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Abstract

One key feature of proteins that form liquid droplets by phase separation inside a cell is multivalency—the presence of multiple sites that
mediate interactions with other proteins. We know little about the variation of multivalency on evolutionary time scales. Here, we investi-
gated the long-term evolution (�600 million years) of multivalency in fungal mRNA decapping subunit 2 protein (Dcp2), and in the FET
(FUS, EWS and TAF15) protein family. We found that multivalency varies substantially among the orthologs of these proteins. However,
evolution has maintained the length scale at which sequence motifs that enable protein–protein interactions occur. That is, the total num-
ber of such motifs per hundred amino acids is higher and less variable than expected by neutral evolution. To help explain this evolutionary
conservation, we developed a conformation classifier using machine-learning algorithms. This classifier demonstrates that disordered seg-
ments in Dcp2 and FET proteins tend to adopt compact conformations, which is necessary for phase separation. Thus, the evolutionary
conservation we detected may help proteins preserve the ability to undergo phase separation. Altogether, our study reveals that the length
scale of multivalent interactions is an evolutionarily conserved feature of two classes of phase-separating proteins in fungi and vertebrates.
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Introduction
Proteins that undergo liquid–liquid phase separation in a cell
have various features that facilitate their condensation into liq-
uid droplets. The presence of multiple interaction sites (multiva-
lency) is one of these features. (Li et al. 2012; Brangwynne et al.
2015; Banani et al. 2017). Despite the pivotal role of multivalency,
we know little about its evolution. The reason is that multiva-
lency can take different forms, including the presence of interact-
ing patches on a protein surface, short linear amino acid motifs,
and specific amino acids within the intrinsically disordered
regions of phase-separating proteins (Posey et al. 2018).

We investigated the evolution of multivalency in two well-
known classes of multivalent phase-separating proteins during
�600 million years of evolution. The first class comprises ortho-
logs of the fungal mRNA decapping subunit 2 protein (Dcp2).
Dcp2 is one of the scaffold proteins that help RNA processing
bodies (P-bodies) self-assemble by liquid–liquid phase separation
(Parker and Sheth 2007; Kroschwald et al. 2015; Rao and Parker
2017; Xing et al. 2020). P-bodies are conserved membrane-less eu-
karyotic organelles that contribute to the regulation of gene ex-
pression by participating in RNA decay and degradation
(Anderson and Kedersha 2009). They also serve as mRNA storage

depots when cells are stressed (Aizer et al. 2014). Dcp2 undergoes
multivalent interactions using short helical leucine-rich motifs
(HLMs) in its disordered C-terminal domain (Jonas and Izaurralde
2013). HLMs form 8 out of 12 identified interactions between
Dcp2 and other core proteins in P-bodies (Xing et al. 2020).

The second class of proteins comprises orthologs of six mem-
bers of the FET family of RNA-binding proteins, including FUS,
EWS, HNRNPA1, HNRNPA3, HNRNPR, and TAF15. These proteins
have a common domain architecture that consists of a prion-like
domain (PLD), and other domains with RNA/DNA binding affini-
ties (Hoell et al. 2011; Aizer et al. 2014; Schwartz et al. 2015; Svetoni
et al. 2016). They contribute to DNA damage repair, transcrip-
tional control, and the regulation of the life-time of RNAs in
metazoan species (Schwartz et al. 2015). The PLD of these proteins
has low sequence complexity and is enriched in few amino acids,
such as asparagine, glutamine, tyrosine, and glycine (Aguzzi and
Calella 2009; Franzmann and Alberti 2019). The aromatic resi-
dues within the PLD, particularly tyrosine, and arginine in RNA-
binding domains, are responsible for the multivalency of these
proteins (Burke et al. 2015; Patel et al. 2015; Hofweber et al. 2018).
Interactions between these residues drive the phase separation
of FET proteins (Wang et al. 2018).
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We use the stickers-and-spacers representation (Choi et al.
2020) of phase-separating proteins throughout this work. Stickers
are specific amino acids, motifs, or protein domains whose inter-
actions drive phase separation. Spacers are the sequences that
separate the stickers. The HLMs in Dcp2 and the aromatic resi-
dues in FET proteins are such stickers. For the FET proteins, we
particularly focus on tyrosine residues, because their number
and patterning in the sequence modulate the phase-separation
propensity of these proteins (Wang et al. 2018; Martin et al. 2020;
Bremer et al. 2021).

Methods
Data compilation and the generation of neutrally
evolved sequences
In this study, we used 48 orthologous coding sequences of fungal
Dcp2, and �200–300 orthologs of six members of the FET family
of proteins (FUS, EWS, HNRNPA1, HNRNPA3, HNRNPR, and
TAF15; overall 1480 sequenced). We downloaded these sequences
from the NCBI (Pruitt et al. 2006), ENSEMBL (Hubbard et al. 2002),
and KEGG (Kanehisa 2002) databases. Throughout, we worked
with the amino acid sequences of these proteins, except for the
simulation of neutral evolution, where we represented protein
sequences on the level of DNA.

Simulation of neutrally evolved sequences
We simulated protein evolution using the Evolver package within
the PAML suite (Yang 2007). In brief, Evolver uses Monte Carlo
simulations to generate codon sequences using a specified phylo-
genetic tree with given branch lengths, nucleotide frequencies,
transition/transversion bias (j), and the ratio of the rate of nonsy-
nonymous to synonymous substitutions (dN/dS; Yang 2007). To
simulate neutral sequence evolution, we used the standard ge-
netic code with codon frequencies from our study proteins
sequences. Specifically, we used codon frequencies from FUS
orthologs for neutral evolution in vertebrate proteins, and we
used codon frequencies from the set of 48 Dcp2 sequences to
model neutral evolution in fungal Dcp2. In our simulations of
Dcp2 evolution, we assumed a protein length of 600 codons be-
cause the median length of C-terminal disordered domain of
Dcp2 and the length of mammalian FET proteins are �619 and
�518 amino acids, respectively. We used a consensus phyloge-
netic tree for the fungal species from the yeast genome browser
(Byrne and Wolfe 2005) and for the vertebrate species from the
TimeTree database (Hedges et al. 2006). In our phylogenetic trees,
the branch lengths represent the expected number of nucleotide
substitutions per codons. To model neutral evolution, we set dN/
dS to 1 and used a transition/transversion rate ratio of 2.3 and 2.9
for fungal and mammalian sequences. We estimated these val-
ues by fitting the codon model M1 to the phylogenetic tree and
the sequences of these proteins. This model assumes that all
branches of the phylogenetic tree have the same rate of evolu-
tion. We evaluated the number of neutrally evolved HLMs for
various values of dN/dS and the transition/transversion rate ratio
to ensure that our results do not depend on the choice of these
parameters (Supplementary Table S1). Overall, we generated 104

evolved sequences using this sequence evolution model.

Detection of HLMs and their distinct flanking
regions
We used regular expression matching to search for HLMs that
matched the LL-xu-L pattern, where u is a hydrophobic residue
(one of the amino acids L, I, V, A, P, and F), and x represents any

amino acid. To distinguish HLMs from HLM-like patterns we used
the classification approaches of logistic regression and random for-
ests implemented in the Python package scikit-learn. In these clas-
sifications, positive and the negative sets correspond to the flanking
regions of HLMs and HLM-like motifs, respectively. The size of the
training and the test set was 80% and 20% of the whole dataset.

Random forest classification of spacers
We used the random forest algorithm to develop a classifier of
spacer conformation from the protein sequence. To this end,
we used the average deviation of inter-residue distances of a
spacer sequence from the same distances in a Flory Random
Coil as the measure for the prediction of spacer types (Harmon
et al. 2017). This deviation, known as the D parameter, can take
positive and negative values. Disordered sequences with D �
0.1 have the propensity to form compact conformations. We
used a binary classification and classified proteins into a posi-
tive set (D � 0.1) and a negative set (D > 0.1). To train our clas-
sifier we used a dataset of 256 disordered sequences for which
we had D values that had been calculated by molecular simula-
tions (Harmon et al. 2017).

To build features for the classification, we calculated the aver-
age value of 500 physicochemical properties for each sequence in
the positive and the negative sets. This yielded two feature matri-
ces, one for sequences with D � 0.1, and another for sequences
with D > 0.1. To apply random forest classification, we used the
randomForest package of R (Liaw and Wiener 2002) and evalu-
ated the best number of trees (nTree) and the number of variables
randomly sampled at each split (mtry) in the random forest algo-
rithm. To do so, we systematically varied nTree and mtry, and cal-
culated the accuracy of classification with 10-fold cross-
validation in three replicates. We defined accuracy as the per-
centage of correctly identified classes of spacers (D � 0.1 and D

> 0.1) out of all spacers. The combination of nTree¼ 5000 trees
and mtry¼ 10 variables achieved the highest accuracy of �88%.
Here, we define accuracy as the ratio of the number of true posi-
tives to the sum of true positives and false negatives. We then
used these parameters to perform 100 random forest clusterings,
in which we randomly assigned proteins to the training and the
testing datasets. To quantify the accuracy of classification we
counted the number of true positive and false positive predic-
tions and calculated the area under the curve. We represented
these values by receiver operating characteristic curves in
Supplementary Figure S2.

Phylogenetic generalized least square regression
To study the statistical association between the length of the C-
terminal domain of Dcp2 sequences and the number of HLMs in
this domain, we performed phylogenetic generalized least square
regression. To this end, we used a consensus phylogenetic tree of
48 fungal species, as described earlier in the section “simulation
of neutrally evolved sequences,” and performed the regression
based on the Brownian motion process of evolution along this
tree (Revell 2010; Revell 2012). We found that the slope of the
number of HLMs as a function of the length of the C-terminal do-
main is �0.08 [t-value¼ 9.47; P(>jtj) < 10�16] compared to �0.09
[t-value¼ 76.31; P(>jtj) � 0] without phylogenetic correction. We
performed all statistical analyses using R.

Results and discussion
We first investigated the evolution of HLMs in 48 Dcp2 proteins of
the phylum Ascomycota (Supplementary Dataset S1). HLMs lie
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within the disordered C-terminal domain of Dcp2 (Figure 1A, res-
idues 229–930 in Saccharomyces cerevisiae), and take the form LL-
xu-L, where L stands for leucine, u is a hydrophobic residue, and
x represents any amino acid. We identified 347 motifs in these
sequences that exactly matched the LL-xu-L pattern
(Supplementary Figure S1). As shown in Figure 1B, HLMs are the
most conserved sequence segments within the intrinsically disor-
dered C-terminal domain of Dcp2. However, their number sub-
stantially varies from a minimum of three in Lodderomyces
elongisporus to a maximum of 16 in Kuraishia capsulata
(Supplementary Table S1). Importantly, the number of HLMs
increases with the length of the disordered C-terminal domain of
a Dcp2 sequence (Figure 1C; Spearman correlation, R¼ 0.44,
P¼ 0.0017). The average and median length of the spacer seg-
ments that separate HLMs are �70 and �51 amino acids. Based
on these observations, we hypothesized that the scaling between
the number of HLMs and the length of the disordered domain (1
HLM in �70 residues) reflects a requirement for a characteristic
sequence length that separates sticker motifs. We tested this hy-
pothesis by asking whether this characteristic sequence length
may be subject to natural selection.

To understand the evolutionary forces that shape the scaling
between the number of HLMs and the length of the C-terminal
domain in Dcp2, we determined the likelihood that HLMs arise by
chance through neutral evolution. To this end, we simulated
neutral protein sequence evolution using realistic divergence
times of real Dcp2 sequences (see Methods for details). We found
that neutral evolution can indeed create motifs that exactly
match known HLMs (Supplementary Figure S2 and Dataset S2),

but the fraction of these neutrally evolved HLMs per unit se-
quence length was much lower than that of HLMs in real sequen-
ces. Specifically, neutral evolution creates only one HLM per
�1500 amino acids. In other words, HLMs in neutrally evolving
sequences are �35 times less frequent than in real Dcp2 sequen-
ces (Figure 1D). We recalculated the fraction of HLMs per unit of
sequence length for various codon frequencies, nonsynonymous
substitution rates, and values of transition/transversion bias
(Supplementary Dataset S2). In all these calculations, we found a
substantially higher incidence of HLMs per unit of sequence
length in biological sequences compared to sequences evolved by
neutral evolution (Supplementary Table S2).

We also compared the distribution of spacer lengths (seg-
ments that separate HLMs) in the C-terminal domain of Dcp2
orthologs with that of neutrally evolved sequences. The median
length of spacers is 81 amino acids in neutrally evolved sequen-
ces, significantly higher than the 51 amino acids in biological
Dcp2 sequences (P � 10�6; Wilcoxon ran-sum test; Figure 1E). In
addition, spacer lengths are significantly more variable in neu-
trally evolved sequences compared to the biological Dcp2 pro-
teins (P � 10�7, one-sided F-test for the equality of variances), and
their length distributions are significantly different (P � 10�8;
Kolmogorov–Smirnov test). Altogether, these results show that
evolution has not only increased the incidence of HLMs in Dcp2
sequences but also has stabilized the lengths of sequences that
separate HLMs.

To find out whether the scaling of sticker number with the
length of a disordered region is a more general property, we next
studied the FET family of proteins in vertebrates. We identified

Figure 1 The length scale of multivalent interactions is evolutionary conserved in fungi species Dcp2. (A) Architecture of Dcp2 in S. cerevisiae with the
regulatory domain (in red), the NUDIX catalytic domain (in orange), and the disordered C-terminal domain (in white). Within the disordered C-terminal
domain helical leucine-rich short linear motifs are responsible for the multivalency of Dcp2. (B) Multiple sequence alignment of the C-terminal domain
of Dcp2 in 48 fungal species within the phylum of Ascomycota spanning �600 million years of evolution. HLMs, shown as blue columns, are highly
conserved within the C-terminal domain of Dcp2. (C) The number of HLMs positively correlates with the length of the C-terminal domain of Dcp2 in
fungi (Spearman correlation; R¼ 0.44, P ¼ 0.0017). (D) The incidence of HMLs in biological sequences (shown in red) is �35 times higher than that of
neutrally evolved sequences (shown in blue). (E) The distribution of spacer lengths (sequences that separate HLMs) in real Dcp2 sequences (shown in
red), and in neutrally evolved sequences (shown in blue). We compared the two distributions and calculated the P-value for rejecting the null hypothesis
that these distributions are indistinguishable by Kolmogorov–Smirnov (KS) test.
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�200–300 orthologs for each of the six FET proteins and compiled
a set of 1480 sequences of these proteins (Supplementary Dataset
S3). Analogous to Dcp2 and its HLMs, we observed that longer
FET proteins have more arginine (R) and tyrosine (Y) sticker resi-
dues in their PLD (Figure 2A, Spearman correlation, R¼ 0.8,
P< 10�16). Importantly, among all 20 amino acids, the number of
Rs and Ys showed the highest correlation with sequence length
(Figure 2B; adjusted R2 � 0.81, and 0.70 in a linear model with
fivefold cross-validation and 10 replicates). In sum, the scaling of
multivalency with the lengths of disordered domains is not
unique to Dcp2 in fungi. It also exists in the FET protein family of
vertebrates.

We further examined the spacer lengths that separate Ys and
Rs in the sequence of FET proteins to find out whether natural se-
lection has influenced the number of stickers per unit sequence
length. We compared the distance distribution of both R and Y
residues in FET proteins with that of neutrally evolved sequences
(see Methods for details). For both amino acids, the distribution of
distances between tyrosine residues in FET proteins is signifi-
cantly less variable than that of neutrally evolved sequences (see
Figure 2C for spacers between tyrosine residues; P< 10�16;
Kolmogorov–Smirnov test, and Supplementary Figure S3 for
spacers between arginine residues). The median distance be-
tween tyrosine residues is seven amino acids for FET proteins,
which is significantly less than the corresponding distance of 13
amino acids in neutrally evolving proteins (P � 10�6; Wilcoxon
rank-sum test). In addition, the distance distribution of FET pro-
teins is much more sharply peaked (leptokurtic, Figure 2C) and
significantly differed from neutrally evolved sequences (P � 10�8;
Kolmogorov–Smirnov test).

Our next analyses studied two further factors that are impor-
tant in protein evolution. The first one is variation in the length
of proteins caused by indels. To find out what role such length
variation may play, we generated new sets of simulated sequen-
ces with two widely used models, namely the Qian–Goldstein
model (Qian and Goldstein 2001) and the Zipfian model (Chang
and Benner 2004), to represent the distribution of indels in

evolving proteins more realistically. The Qian–Goldstein and the
Zipfian models use a multiexponential distribution with four dis-
tinct components and a Zipf distribution, respectively, to model
newly arising indels in protein sequences. The second factor we
studied is variation in the evolutionary rates of protein residues,
also known as among-site-rate-variation (Yang 1996). We used a
gamma distribution with the shape parameters of 0.5 and 1 to
model the variation of evolutionary rates among protein sites. In
the resulting simulated sequences, spacer length varied from �
28 6 28 to 30 6 29 amino acids, and was thus substantially greater
than spacer length for FET proteins (�13 6 18). The distributions
of spacer length were also broader (Supplementary Figure S5),
and distinct from the sharply peaked distribution of spacer
lengths in naturally occurring FET proteins (Supplementary
Table S4, P< 10�16; Kolmogorov–Smirnov test). Altogether, these
results suggest that natural selection has likely stabilized this
distance distribution in FET proteins.

Next, we asked why the scaling of the number of stickers may
be conserved, focusing on the hypothesis that it helps maintain a
network of protein interactions that is necessary for condensa-
tion and phase separation (Harmon et al. 2017). To maintain this
interaction network, it can often be energetically favorable for
disordered sequences to adopt compact conformations. The rea-
son is that this type of conformation substantially increases the
chance of interactions between stickers (Harmon et al. 2017). We
thus wanted to find out whether this ability exists in our pro-
teins.

To this end, we first calculated the fraction of charged resi-
dues (FCR) in the spacers that separate HLMs in Dcp2 in the PLD
of FET proteins. The FCR is a proxy for effective solvation and
hence for the conformation of disordered spacers (Harmon et al.
2017). Previous studies have suggested that spacers where fewer
than half of the residues are charged can self-associate, and drive
the formation of a condensation-promoting network of interac-
tions, although the determinants of spacer dimensions are inher-
ently complex and multifaceted (Pappu et al. 2008; Das and
Pappu 2013; Harmon et al. 2017; Choi et al. 2020; Bremer et al.

Figure 2 The length scale of multivalent interactions is evolutionary conserved in the FET family of vertebrate proteins. (A) The number of arginine (R)
and tyrosine (Y) residues of six different FET family members and their orthologs in vertebrate species (1180 proteins overall) vs their sequence length.
(B) The coefficient of determination (R2) between the number of different amino acids and the length of FET proteins and their orthologs. For a robust
estimation of R2, we used a linear regression model with fivefold cross-validation that we repeated 10 times. (C) The distribution of distances between
tyrosine residues in FET proteins (shown in red), and in neutrally evolved sequences (shown in blue). We compared the two distributions and calculated
the P-value for rejecting the null hypothesis that these distributions are indistinguishable by Kolmogorov–Smirnov (KS) test.
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2021; Figure 3A). As shown in Figure 3, B and C, we found that al-
most all spacers in Dcp2 and FET proteins have a FCR between
0.2 and 0.4, indicating that they are able to adopt compact con-
formations.

To complement our analysis of the fraction of charge residues
in Dcp2 sequences, we further identified the molecular features
of Dcp2 that have likely evolved under selection using the
method proposed by Zarin et al. (2017, 2019) In brief, this method
compares the distribution of different molecular features to a
null expectation that is generated by simulating the evolution of
disordered proteins. In this method, deviations in each molecular
feature between naturally occurring orthologs of a protein of in-
terest and a set of simulated sequences (measured by a z-score)
indicate that selection has likely acted on that specific molecular
feature. Consistent with our observations thus far, we found
that the FCR is under selection in the evolution of Dcp2
(Supplementary Figure S6, z-score¼�11.35, P< 10�16; standard
normal distribution).

Second, we predicted a structural feature of disordered
sequences known as the D-parameter. This parameter is the av-
erage difference between the inter-residue distances of a disor-
dered sequence and the corresponding distances of a typical
Flory random coil (Harmon et al. 2017). It is calculated by molecu-
lar simulations (see Harmon et al. 2017) for a comprehensive de-
scription of the relevant procedures). Flory random coils are an
idealized kind of disordered sequences in which the attractive
and repulsive forces between residues and solvent molecules are
at balance. Spacers that self-associate and promote phase

separation are characterized by D � 0.1. As D increases beyond
0.1, spacers adopt more extended conformations, resembling an-
other type of idealized sequence known as a self-avoiding ran-
dom coil (Figure 3A).

We developed a sequence-based classifier of D using a random
forest algorithm (Figure 3D), which classifies spacers based on
their amino acid properties into two classes, those with D > 0.1,
and those with D � 0.1 (see Methods for details). We trained this
classifier on a dataset of 256 naturally occurring disordered
sequences whose D values had been previously calculated by mo-
lecular simulations (Harmon et al. 2017).

This classifier achieved an accuracy of �0.88 in 100 indepen-
dent runs with the data split into a training set (80% of the data)
and a testing set (20%) (Supplementary Figure S4, see Methods for
details). It revealed three most important amino acid features for
classifications. The first is the similarity of the composition of
spacers to the composition of mitochondrial proteins. The second
is the propensity to form beta-structures. The third is the transfer
free energy of peptides from bilayer interfaces to water
(Supplementary Table S4). The compositions of compact spacers,
i.e., spacers with D � 0.1, were on average more like those of mi-
tochondrial proteins (with a higher fraction of N, L, I, L, S, T, F, Y).
In addition, such spacers had a higher propensity to form beta
structures, and a lower propensity to leave bilayer interfaces and
enter aqueous solutions.

Note that our classification of spacer conformations using
amino acid propensities was substantially more accurate (accu-
racy �88%) than that of classification with the FCR alone

Figure 3 The disordered spacers in fungal Dcp2 and vertebrates FET proteins adopt conformations that promote phase-separation. (A) The FCR can
distinguish the conformations of spacer segments in multivalent proteins. Proteins with FCR >0.5 preferentially adopt extended conformations like
idealized self-avoiding random coils. Proteins with FCR <0.3 can form compact globules. Sequences with intermediate values of FCR form
conformations similar to Flory random coils, where the net attractive and repulsive forces between residues and solvent molecules are in balance. The
FCR for (B) fungal Dcp2 sequences, and (C) vertebrate HNRNPA1a, a member of the FET family. (D) Schematic for machine-learning random-forest
classification to classify spacer types from their amino acid sequence. In brief, we used the sequences of naturally occurring disordered sequences that
connect different domains, calculated the average of 500 amino acid properties for each sequence, and used this dataset to classify these sequences into
the two categories of self-avoiding random coils, and Flory-random coils and compact globules. (E) The fraction of spacers that adopt compact
conformations (Flory random coils, and compact globules), and those that adopt extended conformations (self-avoiding random coils) in fungal Dcp2
and vertebrate FET proteins.
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(accuracy �50%). This result further supports the notion that se-
quence determinants of chain compaction are complex and not
just a function of the FCR (Das and Pappu 2013). Indeed, sequen-
ces with a FCR far below 0.5 (Fuertes et al. 2017; Riback et al. 2017),
and even sequences without charged residues, such as Gly-Ser
linkers (Sørensen and Kjaergaard 2019; Dyla and Kjaergaard
2020; Tsang et al. 2020), can behave as Flory random coils.

Using our random forest classifier, we found that �94.8% of
all spacers in Dcp2 have a predicted value of D below 0.1. We re-
peated this analysis for the spacers in the PLD of the FET proteins
and found that in these proteins too, most spacers (�99.3%) have
a predicted D � 0.1. Altogether, these results indicate that both
fungal Dcp2 sequences and vertebrate FET proteins have spacers
that can self-associate and promote phase separation in these
proteins.

In summary, our work reveals that evolution has maintained
a characteristic length scale of multivalent sticker sequences in
two classes of multivalent proteins during �600 million years of
evolution. Our results extend previous observations that the
number and patterning of stickers, as well as the composition of
spacers within intrinsically disordered domains of phase-
separating proteins, are important features and likely conserved
in their evolution. For example, Martin et al. showed that a uni-
form patterning of tyrosine residues in some FET proteins pro-
motes phase separation, and inhibits the aggregation of these
proteins (Martin et al. 2020). A further compositional analysis of
the PLD of hnRNPA1 shows that the compositional biases of this
protein domain are similar across PLDs of its distant homologs
(Bremer et al. 2021). Also, Schmidt et al. (2019) demonstrated that
the number and spacing of sticker hydrophobic clusters in TDP-
43, another member of the FET family, are evolutionary con-
served. Such conservation reflects the optimal condition for con-
densate formation and localization of this protein to the nucleus.

The substantial variation in the sequence length and multiva-
lency of both of our phase-separating protein classes seems sur-
prising from the standpoint of polymer physics, if one assumes
that the saturation concentration of our phase-separating pro-
teins is under selection. Increasing the length of associative poly-
mers while keeping the density of stickers fixed will decrease the
driving force for phase separation, because a longer polymer face
a higher entropic barrier to phase separate. Therefore, longer
multivalent proteins should have a lower propensity to phase
separate. However, this lower propensity can be compensated in
other ways, such as a change in gene expression, the composition
of spacers, or post-translational modifications. Indeed, such com-
pensation between the length of an intrinsically disordered pro-
tein and its composition has been observed recently in the
adenovirus early gene 1A protein (Gonzalez-Foutel et al. 2021). In
addition, it is also possible that the saturation concentration of
phase-separating proteins is not under selection, and that the
phase-separation behavior of our proteins deviates from that of
homo-polymers. Future computational and experimental work
will be needed to study the consequences of variation in multiva-
lency.

Dcp2 plays an important role in the assembly of RNA P-bodies,
and FET proteins play such a role in the assembly of stress gran-
ules. Biomolecular condensates like these are sensitive to envi-
ronmental stressors such as heat shock and energy depletion
(O’Connell et al. 2014; Boeynaems et al. 2018; Franzmann and
Alberti 2019; Zarin et al. 2019). Our results thus also raise the in-
triguing possibility that evolution may have modulated the mul-
tivalency of proteins in membrane-less organelles to help
organisms cope with new environments. Two recently studied

proteins that support this possibility are the fungal translation
initiation factor Ded1p, and the plant prion-like protein FLOE1,
which regulates seed germination when plants face water stress.
Specifically, the temperature onset of phase separation of Ded1p
correlates with the maximum growth temperature of three fun-
gal species (Iserman et al. 2020). FLOE1, which phase separates
upon hydration in Arabidopsis thaliana, shows natural variation in
this propensity that correlates with enhanced germination. The
molecular causes of such adaptations pose an exciting problem
for future work.

Data availability
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com/dasmeh/multivalency_evolution

Supplementary material is available at GENETICS online.
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