 5000 generations of divergent selection on traits 1 and 2 (trait module 1),
when all ql values are initialized to 0.99, followed by 5000 generations of stabilizing selection for different combinations of mutation rate in pleiotropic
connectivity (lpleio) and mutational correlations (lmutcor). Orange—mutational correlation between traits 1 and 2 (within trait module 1); blue—
mutational correlation between traits 3 and 4 (within trait module 2); black—average mutational correlations between traits 1 and 3, 1 and 4, 2 and 3,
and 2 and 4 (between trait modules 1 and 2). Shaded regions show standard errors of the mean for 50 replicate simulations.
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locus only connected to traits 1 and 2, and the other only con-
nected to traits 3 and 4. When both loci contribute to traits 1 and
2, more mutational input is available to increase their values. We
may have also observed complete modularization had the trait
optimums for traits 3 and 4 been moving in the opposite direction
of the trait optimums for traits 1 and 2, but this is a much less
likely scenario in natural populations. Also, since we were inter-
ested in the evolution of genetic architectures allowing trait
decoupling, we started our simulations with a highly genetically
integrated, monomorphic population. This makes evolution in
our model dependent on de-novo mutations and as traits di-
verged, the negative effects of pleiotropy on traits under stabiliz-
ing selection increased, leading to modularization in the genetic
architecture. But, if we had simulated genetic architectures
where the allelic mutation rate (l) was high enough and/or selec-
tion acted on many loci with small effects, pleiotropy may not
have been as constraining, and integrated genetic architectures
(loci affecting all traits) may have evolved. Whether integrated
or modular genetic architectures will evolve in response to

divergent selection is dependent on the relative effects of muta-

tion and selection on the different traits (Pavlicev and Hansen
2011). This also would have been true if standing genetic varia-
tion had already existed in pleiotropic connectivity and muta-
tional correlations in a population prior to divergent selection.

We could imagine that many possible combinations of pleiotropic
connectivity and mutational correlation alleles that allow for in-
creased variation and reduced covariation between traits could
also exist. In those scenarios, genetic modularization may not be

associated with trait divergence.

Gene duplication and subdivision of functions by
change of pleiotropic degree
The results we obtain in this study are also related to work done

on the evolutionary fate of duplicated, pleiotropic genes (Ohno
1970; Hahn 2009; Innan and Kondrashov 2010; Guillaume and
Otto 2012). Previous models describe the conditions under which
both genes remained fully pleiotropic, which is expected to be fa-

vorable when there is selection for increased dosage as we had

Figure 10 Average trait value, fitness, mutational correlation, and pleiotropic degree over 5000 generations of divergent selection on traits 1 and 2 (trait
module 1), when all ql values are initialized to 0, followed by 5000 generations of stabilizing selection for different combinations of mutation rate in
pleiotropic connectivity (lpleio) and mutational correlations (lmutcor). For pleiotropic degree, loci are sorted so that locus with higher pleiotropic degree
(locus H) is always shown above and lower pleiotropic degree (locus L) shown below. Orange—traits 1 and 2 values or mutational correlation between
traits 1 and 2 (trait module 1); blue—trait 3 and 4 values or mutational correlation between traits 3 and 4 (trait module 2); black—average mutational
correlations between traits 1 and 3, 1 and 4, 2 and 3, and 2 and 4 (between trait modules 1 and 2). Shaded regions show standard errors of the mean for
50 replicate simulations.
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for traits 1 and 2 (Ohno 1970). There is some empirical evidence
of this in ribosomal RNA, histone genes, as well as amylase genes
in humans with high starch diets (Zhang 2003; Perry et al. 2007;
Qian et al. 2010). Other models describe when one or both genes
lose their connection to some traits, known as subfunctionaliza-
tion, if there is a relaxation of selection after duplication (Force
et al. 1999; Lynch and Force 2000). Empirical evidence for sub-
functionalization exists for vertebrate limb evolution, as dis-
cussed in the introduction, as well as pathway specialization in
plants (Bomblies and Doebley 2006; Des Marais and Rausher
2008). Compared to models with selection for increased dosage,
our model has selection only for higher values in traits 1 and 2,
whereas selection for increased values in all four traits is
expected to maintain all pleiotropic connections. The difference
compared to neutral models where subfunctionalization is the
result is that in our model, there is no relaxation of selection due
to duplication and redundancy. In that case, Guillaume and Otto
(2012) showed that the maintenance of pleiotropy in one gene
and subfunctionalization in the other (the most common out-
come in our simulations) is predicted when there is asymmetry
in either the trait contributions to fitness or in the expression lev-
els of the genes. The gene with higher expression was predicted
to remain fully pleiotropic, with loss of pleiotropy in the second,
less expressed gene. Our results fit very well with that later out-
come, although the conditions were different. In Guillaume and
Otto (2012), a fitness trade-off emerged from the competitive allo-
cation of the gene product (amount of protein produced) between
two traits under positive selection (i.e. increased allocation to one
trait reduced allocation to the other trait). The fitness trade-off in
our model arose from the corridor model of selection whereby in-
creased additive contributions to traits 1 and 2 via fully pleiotro-
pic mutations with correlated allelic values trade-off negatively
with traits 3 and 4 under stabilizing selection. The trade-off is
quickly attenuated when the mutational correlations between
traits under divergent selection decreases. Mutation in pleiotro-
pic connections of the QTL was nevertheless more efficient in
breaking the constraint to a trait’s response to selection. It is also
a more plausible mechanism since mutations changing a TFs’ ac-
cess to transcription binding sites may cause a drastic change as-
sociated with a change in pleiotropic connectivity.

Empirical evidence for mutational correlation and
pleiotropy
The pleiotropic connections and mutational correlations in our
model abstract out the types of molecular level changes that
may lead to changes in genetic correlations between traits. Some
examples of variation in pleiotropic connectivity come from em-
pirical studies on transcriptional regulation. For example, expres-
sion of the Tbx4 gene (described earlier) is required not only for
hindlimb development but is also expressed in genital develop-
ment (Chapman et al. 1996). Although the upstream enhancer of
Tbx4, hindlimb enhancer B (or HLEB), is functional in both hin-
dlimb and genital development in both mice and lizards, HLEB
appears to have lost its hindlimb enhancer function in snakes
due to mutations in one of the enhancer’s binding regions
(Infante et al. 2015). A more recent example comes from two spe-
cies of Drosophila that diverged only 500,000 years ago. D. yakuba
has both hypandrial and sex comb bristles, whereas D. santomea
has only sex comb bristles (Rice and Rebeiz 2019). Quantitative
trait mapping crosses between the species and with D. mela-
nogaster revealed that a single nucleotide change in a regulatory
enhancer of the scute gene, which promotes bristle development,
was responsible for D. santomea losing its hypandrial bristles and

increasing its sex comb bristle number (Nagy et al. 2018). These
examples provide evidence that mutations in DNA-binding sites
can affect a gene’s pleiotropic degree, allowing for evolution of
trait decoupling.

Correlated mutational effects, on the other hand, may arise
from mutations that cause correlated effects in more than one of
a gene’s molecular functions or from mutations causing corre-
lated effects in a gene product’s multiple processes, but empirical
data are still needed to discover the mechanisms underlying mu-
tational correlations (Hodgkin 1998; Wagner and Zhang 2011).
Even if the specific molecular mechanism that is the cause of cor-
relation is not known, it is still possible to estimate the genomic
M-matrix, which describes the combined pattern of (co)variation
arising from mutations in all loci that affect the traits of interest.
Mutation accumulation experiments in D. melanogaster (Houle
and Fierst 2013) or Caenorhabditis elegans (Estes et al. 2005) provide
examples of such genomic M-matrix estimates and show the ex-
istence of strong mutational correlation among morphological
and life-history traits. Additionally, mutational correlations in
C. elegans seem to correspond to phenotypic correlations among
traits after removing environmental correlations and suggest
that pleiotropy is somewhat restricted within traits of related
function (Estes et al. 2005). Unfortunately, the M-matrix is only a
summary statistic, which represents patterns of mutational vari-
ance across traits. It does not necessarily represent the correla-
tions of mutational effects underlying that mutational variance
between traits, which may be hidden due to multiple effects can-
celling each other out.

It is also possible to discover evidence of modular pleiotropy
from genome-wide studies using gene knock-out/-down experi-
ments as was performed in yeast (Dudley et al. 2005; Güldener
et al. 2005; Ohya et al. 2005), C. elegans (Sönnichsen et al. 2005), and
the house mouse (Bult et al. 2008), which have shown that whole-
gene pleiotropy is variable (not all genes affect all traits) and of-
ten modular (Wang et al. 2010; Wagner and Zhang 2011). QTL
studies further show variable pleiotropy in D. melanogaster (Mezey
et al. 2005), threespine stickleback (Albert et al. 2008), the house
mouse (Cheverud et al. 1997; Kenney-Hunt et al. 2008; Miller et al.
2014), and Arabidopsis thaliana (Juenger et al. 2005), among others
(Porto et al. 2016).

One empirical study based on human patient data manages to
link mutational correlation with modular variation of pleiotropy
by measuring both the genomic M-matrices and the pleiotropic
degree of main and epistatic effects of mutations affecting the
replicative capacity (fitness) of HIV-1 in different drug environ-
ments (Polster et al. 2016). In doing so, they discovered that epis-
tasis can affect the pleiotropic degree of single mutations
producing modular genetic architectures and that epistatic–
pleiotropic effect modules matched modules of fitness co-
variation among drugs. These results suggest that epistasis may
be fundamental in shaping the genetic integration itself, which
may allow organisms to enhance their evolvability in the face of
selection (Pavlicev et al. 2008, 2011; Pavlicev and Cheverud 2015).

Conclusion
Both pleiotropic connectivity and mutational correlation can con-
strain the divergence of traits under divergent selection, but
when both can evolve, trait divergence occurs because pleiotropic
connections are broken between loci and traits under stabilizing
selection. The evolution of pleiotropic connectivity is favored be-
cause it is an easier target of selection than a distribution of mu-
tational effects. The most commonly observed genotype thus
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includes one locus that maintains connections to both traits un-

der directional selection and both traits under stabilizing selec-

tion, and the other locus losing its connection to the traits under

stabilizing selection (subfunctionalization). The subfunctionali-

zation of one locus allows it to contribute to increasingly diver-

gent trait values in the traits under directional selection without

changing the trait values of the other traits, which leads to sepa-

rate genetic modules. These results indicate that partial subfunc-

tionalization is sufficient to allow genetic decoupling and the

divergence of traits with little to no loss of average fitness.

Data availability
The data and initialization files for this study are available online

through Zenodo online repository at: https://zenodo.org/record/

3980997#.XzPnFcBKi70 and code for simulations can be found at:

https://github.com/jmchebib/nemo_evolving_pleio.
Supplementary material is available at GENETICS online.
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