Table 3.
Validation dataset | LR | NB | RF | ||||
---|---|---|---|---|---|---|---|
AUC | ACC | AUC | ACC | AUC | ACC | ||
Finger tapping | |||||||
Single hand | Amplitude_mean | 0.472 | 0.333 | 0.583 | 0.500 | 0.458 | 0.500 |
(unilateral)l | Amplitude_std | 0.583 | 0.500 | 0.472 | 0.500 | 0.458 | 0.417 |
Speed | 1.000 | 1.000 | 0.833 | 0.667 | 0.750 | 0.667 | |
Fatigue | 0.722 | 0.583 | 0.611 | 0.583 | 0.417 | 0.500 | |
Two-hands | Amplitude_mean | 0.777 | 0.750 | 0.750 | 0.500 | 0.556 | 0.417 |
(bilateral) | Amplitude_std | 0.444 | 0.500 | 0.500 | 0.583 | 0.597 | 0.583 |
Speed | 0.208 | 0.500 | 0.125 | 0.250 | 0.458 | 0.417 | |
Fatigue | 0.500 | 0.416 | 0.222 | 0.500 | 0.556 | 0.500 | |
Hand movements | |||||||
Single hand | Amplitude_mean | 0.639 | 0.667 | 0.417 | 0.500 | 0.528 | 0.583 |
(unilateral) | Amplitude_std | 0.278 | 0.500 | 0.222 | 0.333 | 0.486 | 0.417 |
Speed | 1.000 | 1.000 | 0.972 | 0.917 | 0.778 | 0.583 | |
Fatigue | 0.472 | 0.417 | 0.750 | 0.583 | 0.556 | 0.583 | |
Two-hands | Amplitude_mean | 0.750 | 0.667 | 0.528 | 0.667 | 0.292 | 0.250 |
(bilateral) | Amplitude_std | 0.472 | 0.500 | 0.528 | 0.417 | 0.708 | 0.667 |
Speed | 0.389 | 0.417 | 0.389 | 0.500 | 0.056 | 0.250 | |
Fatigue | 0.333 | 0.417 | 0.500 | 0.417 | 0.569 | 0.583 | |
Pronation-supination movement of the hands | |||||||
Single hand | Amplitude_mean | 0.917 | 0.667 | 0.778 | 0.750 | 0.667 | 0.417 |
(unilateral) | Amplitude_std | 0.944 | 0.917 | 0.889 | 0.917 | 0.889 | 0.833 |
Speed | 0.750 | 0.750 | 0.417 | 0.250 | 0.611 | 0.667 | |
Fatigue | 0.444 | 0.417 | 0.611 | 0.500 | 0.778 | 0.750 | |
Two-hands | Amplitude_mean | 0.833 | 0.750 | 0.861 | 0.833 | 0.542 | 0.500 |
(bilateral) | Amplitude_std | 0.611 | 0.750 | 0.861 | 0.750 | 0.625 | 0.583 |
Speed | 0.611 | 0.583 | 0.750 | 0.750 | 0.750 | 0.750 | |
Fatigue | 0.306 | 0.333 | 0.583 | 0.583 | 0.306 | 0.500 |
Validation results of the combined right and left motor features for PD classification. The validation was made using three classifiers: Logistic regression (LR), Gaussian Naïve-Bayes (NB), and Random Forest (RF). Features with cross-validation AUC > 0.6 are highlighted in bold. Units: normalized amplitude [0–1] for finger tapping and hand movements; amplitude (degrees) for pronation supination for amplitude features. Time (frames), for speed in all the tasks. AUC, cross-validation area under curve; ACC, accuracy.