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Abstract

The application of closed-loop approaches in systems neuroscience and therapeutic stimulation 

holds great promise for revolutionizing our understanding of the brain and for developing novel 

neuromodulation therapies to restore lost functions. Neural prostheses capable of multi-channel 

neural recording, on-site signal processing, rapid symptom detection, and closed-loop stimulation 

are critical to enabling such novel treatments. However, the existing closed-loop neuromodulation 

devices are too simplistic and lack sufficient on-chip processing and intelligence. In this paper, 

we first discuss both commercial and investigational closed-loop neuromodulation devices for 

brain disorders. Next, we review state-of-the-art neural prostheses with on-chip machine learning, 

focusing on application-specific integrated circuits (ASIC). System requirements, performance and 

hardware comparisons, design trade-offs, and hardware optimization techniques are discussed. 

To facilitate a fair comparison and guide design choices among various on-chip classifiers, we 

propose a new energy-area (E-A) efficiency figure of merit that evaluates hardware efficiency and 

multi-channel scalability. Finally, we present several techniques to improve the key design metrics 

of tree-based on-chip classifiers, both in the context of ensemble methods and oblique structures. 

A novel Depth-Variant Tree Ensemble (DVTE) is proposed to reduce processing latency (e.g., 

by 2.5× on seizure detection task). We further develop a cost-aware learning approach to jointly 

optimize the power and latency metrics. We show that algorithm-hardware co-design enables the 

energy- and memory-optimized design of tree-based models, while preserving a high accuracy 

and low latency. Furthermore, we show that our proposed tree-based models feature a highly 

interpretable decision process that is essential for safety-critical applications such as closed-loop 

stimulation.
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I. Introduction

Developing novel non-pharmacological treatments such as neurostimulation is becoming 

increasingly important to treat some of the most prevalent and intractable neurological 

disorders. Brain stimulation is currently the most common surgical treatment for movement 

disorders and has shown promise in epilepsy, neuropsychiatric disorders, memory, chronic 

pain, and traumatic brain injury, with new applications rapidly emerging. Despite promising 

proof-of-concept results, current clinical neurostimulators are limited in many aspects. For 

example, while deep-brain stimulation (DBS) can effectively control motor symptoms in 

most patients suffering from Parkinson’s disease (PD), it causes persistent side effects (e.g., 

speech impairment and cognitive symptoms) [1], [2]. It is now widely known that this is due 

to the conventional ‘open-loop’ approach, which involves delivering constant high-frequency 

(~130Hz) stimulation regardless of the patient’s clinical state. In addition, open-loop 

stimulation increases the power consumption and the need for surgical battery replacement. 

This simplistic open-loop approach is also a key limiting factor in designing clinically 

effective stimulation for more complex disorders such as depression [3], Alzheimer’s disease 

[4], and stroke [5], [6], among others [5], [7], [8].

To further leverage the benefits of stimulation and address the aforementioned limitations, 

closed-loop neuromodulation techniques have been recently explored, such as the responsive 

neurostimulator for epilepsy [9] and PD [10], with promising results. In this approach, 

stimulation is dynamically controlled according to a patient’s clinical state, either with 

a continuous (i.e., adaptive) or an on-off (i.e., on-demand) strategy. Through feedback 

from relevant biomarkers of a neurological symptom (e.g., a seizure event, tremor episode, 

or mood change), closed-loop stimulation can titrate charge delivery to the brain, thus 

reducing the side effects and the amount of stimulation delivered, enhancing the therapeutic 

efficacy and battery life compared to its open-loop counterparts [2]. However, several critical 

challenges remain to be addressed in order to fully exploit the potential of closed-loop 

therapies for neurological disorders. The existing closed-loop devices mainly rely on simple 

comparison of a pre-selected biomarker (typically from 1 out of 4 channels) against a fixed 

threshold. Such simplistic approaches are known to be suboptimal in terms of predictive 

accuracy, resulting in low sensitivity and high false alarm rates, while exacerbating other 

symptoms [8]. Multiple biomarkers and control loops may be necessary to reliably improve 

symptoms, leading to design complexity.

A promising solution to address this challenge is to implement a machine learning (ML) 

algorithm directly on the implant or wearable to predict the onset or severity of neurological 

symptoms, an approach that has gained significant interest in recent years [11]-[18]. Real-

time symptom control can be achieved through on-chip biomarker extraction and ML-based 

disease state detection, followed by a closed-loop intervention (e.g., electrical, magnetic or 
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optical stimulation, drug delivery) to suppress the abnormal activity, as illustrated in Fig. 

1. This approach offers significant advantages over the conventional wireless transmission 

and external processing methods [19], [20] that suffer from feedback loop latency, high 

power consumption due to continuous telemetry, security and privacy concerns [21], [22]. 

A number of clinical trials have recently shown the advantage of machine learning-based 

control for closed-loop stimulation in movement disorders, epilepsy, and memory [4], 

[23]. In addition, machine learning systems have been developed to forecast the onset 

of neurological symptoms during preictal phase, allowing sufficient time prior to seizure 

manifestation (e.g., in the order of several minutes) to provide early warnings to the patients 

and caregivers [24]-[26]. In closed-loop neural prostheses, however, both the ML decoder 

and neurostimulator are integrated on the implant, eliminating the need for excessively long 

symptom prediction horizons [27]. Therefore, most closed-loop devices train the classifier 

to differentiate ictal epochs from interictal period, several seconds prior to symptom onset 

[28]. Such systems detect the onset and termination (i.e., offset) of neurological symptoms 

to precisely control the delivery of stimulation [13].

Despite the benefits of using machine learning for closed-loop intervention, strict power 

and area requirements on an implantable or wearable device pose critical challenges for 

hardware realization of ML algorithms, particularly in the form of a miniaturized ASIC. 

The choice of learning algorithm and neural biomarkers affects the prediction accuracy 

and latency. Moreover, the prediction accuracy depends on the spatial resolution of the 

recording system and the number of input channels. Thus, there is a crucial need to develop 

high-performance, energy- and area-efficient biomarker extraction and ML solutions that are 

scalable to high channel counts and satisfy the implantable/wearable power budget and form 

factor.

In this paper, we review the state-of-the-art neural prostheses with embedded 

biomarker extraction and machine learning. We first discuss the closed-loop system 

components, requirements for the next-generation smart neural prostheses, their clinical 

applications, hardware techniques and trade-offs. Commercial and investigational closed-

loop neuromodulation devices and a comparison of previously reported system-on-chips 

(SoCs) for neural signal classification are presented. In the second part of this paper, we 

discuss an emerging class of machine learning algorithms based on decision trees [12], 

[22], [29]-[31], including tree ensembles and oblique trees, that are particularly suitable for 

energy- and area-constrained platforms such as brain implants and wearables. We introduce 

novel techniques to improve the accuracy-latency trade-off in tree ensembles. A new class 

of tree-based models that effectively combine decision trees (DTs) with neural networks 

is further discussed. After presenting various techniques for energy, latency, and memory-

efficient realization of oblique trees, we present the results of testing these models on two 

neural signal classification tasks relevant to closed-loop stimulation (epilepsy and PD).

It should be noted that closed-loop neural prostheses with on-chip intelligence are also 

being explored in the context of fully implantable brain-machine interfaces (BMI) [30], 

[32]-[35]. Such BMI systems can provide a sensory feedback to the brain and/or control 

prosthetic devices to restore lost motor or sensory function in paralyzed patients. However, 

the focus of this paper is on neural prostheses that directly record and modulate the brain 
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activity to treat neurological disorders, while motor neuroprosthetics (i.e., BMIs or brain-

computer interfaces, BCI), peripheral [36] and spinal cord prostheses [37] (e.g., EMG-based 

interfaces) are beyond the scope of this paper. Furthermore, we limit our review to those 

systems that focus on ASIC implementation of neurological symptom detection algorithms 

(either validated on, or with a potential for closed-loop stimulation) due to similarity in 

design requirements. Thus, FPGA-based systems are not included in this review. While 

the focus of this review is on CMOS-based edge machine learning specifically for neural 

prostheses, a comprehensive review on embedded hardware (FPGA, neuromorphic, CMOS) 

for neural networks used in biomedical applications can be found in [38].

This paper is an extension of our conference paper [22] that presented a brief survey 

on closed-loop neural interface systems with on-chip machine learning and provides the 

following contributions:

• A comprehensive review on the latest developments in technology design for 

closed-loop stimulation, including novel electrodes for sensing and stimulation, 

emerging clinical applications, commercial, research-based and investigational 

devices for closed-loop stimulation.

• A detailed review of the reported neural interface SoCs with on-chip machine 

learning for neurological disease detection, either as a stand-alone chip or as part 

of a closed-loop system (implantable and wearable).

• Future directions for the next-generation closed-loop neural prostheses, including 

the integration of advanced design techniques, accommodating high channel 

counts and the need for online learning.

• Novel algorithm-hardware co-design techniques for next-generation energy-

efficient neural prostheses. Specifically, we present a range of methods for cost-

aware implementation of tree-based classifiers in brain implants and validate 

them on human neurophysiological datasets.

II. Closed-loop Neural Prostheses: Recent Trends, System Requirements, 

and Trade-offs

In a closed-loop neural prosthesis (Fig. 1), neurostimulation is triggered to suppress the 

impending signs of a neurological disease. Research on closed-loop neurostimulation has 

gained momentum in recent years, particularly with the success of proof-of-concept studies 

on epilepsy [43] and PD [1], [44], [45]. Closed-loop approaches are now being explored 

to treat a variety of medication refractory brain disorders where open-loop stimulation has 

been less effective. Yet, major technological challenges have limited the efficacy and clinical 

translation. These challenges include the low channel count of the current devices, the effect 

of stimulation artifacts on the sensing circuits, the need for miniaturization and improved 

energy efficiency, and the need for more advanced control algorithms [2], [8], [22]. Next-

generation closed-loop neuromodulation systems will require significant improvements in 

the existing devices. For instance, higher numbers of recording and stimulation channels will 

be necessary for disorders that require multi-site neural recording and manipulation. More 
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sophisticated processing algorithms and complex stimulation patterns will be beneficial 

to improve therapeutic outcomes. However, this will increase the design complexity and 

required on-chip resources for symptom detection and stimulation, as well as the required 

processing time. Better localization of target regions for effective stimulation and improved 

stimulation artifact cancellation are also critical for bidirectional neural prostheses. In this 

paper, we discuss the major challenges and review the most recent advances in the field, 

with a particular focus on machine learning-embedded implantable and wearable systems.

A. Sensing and Stimulation

High-density neural recording and multi-site neurostimulation with low-power miniaturized 

circuits are crucial for the next-generation closed-loop neural prostheses. Particularly, 

complex disorders such as depression and Alzheimer’s disease (AD) need multi-site rather 

than single-site recording that calls for more intelligent, data-driven closed-loop systems 

with high-density sensing and stimulation capabilities.

1) Conventional and Emerging Electrodes for Sensing and Stimulation: In a 

neural prosthesis, the electrophysiological activity of the brain can be recorded through 

various noninvasive, minimally-invasive, or invasive electrodes such as scalp EEG, subscalp 

EEG [39], electrocorticography (ECoG), also known as intracranial EEG (iEEG), stereo-

EEG (sEEG) [41], [46], and deep-brain leads, providing various degrees of spatial and 

temporal resolution (Fig. 2). In some cases and predominantly in implantable prostheses, 

the same electrode can be used for delivering electrical stimulation to the brain to suppress 

disease symptoms.

The EEG electrodes have a cm-range distance and are noninvasive. Both scalp and subscalp 

EEG are suitable for wearable settings, with electrodes placed either above (scalp EEG) or 

under the scalp (subscalp EEG). Subscalp electrodes are particularly suitable for chronic 

(i.e., longer than one month) EEG recording in a home environment and require a minimally 

invasive surgery under general anesthesia to implant the subcutaneous electrodes [39]. The 

subscalp approach eliminates the need for constant electrode care (i.e., no need for an 

EEG cap or adhesives electrodes), providing a stable and less obtrusive recording modality 

compared to conventional EEG, Fig. 2(b). Furthermore, subscalp EEG has been shown to 

attenuate several types of artifacts and improve (or at least maintain) the signal quality 

compared to EEG. However, similar to scalp EEG, it is limited in temporal and spatial 

resolution compared to ECoG (i.e., <100Hz vs. several hundred Hz) and cannot monitor 

deep-brain structures. A number of subscalp EEG systems are currently certified or in 

development for long-term epilepsy monitoring (Section III).

The spacing of ECoG electrodes (epidural or subdural) is typically within mm-range, while 

state-of-the-art ECoG interfaces enable denser recording arrays for high-spatial-resolution 

recording of cortical activity [47]. For instance, it has been shown that high-density μECoG 

with a 400μm pitch outperforms lower density grids in classifying cognitive tasks in humans 

[48], highlighting its potential for future high-performance neuroprosthetic applications. 

High-frequency electrophysiological activity relevant to seizure prediction or epileptic foci 

localization can be captured on high-resolution ECoG from submillimeter scale cortical 
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regions [47], [49]-[51]. These novel electrodes are not yet adopted in diagnostic or closed-

loop devices.

While ECoG provides a precise mapping technique at the level of cortical surface, stereo-

EEG (sEEG) [41] is an alternative minimally-invasive method for identifying seizure onset 

zone in medically refractory focal epilepsy. Placement of stereo-EEG electrodes (typically 

5–15 cylindrical shafts) requires small, localized burr holes to insert depth electrodes into 

the brain. Stereo-EEG enables a sparse sampling of localized brain regions, as opposed to 

the relatively large craniotomy required for strip/grid ECoG implantation [41].

The electrodes on a deep-brain lead (e.g., Medtronic 3387/3389 deep-brain stimulation lead 

with four cylindrical contacts) are placed several millimeters or even 100s of micrometers 

apart to capture the local field potential (LFP) activity (up to several 100 Hz) [42]. The 

leads employed in sEEG are similar to those used for deep brain stimulation (DBS). 

DBS is widely used as a treatment for essential tremor, PD and dystonia, with emerging 

applications in epilepsy, major depression, obsessive-compulsive disorder (OCD), and 

Tourette’s syndrome. While DBS is primarily used for electrical stimulation, the chronic 

efficacy and stability of DBS leads suggest the use of long-term sEEG for sensing 

applications and closed-loop prostheses [41]. In rare cases, single-unit activity captured by 

μDBS leads (100μm spacing [42]) or penetrating microelectrodes such as Utah array can be 

used to detect spike-based biomarkers (e.g., neuronal firing rates correlating with cognitive 

functions) for disease state prediction and guiding neurostimulation therapy [52], [53].

For stimulation, recent DBS electrodes employ directional leads with higher number of 

small contacts (e.g., 16, 40, 1760) as opposed to traditional leads with only four cylindrical 

contacts [8], [42], Fig. 2(e). Such directional leads with segmented electrodes can effectively 

steer the stimulation back toward a missed target structure, without exciting non-target 

regions and inducing adverse effects. Moreover, recent studies report the impact of using 

temporal patterns delivered via multiple contacts in enhancing plasticity and symptom relief 

[8], [42], highlighting the benefits of high-channel-count stimulation.

2) Concurrent Sensing and Stimulation: Accuracy and latency can be enhanced by 

measuring evolving disease state even as therapeutic stimulation is applied. This motivates 

the need for a new class of circuit and system techniques to enable detection of weak 

electrophysiological signals of interest in the presence of orders-of-magnitude stronger 

stimulus artifacts. This general problem of measuring weak signals in the presence of 

extreme self-interference represents a general challenge for modern mixed-signal circuit 

in various sensing and communication applications. The next generation ‘full-duplex’ 

neuromodulation devices must feature simultaneous sensing and stimulation for truly closed-

loop operation.

The most common electrical approach is to use ‘blanking’ [54], [55] where recording 

amplifiers are disconnected from the electrode during and immediately after stimulation, 

and then reconnected after the stimulation artifact will no longer saturate the amplifier. 

Recent improvements allow the amplifier to be connected immediately after stimulation 

[56], using mixed-signal circuit realization of the analog front-end (AFE). However, this 
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method still suffers from its inability to record while stimulating, which is especially 

limiting in complex, multi-electrode stimulation patterns where extended stimulation blocks 

recording over much longer time stretches.

An alternative approach based on high dynamic range (DR) AFE incorporating amplifiers 

and analog-to-digital converters (ADC) can reliably record the neural signal along with the 

persistent artifacts without saturation [57], [58]. Alternatively, the design in [59] proposes a 

linear-interpolation-based artifact cancellation implemented on an FPGA. Another approach 

employs a front-end cancellation technique that avoids using a high DR AFE [60]. However, 

this method requires a significant convergence time (impractical for closed-loop systems). 

Artifact cancellation generally poses additional hardware overhead on the AFE and on 

the back-end for digital cancellation, which limits the area and energy efficiency of the 

closed-loop system.

B. Disease Biomarkers and Machine Learning

While artificial intelligence and machine learning can contribute to various aspects 

of neurotechnology (e.g., optimizing the programming of stimulation to activate target 

regions, offline analysis of chronic neural recordings, understanding the underlying disease 

mechanism), our focus in this paper is on real-time on-device disease state prediction 

using machine learning. This is inspired by the unique potential of ML techniques 

in classifying high-dimensional electrophysiological signals, typically outperforming 

conventional methods in various applications [2], [11], [12], [61]-[64]. Accurate and timely 

detection of symptoms in brain disorders is critical to enable closed-loop neuromodulation, 

and it typically requires the use of correlating biomarkers (i.e., features) of an underlying 

disease state along with a machine learning algorithm. The widely used features in 

electrophysiological studies include the spectral power (or bandpower) in various frequency 

bands relevant to the neurological symptom of interest, time-domain and statistical features 

(e.g., line-length [65], the Hjorth parameters of activity, mobility, and complexity [2], [63], 

[66], number of peaks, peak-to-peak amplitude and peak latency [63]), biomarkers that 

measure connectivity between different brain regions such as phase-amplitude coupling and 

phase locking value [2], [64], [67]-[69], and the correlation structure of multi-channel neural 

data [70].

Some initial steps have been taken recently toward embedding biomarkers and machine 

learning algorithms on brain implants or wearables for disease monitoring and closed-loop 

therapy, and in investigational neuromodulation systems such as Medtronic’s Summit RC+S 

[71] and Percept PC systems, as summarized in the next sections.

1) Classifier requirements – High accuracy, low latency: Symptom detection 

requires high accuracy and low latency. The classification algorithms should be robust in 

handling the typically small amounts of training data in such applications, due to the lack 

of chronic recordings. In some cases, the recording length could be limited to the duration 

of surgery for device implantation (e.g., up to 30 minutes for DBS surgery in PD, several 

days for epilepsy patients undergoing pre-surgery evaluation at the hospital). With the 

increasing interest in devices with chronic recording capability (e.g., the NeuroPace RNS 
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and Medtronic Percept), it is expected that more long-term human data will be available in 

near future, enabling data-driven algorithm and hardware developments.

Depending on the distribution of different classes in a neurophysiological dataset, the 

appropriate measure of accuracy may be used to evaluate the classifier’s performance. 

Sensitivity (i.e., True Positive rate), specificity (i.e., selectivity or True Negative rate), 

accuracy, F1 score, the area under the ROC curve (AUC), and the false alarm rate 

(FAR) are among the commonly used metrics in ML studies on neural datasets. The 

F1 score (i.e., the harmonic mean of sensitivity and precision: 2× (precision×sensitivity)/

(precision+sensitivity), where precision represents the positive predictive value) is 

particularly useful in dealing with imbalanced datasets (i.e., datasets with non-uniform 

distribution of classes), such as EEG or iEEG recordings in epilepsy [12]. Balanced 

accuracy (i.e., the average of sensitivity and specificity) is another metric used for 

imbalanced datasets [64].

Most closed-loop systems rely on external computing for feature extraction and 

classification, which suffers from long loop latency, thus jeopardizing the real-time 

feedback. The on-chip integration of ML can significantly speed up the closed-loop therapy 

and enable feedback loops of msec-range latency. If the feedback is too slow, the detector 

may miss the window of opportunity to trigger or adjust stimulation, resulting in poor 

therapeutic outcomes. More sophisticated processing algorithms may improve the decoding 

accuracy at the cost of increased processing latency.

While ‘latency’ has been used to represent various types of ‘processing delay’ in literature 

(e.g., feature extraction and classification delay resulting from window-based processing), 

the detection latency of a closed-loop system is typically defined as the delay between the 

electrographic, expert-marked, or externally labeled symptom onset and the onset declared 

by the on-chip processor, for instance in detecting seizures in epilepsy [12], [61], [72]-[76] 

or tremor onset in PD [2], [68], [77]. In disorders such as epilepsy, the onset of clinical 

symptoms could be several seconds (in some cases, up to 30 seconds [28]) after the time 

of earliest detectable changes in neural activity. Therefore, therapeutic feedbacks within that 

time frame can be still beneficial for the patients. In other cases, e.g., in movement disorders 

with more rapid changes in electrophysiological state, a low latency (i.e., negative latency or 

lead [2]) is preferred to enable closed-loop stimulation.

2) Classifier requirements – Low power and small area: To enable efficient local 

processing in a brain implant, silicon-realizable ML algorithms that can precisely predict a 

neurological symptom are essential. Neural prostheses with on-device ML do not require 

continuous wireless telemetry. Yet, low-power realization of machine learning algorithms is 

crucial to avoid excessive power dissipation. Optimized use of memory and computational 

resources and compact silicon area are further required to process multiple channels. The 

computational complexity of the classifier (and features) could set a limit on the number of 

input channels, thus hindering its application in more complex disorders.

The conventional implementation of most classification algorithms is resource intensive 

such that devices in existence today [43] sacrifice the classification accuracy and latency to 
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meet the power and size constraints [12]. Some limited processing is embedded in recently 

developed neuromodulation devices, but this applies to 1–4 channels only, requiring external 

classifiers for more accurate symptom detection [71]. There is a crucial need for energy- 

and area-efficient machine learning algorithms via co-design of algorithm and hardware, as 

discussed in the next sections.

3) Neurophysiological Datasets: In contrast to computer vision tasks that benefit 

from standard datasets for direct benchmarking of machine learning models, the 

electrophysiological datasets used in disease prediction tasks are diverse and not directly 

comparable. Furthermore, these datasets include different numbers of patients with various 

levels of symptom detection complexity, making it challenging to compare classifiers 

evaluated on the same dataset but on different patients. Another critical challenge is the lack 

of data sharing and open-source datasets in emerging applications beyond epilepsy (e.g., 

movement disorders, depression, Alzheimer’s disease), which greatly limits the development 

of biomarkers and ML solutions and subsequent device implementation for such disorders.

III. Commercial and Investigational Closed-loop Devices

One of the few platforms currently available for closed-loop stimulation is the NeuroPace’s 

Responsive Neurostimulator (RNS) for medication-refractory epilepsy (Fig. 3(a)). RNS 

continuously analyzes cortical activity to detect and halt seizure events from 4 channels, by 

comparing a simple pre-selected feature (signal intensity, line-length, or half-wave) against 

a threshold [43], [78], and it is currently in clinical use in patients. Both cortical and 

deep-brain stimulation are enabled in RNS (8 channels). The recently published results of a 

nine-year, multi-center chronic study of RNS device on 230 patients in 34 epilepsy centers 

[79] showed significant reductions in seizure rates: 75% median reduction, at least 50% 

reduction in 73% of patients. The sudden unexpected death in epilepsy (SUDEP) was also 

significantly reduced. The responsive neurostimulation was a well-tolerated treatment, with 

a similar safety profile to other epilepsy procedures.

Similarly, Medtronic’s investigational Activa PC+S, Summit RC+S [71] and Percept PC 

system (Fig. 3(c)) are capable of sensing and closed-loop stimulation for movement 

disorders such as essential tremor and PD. Compared to RNS, the Medtronic devices 

implement slightly more complex spectral analysis and a linear classifier, relying on only 4 

sensing channels with 2–8 features in total, and 8–16 stimulation channels. For both RNS 

and Medtronic devices, external algorithms with advanced machine learning capabilities 

may be necessary for more accurate symptom tracking [71], [80], at the cost of long loop 

latency and high power demands to support continuous wireless streaming [12], [31].

The AspireSR 106 (LivaNova) is an implantable Vagus Nerve Stimulator (VNS) with an 

optional AutoStim mode in which the VN stimulation can be adjusted in response to 

ictal heart rate changes which are potentially associated with an impending seizure (Fig. 

3(b)) [81]. In a study on the efficacy of open-loop VNS on 5554 patients [82], a growing 

increase in seizure freedom was observed post therapy, with 49% responding to treatment 

0–4 months after implantation (i.e., >50% seizure frequency reduction). The efficacy of 

closed-loop AspireSR versus the preceding open-loop device was recently studied, where 4 
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(from 11) patients who were less responsive to the open-loop VNS achieved >50% seizure 

reduction [83]. Of note, there have been reports on the Federal Drug Administration (FDA) 

device recall for different models of VNS due to concerns on device malfunctions.

In addition to the devices described above, there is an increasing effort in developing 

novel closed-loop stimulation devices for a variety of brain disorders. One example 

is the AlphaDBSTM system [84], which recently received the CE mark approval to 

treat Parkinson’s disease (Fig. 3(d)). This closed-loop system developed by Newronika 

(S.p.A, Milan, Italy) can record deep-brain local field potentials and adjust the stimulation 

amplitude and frequency. DyNeuMo (Bioinduction, Bristol, UK) is a closed-loop 

neuromodulation research device that can titrate stimulation according to the current motor 

state (e.g., posture and activity) [85] (Fig. 3(e)). The device uses off-the-shelf consumer 

technology and embeds three-axis accelerometer sensors and 8-channel programmable 

neurostimulators, and is currently in preparation for first-in-human research trials.

Minimally-invasive signal modalities such as subscalp EEG are also being considered for 

long-term epilepsy monitoring. For instance, the Epios device (Wyss Center for Bio and 

Neuroengineering, Geneva, Switzerland) [39] enables both focal recording and full-montage 

coverage using subscalp EEG for chronic seizure analysis and forecasting (Fig. 2(b)). The 

EEG data is wirelessly transmitted to a wearable unit and temporarily stored, supporting 

multimodal ECG, audio, and accelerometry recording. Signals are then transmitted to 

the cloud for long-term data analysis and visualization. The Epios device is currently in 

preparation for clinical trial phase. The Minder device (Epi-Minder, Melbourne, Australia) 

[39] implants an electrode lead across the skull to cover both hemispheres (Fig. 3 (g)). This 

subscalp system provides continuous long-term measurement of EEG for chronic epilepsy 

diagnosis and monitoring (clinical trial in progress). Alternatively, in the EASEE system 

by Precisis (Heidelberg, Germany) five subscalp electrodes are implanted above the seizure 

focus for sensing and closed-loop neurostimulation with a personalized setting (clinical trial 

in progress) [39].

IV. Neural Prostheses with On-chip ML

In recent years, the application of machine learning techniques in closed-loop 

neuromodulation and its CMOS implementation have received considerable interest. 

Machine learning has been used to more accurately predict optimal stimulation times [2], 

[13], [16], [64], [86] and several clinical studies have shown the advantage of ML-based 

closed-loop therapy in movement disorders [23], epilepsy [87], and memory [4]. The most 

prominent benefits of integrating machine learning algorithms on a brain implant include:

• Eliminating the need for excessive wireless transmission for external processing, 

thus allowing design miniaturization, lower power dissipation, and higher 

mobility.

• Increasing patient independence and alleviating security concerns by avoiding 

the transmission of private data.

• Improving symptom prediction accuracy and latency.
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The latter advantage largely depends on the number of sensing channels, the quality of 

neural signal (e.g., its sampling rate and signal-to-noise ratio), the choice of machine 

learning algorithm and neural biomarkers, and the chronic robustness of the algorithm. As 

mentioned in the previous section, current clinical devices do not offer sufficient embedded 

biomarker extraction and ML, relying on telemetry and cloud-based processing for accurate 

symptom prediction.

Various hardware implementations of machine learning algorithms have been reported for 

neurological symptom detection, as discussed below. Here, we limit our review to state-of-

the-art neural prostheses with an ASIC implementation, validated on animal or human 

datasets (acute and/or chronic, either diagnostic only or closed-loop).

A. Implants and Wearables for Epilepsy

The most common application of on-chip classification in a neural prosthesis is in the 

context of seizure detection for medically refractory epilepsy, where a supervised ML 

algorithm is typically used to detect the onset of seizure events from multi-channel 

neural recordings. Neurostimulation offers an attractive treatment for intractable epilepsy 

(approximately one third of epileptic patients). Due to severity of refractory epilepsy, open-

source epileptic EEG datasets (both scalp and intracranial) are largely available, as well as 

established animal models for device validation and preclinical studies. Therefore, several 

groups have integrated various biomarkers and machine learning algorithms on ASIC for 

automated seizure detection [11], [12], [14], [73], [90]-[95] and for controlling an on-chip 

stimulator [13], [16], [17], [29], [88], [89].

Most ML-embedded SoCs for epilepsy have adopted classifiers based on support vector 

machines (SVMs), as shown in Fig. 4 and Fig. 5(a). Several variants of SVM kernels 

including linear, second-order polynomial, and radial basis function (RBF) have been 

reported for on-chip implementation. An SVM classifier generates weighted feature matrices 

using multiply-and-accumulate (MAC) blocks and separates them into different classes via 

linear or non-linear separation boundaries. For example, [11] reported an 8-channel linear 

SVM classifier with digital bandpower features implemented using a distributed quad-LUT 

architecture, Fig. 5(a). The system was verified on the MIT PhysioNet EEG database from 

the Children’s Hospital Boston (CHB-MIT). This dataset includes 906 hours of recordings 

from 24 patients with epilepsy with ~190 registered seizures, and is commonly used in 

EEG-based seizure detection SoCs (Table. I). Alternatively, the design in [14] implemented 

a Gaussian basis function (GBF) SVM classifier to account for linearly non-separable 

seizure patterns, Fig. 4(b). A natural log operator was employed to linearize the GBF 

equation and replace multiplications with additions. Time-division multiplexing was used to 

implement the bandpower features in an area- and energy-efficient manner. The non-linear 

SVM typically requires sufficient seizure patterns for training, which might be impractical 

for patients with limited training sets. Later, a combination of two linear SVMs was 

introduced [13] to address this limitation, Fig. 4(a). The two SVMs were trained separately 

to achieve high sensitivity and specificity, and the classification results were combined 

to generate final decisions. This noninvasive closed-loop SoC integrates a transcranial 
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electrical stimulator (tES) to suppress impending seizures. The classification performance 

and ASIC specifications are summarized in Table. I.

A 32-channel closed-loop neuromodulation system integrating frequency and phase-domain 

features, a 32-to-4 autoencoder for dimensionality reduction, and an exponentially decaying 

memory SVM (EDM-SVM) was proposed for seizure control [16], Fig. 4(f). This system 

was validated on 500 hours of iEEG data (4 patients, 44 seizures) provided by the EU 

dataset. The design proposed in [89] is an 8-channel closed-loop neuromodulation system 

for DBS, that was verified using stereo-EEG (sEEG) electrodes. The classifier is composed 

of a two-level coarse/fine detector, in which the DSP chip (separate from the core sensing 

chip) is only activated in case of suspected seizures raised by the coarse detector. In 

this mode, maximum-modulus discrete wavelet transform (MODWT) and kernel density 

estimation (KDE) are computed and classified by a least-squares SVM (LS-SVM) for fine 

classification, Fig. 4(h). Furthermore, [90] reported a configurable SVM processor with 

various kernels (RBF, polynomial, linear), validated on the MIT EEG dataset.

It should be noted that in addition to the machine learning processor, the feature extraction 

circuits can be highly power- and area-demanding, particularly in systems with many input 

channels. Minimizing the number of extracted features and their hardware complexity 

without jeopardizing the classification accuracy is essential to reduce the overall energy 

consumption and area. The required computational resources in SVM linearly scale with the 

number of neural channels, making such optimizations more critical in practice.

An 8-channel closed-loop iEEG-based seizure control SoC was presented in [17], computing 

frequency spectrum and time-domain entropy along with a linear least-square classifier, 

Fig. 4(c). This system was acutely verified in Long-Evans rats. Similarly, the closed-loop 

16-channel design in [88] integrated a biosignal processor to extract approximate entropy 

(ApEn) and FFT-based bandpower features, passed to a ridge regression classifier (RRC). 

The system was verified on ECoG data from five patients (duration not reported), and 

acutely for closed-loop seizure suppression in mini-pigs, Fig. 4(d).

In addition to the above models, machine learning algorithms that exploit decision trees, 

either as base estimators in ensemble methods such as bagging and boosting [12], [29], 

[96] or as stand-alone classifiers [31] have been used in neural signal classification tasks. 

While Random Forests [97] apply a bagging technique to DTs in order to reduce variance, 

boosting is a bias reduction technique in which individual trees are incrementally added 

to the ensemble to correct the previously misclassified samples. Popular implementations 

of boosting methods include gradient boosting [98] and AdaBoost [99]. Both bagging and 

AdaBoost use classifiers as base estimators, while gradient boosting requires regressors. 

Particularly, ensembles of gradient-boosted DTs have recently emerged as an accurate [24], 

yet hardware-efficient [12], [92], [96] machine learning solution for neural SoC platforms 

and for applications with limited training sets. DT ensembles avoid hardware-intensive 

MAC operations and enable low-complexity hardware architectures for neural prosthesis 

applications.
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In [12], a gradient-boosted DT ensemble achieved a record energy efficiency (41.2nJ/class, 

32-channel) and a compact area (1 mm2) for seizure detection, Fig. 4(e). The system was 

validated on iEEG from 26 epilepsy patients (3074 hours, 393 seizures), available on the 

iEEG portal [102], a collaborative platform for sharing large iEEG datasets. An on-demand 

feature extraction approach was adopted by sequentially using a single feature extraction 

unit in each tree, thus substantially reducing the number of extracted features and the 

overall hardware cost for inference. As opposed to other classifiers that compute all features 

for each input channel, this unique property of DTs allows the classifier to selectively 

extract a limited number of features to minimize the loss function, thus accommodating a 

higher number of input channels (Table. I). Another CMOS implementation of tree-based 

models used AdaBoost with 1024 trees of depth one for seizure detection and closed-loop 

stimulation [29], Fig. 4(g). Thanks to a bit-serial processing scheme, this 8-channel SoC 

reported state-of-the-art energy efficiency (36nJ/class) for 8-channel iEEG classification. 

Recent work replaced axis-aligned splits with logistic regression to construct powerful 

oblique trees as an efficient combination of neural networks and DTs [31] (Section VI) for 

epileptic seizure and PD tremor detection.

B. Implants for Movement Disorders

Multiple feasibility studies using closed-loop DBS devices like Medtronic’s Percept and 

Summit have demonstrated additional benefits using closed-loop versus open-loop DBS 

in movement disorders [103], [104]. Closed-loop DBS in PD [1], [10], [45] has led 

to improvements in tremor control, reduced stimulation time and power consumption, 

and reduced speech side effects compared to open-loop DBS. However, wider adoption 

of this approach is awaiting advances in implantable hardware, control algorithms, and 

chronic validation. Current systems predominantly use single-biomarker thresholding, which 

precludes the optimized control of tremor.

Recently, ML approaches have been used for detecting motor symptoms (e.g., tremor) in 

patients with PD and essential tremor [2], [23], [68], [77], [105], [106] to control DBS in 

closed loop. An approach based on feature engineering and tree boosting [2], [68] used 

various correlating features of tremor such as bandpower in multiple frequency bands, 

the ratio of high-frequency oscillations, phase-amplitude coupling, and tremor power to 

detect the onset of rest-state tremor episodes in PD. Using only five selected features, the 

system was able to predict tremor with a 89.2% sensitivity and detection lead of 0.52s in 

12 patients, significantly better than conventional beta-thresholding approach. Fixed-point 

quantization and power-aware inference were later used to enable low-power gradient 

boosting, achieving 55.4% energy reduction compared to conventional tree ensemble [105]. 

A method based on resource-efficient oblique trees (ResOT) was recently applied to PD 

tremor detection, enabling significant energy and memory reduction by various hardware-

algorithm co-design techniques [31]. A similar study was recently done on patients with 

essential tremor (ET) [23] who suffer from tremor during voluntary movements. Using a 

binary classifier, postural tremor and voluntary movements were detected from LFP features 

recorded via the DBS lead, achieving an average sensitivity of 80% in 7 patients with ET. 

Such machine learning techniques hold the promise to enable accurate symptom detection in 
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closed-loop neural prostheses for various movement disorders. More developments in SoC 

design for such applications are expected in near future.

C. Implants for Neuropsychiatric Disorders and Memory

Neuromodulation, particularly invasive technologies like DBS, has been recently explored 

for treating psychiatric disorders such as major depressive disorder (MDD) and obsessive 

compulsive disorder (OCD) [8], [107]. However, despite promising early results, the high-

profile clinical trials have shown inconsistent effects. One major limiting factor is the 

open-loop approach used in conventional DBS, which has been shown to be inefficient in 

engaging target brain regions in complex disorders such as depression and OCD [3]. While 

the application of neurostimulation techniques has made a significant impact on the lives 

of patients with movement disorders, major advances are needed to treat more prevalent 

conditions such as depression. Closed-loop patient-specific stimulation appears to be the 

most viable solution.

Development of algorithms for automated detection of emotional states and shifts in arousal, 

vigilance, and wakefulness has received considerable attention in EEG-based human studies, 

with some recent reports on SoC design. For example, a deep neural network (DNN) 

classifier was implemented for emotion detection in children with Autism [100]. The 

valence/arousal binary classification by the 4-layer DNN was used to detect four-state 

emotions. A reduction in energy consumption was achieved through a pipelined DNN 

architecture with a central arithmetic logic unit, Fig. 5(c). This DNN processor can analyze 

two EEG channels with an accuracy of 85.2% and energy efficiency of 10.1 μJ/class. In 

another design, a convolutional neural network (CNN) was proposed for emotion detection 

[101], offering an online training feature, Fig. 5(d). To minimize area and memory overhead 

due to batch processing, hardware re-use and mini-batch data were employed for training 

and acceleration, at the expense of longer training time. Using an external feature extraction 

engine, this system obtained a 83.36% accuracy in binary classification of emotions (Table. 

II). Machine learning has also been explored in sleep stage classification [108], task 

engagement [86] and mental fatigue prediction [69] to potentially trigger a neurostimulation 

therapy.

Disorders such as Alzheimer’s disease exhibit network abnormalities, necessitating the 

need for multi-site electrophysiological recordings. The closed-loop stimulation approach 

in [4] used a patient-specific logistic regression classifier to decode the brain-wide 

electrocorticography (ECoG) signals, and subsequently triggered stimulation in response 

to the predicted periods of poor memory encoding to enhance memory. The results suggest 

a predictive role of increased high-frequency as well as decreased low-frequency activity 

for memory recall, and that responsive neuromodulation in the lateral temporal cortex could 

improve recall performance. More developments in neural prosthesis design for mental and 

memory disorders are expected in the coming years.

D. Wearables for Migraine

While most current devices have been developed for epilepsy and movement disorders, 

there is an increasing demand for novel therapeutic devices for other medication-resistant 
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neurological disorders. Migraine, for instance, is the most common neurological disorder 

that affects millions around the world. Migraine patients suffer from episodic headaches 

lasting hours to days and often move from a stage of low-frequency attacks into chronic 

migraine. The diagnosis mainly relies on patient diaries and clinical interviews [63], [109]. 

As an emerging alternative, neurophysiological monitoring techniques have shown to be 

beneficial in assessing migraine progression [109]. The automated detection of migraine 

state using continuous brain recordings could help in early and more effective treatment, 

either with medications or neurostimulation.

A machine learning approach was recently proposed for noninvasive migraine state 

detection from somatosensory evoked potential (SEP) biomarkers in 42 migraine patients, 

as described in [63]. The results suggest the potential use of SEP as a feedback signal 

for migraine attack prediction. Based on this idea, [18] reported a low-power feature 

extraction and ML processor for migraine state prediction, using single-channel SEP as 

input. Multiple features such as bandpower, time-domain and statistical features of high-

frequency oscillations [63] were integrated with a multi-class artificial neural network 

(ANN), achieving a predictive accuracy of 76%, Fig. 5(b) (chip layout post place-and-route).

E. Implants for Stroke and Traumatic Brain Injury

Neurostimulation can be used to facilitate post-stroke plasticity and functional recovery. 

Compared to noninvasive methods such as transcranial magnetic or direct-current 

stimulation (TMS, tDCS), invasive tools such as direct cortical stimulation offer a higher 

temporal and spatial resolution. However, current cortical stimulation approaches for stroke 

are limited by the poor localization of stimulation targets and open-loop operation [110], 

urging the need for advanced data analysis and machine learning techniques.

In addition, patients with severe-to-moderate traumatic brain injury (smTBI) suffer from 

persistent cognitive dysfunction and chronic mental fatigue that significantly impacts 

all aspects of their functioning. Despite extensive efforts to develop rehabilitation and 

medication-based therapies, there are no effective therapeutic options for these patients. 

In a break-through study, it was shown that therapeutic DBS in the central thalamus 

(CT-DBS) could restore executive function, fluent communication and motor control in a 

patient who remained in a minimally conscious state for six years following a TBI [111]. 

Similar improvements have been observed in individuals with chronic mental fatigue. In 

a recent study, the ECoG activity from two healthy non-human primates (NHPs) during a 

sustained attention task was used to predict the onset of mental fatigue [64], [69]. Using 

spectrotemporal and connectivity biomarkers and a tree ensemble classifier, the decline 

in animal’s performance was predicted, seconds prior to NHP’s behavioral response. This 

approach could potentially be used for closed-loop neurostimulation in patients with TBI.

In a proof-of-concept study [53], a closed-loop neural SoC was used to facilitate recovery 

after brain injury in a rat model of brain injury. The action potentials detected in premotor 

cortex were used to trigger neurostimulation in somatosensory cortex for several weeks. This 

spike-triggered stimulation led to significantly improved reaching and grasping functions, 

enhancing the functional connectivity between the two brain regions. These findings 
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motivate the design of novel closed-loop neural prostheses to treat brain injury and similar 

neurological indications.

F. Comparison of ML-embedded SoCs

A comparison on hardware specifications and classification performance of state-of-the-art 

neural prostheses with on-chip machine learning is presented in Table. I (for epilepsy) and 

Table II (for other applications). When comparing the performance and hardware cost of 

different ML SoCs, one should consider various factors that affect the overall predictive 

performance and design complexity, such as the input signal modality and dataset, the 

number of analyzed patients, the duration of recording and seizure count, and the metrics 

used to evaluate the algorithm/hardware performance (e.g., accuracy, F1 score, sensitivity, 

power vs. energy efficiency, detection vs. system latency). In addition, the number of 

processed channels should be taken into account to fairly compare various architectures 

and assess their scalability.

Energy efficiency has been a common metric to compare different ML-embedded 

biomedical SoCs in literature. However, we note that the energy efficiency is not being 

reported in a unified manner (e.g., total power consumption/sampling rate [11]-[14], [29] 

or total power consumption/classification rate [16], [17], [88] has been used), which may 

hinder appropriate design choices. Furthermore, the number of channels is not taken into 

account, which is particularly important in modern neural prostheses. Here, we define a new 

energy-area efficiency figure of merit (E-A FoM) as follows:

E‐A FoM = PCℎ ⋅ ACℎ
fs

(1)

where PCh and ACh indicate per-channel power and area of the ML SoC, respectively, and 

fs is the per-channel sampling rate of the signal processing circuits. Similar FoMs have been 

used in AFE and ADC design for multi-channel neural recording [112]. The E-A FoM fairly 

represents the energy-area efficiency of the system while also factoring in the multi-channel 

scalability. Other performance metrics such as accuracy and latency are excluded as those 

metrics can vary among different datasets and applications. Table. I and II report the E-A 

FoM of the state-of-the-art neural prostheses along with their per-channel area and energy 

consumption. Only the power and area of the ML processor (i.e., feature extractor, classifier, 

and memory for parameter storage) have been considered. This FoM indicates that the 

tree-based models achieve orders of magnitude superior energy-area efficiency compared 

to SVM classifiers, while providing comparable classification accuracy and latency. With 

cost-aware hardware-algorithm co-design, we aim to improve the efficiency of tree-based 

classifiers even further, as discussed in Sections VI-VII.

The predictive power and hardware efficiency of different SoCs are greatly affected by 

their selection of ML algorithms. For example, DT-based ML models feature a lightweight 

inference scheme where we simply compare feature values to thresholds to route samples 

through the tree. On the contrary, the inference of kernelized SVM involves vector 

multiplications and the calculation of Gram matrix, which partially explains the E-A 

superiority of DTs over SVMs in Table. I. Moreover, inspired by the recent success of deep 
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learning algorithms, there is an increasing interest in deploying CNNs and DNNs on neural 

SoCs [18], [100], [101]. However, compared to conventional approaches, deep learning 

models generally require more training data and consume higher power consumption [113]. 

The benefits of using deep learning in neural SoCs need to be further investigated in the 

future.

G. Limitations of the Current SoCs and Future Directions

High-density electrode arrays have shown promise in both neurophysiological monitoring 

[48] and therapeutic neurostimulation [114]. However, the channel count of state-of-the-art 

ML SoCs is limited to 32, which could hinder their clinical application. The most critical 

challenges to realizing high-channel-count ML-embedded neural prostheses lie in the AFE, 

the back-end signal processing, and the memory for parameter storage. Over the past years, 

the field has witnessed a growth of channel count in neural prostheses, such as Neuralink’s 

BMI platform with 3072 channels [115]. Recently, a 1024-channel closed-loop BMI SoC 

was presented with a successful demonstration of motor intention decoding (performed 

offline) in a macaque monkey [116]. Novel area- and power-efficient AFE design techniques 

(such as mixed-signal [117] and time-division multiplexing [118], [119]) should continue 

to be explored. This will enable advanced neural prostheses with high resolution, reduced 

invasiveness, longer lifetime, and minimized heat-induced tissue damage. In addition to 

area-power constraints on the AFE, the burden of the back-end signal processing (i.e., 

feature extraction and classification) is a major bottleneck to next-generation high-channel-

count prostheses. The amount of computation in the current ML SoCs grows linearly with 

channel count, posing a major challenge on the energy consumption. The on-demand feature 

computation scheme in [12] could be a viable solution to realizing a scalable ML SoC. 

Only relevant features from a subset of channels are computed in each processing window, 

achieving a substantial reduction in hardware cost. Similar techniques will pave the way 

for the integration of novel high-density electrodes (Section II. A) in future diagnostic 

and closed-loop devices. Another on-demand processing approach was adopted in an 

SVM-based two-level (coarse/fine) classifier to reduce the system power consumption [89]. 

Exploiting the sparseness of seizures, the otherwise power-demanding SVM classifier (fine) 

in a separate chip is only activated upon seizure declaration by the coarse detector. The 

two-level SVM classifier performs 266 classifications/hour with 1.16 μW average power, 

improving >135× over the conventional SVM. Single-chip integration and multi-channel 

scalability have yet to be addressed with this approach.

In addition, most current classifiers integrated on neural prostheses use an offline training 

scheme with fixed parameters, thus neglecting the non-stationary dynamics of neural signals. 

The next generation ML-embedded neural SoCs are expected to perform active, incremental 

learning to account for the previously unseen changes in neurological patterns. In online 

machine learning, the model parameters are updated with the sequential arrival of data, 

thus dynamically adapting to new signal patterns. Online learning algorithms have shown 

promise in stable chronic neural decoding [120]. Yet, the deployment of such models on 

ASIC with minimal area and power consumption remains an open direction. Current on-chip 

systems based on SVM [91], [121] are highly energy and memory demanding, while off-
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chip recalibrations pose security risks and reduce patient independence. More developments 

in this area are expected in near future.

The ML-embedded neural prostheses, like other edge AI devices in IoT and healthcare, 

may greatly benefit from developments in algorithm and circuit design that could lead to 

higher performance, lower energy and more compact area. For instance, future ML SoCs 

are expected to benefit from emerging techniques in CMOS design such as analog, mixed-

signal [122], and approximate computing, as well as in-memory computing techniques. 

Particularly, in-memory computing has shown the potential to achieve remarkable 

improvements over conventional digital implementations [32], [38], [123]. Compared to 

current SoCs, neuromorphic hardware integrates spiking neural networks (SNN) and in-

memory computing to avoid the communication overhead between processors and memory, 

and allows unsupervised online learning via Spike Timing Dependent Plasticity (STDP). As 

discussed in [38], currently the memristor-based designs are rarely used in the biomedical 

domain. Moreover, it should be noted that the decoding performance of SNN is relatively 

low due to the lack of maturity of the training algorithms [38]. Deploying high performance 

SNN and memristor-based designs in neural prostheses remains as a future direction.

V. Hardware-Algorithm Co-Design of Decision Tree Ensembles

Designing machine learning models that consume little energy and area, while providing 

a high classification accuracy and low detection latency is essential to the next-generation 

smart neural prostheses. As discussed in Section IV, decision trees are widely used in 

edge applications and neural decoding tasks thanks to their low inference complexity, 

easy and fast training, as well as high predictive power in ensemble methods or oblique 

structures [12], [22], [24], [29], [31]. These advantages are essential for extremely resource-

constrained platforms such as a brain implant or wearable with high channel counts. In this 

section, we present novel approaches to optimize the key design metrics of an on-chip DT 

ensemble, including the power consumption and processing latency, in the context of neural 

signal classification tasks. Some of these techniques are broadly applicable to other machine 

learning algorithms for various implantable and edge applications.

A. Depth-Variant Tree Ensemble for Latency Reduction

In a decision tree, test sample traverses a single root-to-leaf path during inference 

[31], [124]. Despite being lightweight and area-efficient, the single-path scheme requires 

conditional computation and evaluates nodes in a sequential order [125]. As a result, DT-

based classifiers impose a latency that increases proportionally with the decision path length. 

However, early symptom detection is critical to effectively treat neurological disorders, and 

it is directly affected by the processing latency. Previous work reduced seizure detection 

latency by either using shorter windows [126] or replacing the widely used bandpower 

biomarkers with new features such as neuronal potential similarity [127]. However, such 

methods may suffer from a degraded classification performance (since low-frequency 

features that require a longer window could be critical in symptom detection [126]) or poor 

generalizability due to the use of specific biomarkers [127]. To the best of our knowledge, 

this study is the first to address latency reduction from an algorithmic perspective.
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Tree ensembles have shown promise in various neural classification tasks [2], [12], [24], 

[31]. However, conventional ensembles impose a uniform maximum-depth constraint on all 

base-estimators in the ensemble, such that the system latency is similar across different 

trees. In this work, we propose the Depth-Variant Tree Ensemble (DVTE), a novel low-

latency variation of conventional ensemble methods. As shown in Fig. 6, DVTE consists 

of decision trees with different maximum depths, resulting in non-uniform latencies across 

trees. In a DVTE, shallow trees perform fast inference to reduce system latency, while deep 

trees are trained to compensate for misclassification errors caused by shallow trees.

We trained the proposed DVTE model using the popular gradient boosting framework [98], 

[128]. In the first two boosting rounds, we initialized the ensemble with decision stumps 

(i.e., decision trees with a single internal node). In the third and fourth rounds, two DTs 

with a max depth of two were trained to compensate for the residual errors from previous 

rounds. Deeper trees were gradually added to DVTE in later boosting rounds to better fit 

on training data. During inference, all decision trees in a DVTE run freely in parallel, with 

no need for synchronization. Therefore, shallow trees can update the decision outcome more 

frequently than deeper trees. If the current inference in a deep tree is incomplete (i.e., test 

samples have not yet reached the leaf nodes), we used the most recent output of that tree. 

The final prediction of DVTE is calculated as the sum of the outputs of all trees in the 

ensemble, which can be updated at the same rate as the shortest tree (i.e., d = 1). While 

shallow trees make predictions with low latency (trees of d = 1 in Fig. 7), they often have 

a limited predictive power and may not fit well on training data. To tackle this problem and 

achieve the best trade-off between latency and classification accuracy, DVTE incorporates 

deeper trees in the gradient boosting framework to reduce bias.

Unlike DVTE which effectively combines shallow and deep trees in the gradient boosting 

ensemble to jointly optimize the latency and accuracy, previous work either used a few deep 

trees (e.g., 8 trees with a max depth of 4 [12]) with potential latency concerns as discussed 

above, or implemented a large number of shallow trees (1024 decision stumps in [29]), 

requiring many parallel feature processing units. The aim of DVTE is to benefit from both 

shallow and deep trees and enable low-latency inference with a small tree ensemble. This 

is particularly critical in time-sensitive classification tasks such as PD tremor detection with 

strict latency requirements.

As an example, we built a DVTE with 8 trees and various depths from 1 to 4 (Fig. 6). 

This model was benchmarked against conventional ensemble (8 trees, max depth: 4 [12]). 

We used a learning rate of 0.3 for both models and implemented them using the lightGBM 

library in Python [128]. We tested our classifier on epileptic seizure detection using iEEG 

recordings (11 patients, 106 annotated seizures over 1255 hours). The number of channels 

varied from 47 to 128. This dataset can be accessed via iEEG portal [102]. Handcrafted 

features were extracted over various window lengths as detailed in Table III. It should 

be noted that both EEG and iEEG have been widely used in on-chip seizure detectors 

[11]-[14], [16], [17], [29], [88], [89]. However, iEEG is more commonly used in closed-loop 

prostheses, as it can be easily combined with invasive neuromodulation techniques for 

improved symptom control [16], [17], [29], [88], and it has been used in our study.
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Figure 8 compares the proposed DVTE and the conventional ensemble method in terms 

of classification performance (sensitivity, specificity) and latency. The performance was 

evaluated using bit-accurate classifier models in MATLAB and Python. We estimated the 

processing latency by calculating the average time to traverse a root-to-leaf decision path in 

the trees. Compared to the conventional ensemble, DVTE caused a marginal performance 

reduction (<3% in sensitivity and <1% in specificity). On the other hand, DVTE achieved 

an average latency of 0.86s, significantly lower than the latency of a conventional ensemble 

(2.12s, 2.5× reduction).

B. Cost-Aware Learning for Latency and Power Reduction

The inference phase of tree-based models is relatively simple. In axis-aligned decision trees, 

we compare a feature value to a threshold in order to select the child node at each internal 

node. The leaf node contains a constant weight indicating the prediction result. Given the 

lightweight inference in tree-based models, the hardware cost (e.g., power, latency) is largely 

affected by the feature extraction process [12].

Table III summarizes the biomarkers used in our seizure detection task and their power 

and latency cost. We implemented digital feature extraction hardware in a TSMC 65 nm 

LP process using Synopsys Design Compiler and Cadence Innovus. The power cost of 

each feature was simulated under a 1.2-V supply using Synopsys PrimeTime. Line-length, 

a widely used feature in epilepsy studies, is hardware-friendly and low-power. Bandpower 

features, on the other hand, consume higher power since they require an FIR filtering stage. 

The latency associated with a feature depends on the window size used to compute that 

feature. Long windows were used to extract low-frequency bandpower, while short windows 

were used for time-domain features and high-frequency bandpowers. Specifically, we used 

1s windows to extract Delta (δ), 0.5s for Theta (θ) and Alpha (α), and 0.25s for other 

features.

We apply the cost-aware learning approach to tree-based classifiers (e.g., DVTE) to reduce 

the inference hardware cost. Specifically, we use the total power consumption and latency 

along the decision path as a regularization term in the training process. The training of 

cost-aware decision trees attempts to minimize the following expression:

min∑
i

L yi, f(xi) + C(Ψpow(f, xi) + Ψlat(f, xi)), (2)

where L(yi, f (xi)) is the loss function that measures the misclassification error as the 

difference between groundtruth yi and prediction f (xi), Ψpow and Ψlat indicate the 

estimated power consumption and latency along the decision path, respectively, and C 
is the regularization coefficient that determines the trade-off between hardware cost and 

performance. The effect of varying C on latency and power in DVTE is shown in Fig. 9. For 

a greater regularization coefficient, cost-aware decision trees achieve a lower hardware cost. 

Since power and latency span over different ranges, we standardized the cost by removing 

the mean value and normalizing both power and latency to their unit variance.
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We applied the cost-aware inference approach to DVTE to reduce both power and latency 

on seizure detection task. Figure 10 shows the classification performance (sensitivity, 

specificity) as a function of the cost metrics (latency, power). We adjusted the regularization 

coefficient C to achieve different trade-offs between power/latency and performance. For 

both the low-power (Fig. 10(a)) and low-latency (Fig. 10(b)) DVTEs, the best trade-off is 

observed at a point where a maximum reduction in latency or power can be achieved with 

only a marginal performance loss.

Figure 11 shows the number of extracted features for the cost-aware DVTE. The number of 

feature extractions are normalized to each 0.25s window. Thus, the normalized feature count 

is upper bounded by the number of trees. For C > 0, we used the hardware cost to regularize 

the model and as a result, DVTE was trained to minimize the inference power and latency. 

As the regularization coefficient increases, the model further penalizes inefficient features. 

With C = 0.01, we achieved the best trade-off between performance and hardware cost (Fig. 

10), reducing the power by 3× and latency by 1.7× compared to DVTE without cost-aware 

learning.

C. Hardware Implementation of DVTE Classifier

We implemented the DVTE classifier in hardware to demonstrate the efficacy of the 

proposed cost-aware learning approach. Figure 12(a) presents the system architecture of 

the DVTE classifier, which supports 32-channel 500-S/s 10-bit input data. Each of the 8 

decision trees consists of a feature extraction unit (FEU), a comparator, and a tree control 

unit (TCU). A 32-tap programmable FIR bandpass filter was implemented to extract the 

bandpower feature in a selected frequency band, and a single FIR coefficient memory was 

shared between 8 trees. The FEU extracts only one feature during each window, which 

allows us to clock- and data-gate unused feature blocks for dynamic power saving. The 

extracted feature is then compared to a threshold to decide the decision path in the tree. 

The TCU reads the trained tree information (i.e., feature type, channel index, threshold, and 

leaf value) from memory and controls the FEU based on the current node information and 

comparison result. When a leaf node is reached, the tree sends out a leaf value and repeats 

the process starting from the root node. Leaf values from the 8 trees are summed to make a 

final decision. The proposed lightweight DVTE classifier utilizes a 0.4kB on-chip memory.

The DVTE classifier was implemented in a TSMC 65 nm 1P9M LP process. Figures 12(b) 

and (c) show the chip layout occupying 0.31 mm2 and its area breakdown, respectively. 

Using Synopsys PrimeTime, the power consumption of the system was simulated at 2.8 

μW under a 1.2-V supply. The parallel implementation of 8 trees allowed a low system 

clock (500 Hz). In addition, the use of high-Vt transistors saved both dynamic and static 

power consumption. The energy efficiency and E-A FoM of the DVTE classifier are 5.6 

nJ/class. and 1.7 pJ·mm2/S, respectively, achieving >6.4× and >23.7× improvements over the 

state-of-the-art designs in Table. I.

In this advanced technology node with a low operating frequency and efficient clock- and 

data-gating, the static power consumption acts as the dominant source of power, as indicated 

in the breakdown of Fig. 12(d). Here, 83.8% of system power is consumed by leakage 

currents in the ensemble. Therefore, power-gating of the unused feature extraction blocks 
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can further improve the energy efficiency of the proposed cost-aware DVTE classifier. This 

is possible thanks to the on-demand feature extraction scheme of DVTE. To estimate the 

potential power savings, we performed post-layout simulations for each feature extraction 

block with power-gating header switches [129]. The results showed that the static power 

consumption of each feature substantially reduced to 30 pW with the supply power gated. 

For the best trade-off case in Fig. 11 (C = 0.01) with power-gating applied, the overall 

system power is estimated to be 0.68 μW. It is our ongoing work to implement the power-

gating technique reliably at the system level with a minimal area overhead, to potentially 

achieve sub-μW total power consumption.

VI. Hardware-Algorithm Co-Design of Oblique Trees

In the previous section, we proposed a novel tree ensemble, DVTE, and a cost-aware 

learning approach to improve latency and power. However, tree ensembles may require 

a large number of axis-aligned DTs for non-trivial classification tasks [29], [63], [130], 

resulting in a large model size and on-chip memory. Different from conventional trees that 

use axis-aligned decision boundaries, oblique trees calculate a weighted sum of multiple 

features and compare the result to a threshold [31]. Thanks to their powerful split functions, 

oblique trees are capable of generating accurate predictions using a single tree with a 

reduced model size. Moreover, in our previous work, we built a new class of oblique trees 

that are compatible with model compression techniques to further reduce the hardware 

complexity and memory needs [31]. In this section, we present the hardware-algorithm 

co-design of oblique trees to simultaneously achieve low power consumption, low latency 

and small model size.

We built oblique DTs using a probabilistic routing scheme [31], where the i-th internal node 

sends samples to a child according to the probabilistic distribution, as follows

Pi(xn) = softmax(xnTθi), (3)

where xn indicates the feature vector and θi is the trainable weight vector of the same 

shape as xn. The softmax function normalizes the output space into a probability distribution 

within (0,1) interval. Here, xn visits the left child with a probability of Pi(xn) and the right 

child with 1 – Pi(xn). In the probabilistic routing scheme, samples arrive at multiple leaf 

nodes with different probabilities and the final prediction is given by

yn = ∑
l

Pl(xn)ωl, (4)

where Pl(xn) indicates the probability of sample xn visiting the leaf node l and ωl is 

the constant leaf predictor. For classification tasks, we measured the cross-entropy loss 

∑nL(yn, yn) using the groundtruth (yn) and the prediction of the oblique tree yn.

A. Model Compression and Cost-Aware Learning

Various compression techniques have been applied to DNNs, including fixed-point 

quantization [131], weight pruning and sharing [132]. Interestingly, within the probabilistic 
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training scheme, oblique trees are compatible with gradient descent-based optimization, 

similar to the training of a neural network. Therefore, we propose to combine oblique 

trees with DNN-based compression techniques to reduce model size and hardware cost. We 

trained the oblique tree by minimizing the loss ∑nL(yn, yn) on training data. During the 

training process, we applied weight pruning to slim the oblique tree and weight sharing 

to further reduce model size. Specifically, we used a simple neural network with input 

and output layers to represent the oblique decision functions in the internal nodes. Weight 

pruning/sharing were applied to 2-layer NNs for creating sparse connections and reducing 

the model size. We pruned the oblique tree by iteratively setting small values to zero and 

retraining the remaining parameters. For weight sharing, we uniformly clustered the weights 

into k shared values, requiring only ⌈log2k⌉ bits to store the index. It should be noted that 

oblique trees are compatible with the aforementioned cost-aware learning framework, by 

simply replacing the loss function in Eq. 2 with oblique tree training loss. In cost-aware 

learning, oblique trees assign smaller weights to costly features so that they hardly survive 

the pruning process.

We compared the hardware efficiency of oblique trees against axis-aligned tree ensembles. 

Specifically, we built resource-efficient oblique trees (ResOT) [21] by combining cost-aware 

learning with model compression. We used the conventional lightGBM ensemble [128] and 

gradient boosting with power-efficient training (PEGB [105]) as baseline. In addition to 

seizure detection, we tested our model on LFPs recorded from 12 PD patients via DBS 

leads (3-channel, 2048 Hz sample rate, 16 recordings) to detect the tremor onset [2]. For 

both tasks, a single ResOT was built (max depth: 4) with 16 shared weights (4 bits). 

Hyperparameters of oblique trees including the number of parameters post pruning and the 

regularization coefficient were optimized for each patient. We used 5-fold chronological 

cross-validation to measure the F1 score, and leave-one-out for epilepsy patients with <5 

seizures. Cross-validation has been widely used in previous studies [12], [16], [61]. It allows 

testing on multiple train-test splits to fairly assess the model performance on unseen data. 

Compared to the hold-out method [13], cross-validation is less dependent on a specific 

train-test split and could provide a reliable measure of performance for patients with few 

seizure events. We employed a block-wise data splitting method, where each block includes 

a complete seizure event and its neighbouring non-seizure period, to avoid information 

leakage during training [12]. Cross-validation was performed on pre-recorded data to 

estimate the model performance and optimize the hyperparameters. In a clinical setting, 

the final set of parameters (i.e., feature index, threshold, leaf weights, and feature weights 

for oblique trees) will be trained using the entire pre-recorded data of each patient and 

loaded to the chip to predict future seizure events. We estimated the memory requirements 

of various models using the size of the trainable weight matrix. Compressed sparse column 

and delta encoding were used to store the sparse matrix after weight pruning. For power 

comparison, we considered the power consumption for extracting features along the decision 

path during inference (Table III). In our simulations, ResOT achieved an average saving of 

7.0× in model size and 10.7× in power cost compared to lightGBM, as shown in Fig. 13. It 

also outperformed the hardware-efficient ensemble (PEGB) (3.1× in model size and 3.0× in 

power cost).
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The oblique node evaluation time is set by the longest feature computed in that node. Here, 

we pruned the oblique tree to use a maximum of 8 features per internal node to fairly 

compare it against DVTE. The hardware cost in an oblique tree (e.g., power, latency) 

can also benefit from the introduced cost-aware learning scheme, by including a cost 

regularization in the oblique tree objective. Figure 14 plots the distribution of features in 

ResOT on seizure detection task. The latency was reduced from 2.67s to ~1s via cost-aware 

training, while the power cost was reduced from 696nW to 241nW.

B. Parallel Node Evaluation for Latency Reduction

Previous work on oblique trees employed a single-path inference scheme by visiting the 

most probable path, which suffers from a latency proportional to the length of the decision 

path [31]. An alternative is to evaluate multiple nodes in parallel to reduce latency, as shown 

in Fig. 15. The single-path inference scheme is presented in Fig. 15(a), where 4 internal 

nodes are evaluated using consecutive windows. In Fig. 15(b), we evaluate two layers of the 

tree (3 nodes) per window, requiring 6 node evaluations in total. Finally, Fig. 15(c) evaluates 

all 15 nodes in parallel.

To demonstrate the trade-off between power consumption and latency, we built an oblique 

tree on seizure detection task. Different numbers of nodes were evaluated in parallel and 

the corresponding hardware cost is reported in Fig. 16. Single-path inference (Fig. 15(a)) 

obtained the lowest power and highest latency (power cost = 305nW, latency = 1.04s). On 

the other hand, concurrently evaluating all nodes in parallel reduced the latency by 2.1× but 

increased the power by 11.6× (Fig. 15(c)). The case of 3 nodes (Fig. 15(b)) achieved a better 

trade-off between power and latency, leading to 1.9× reduction in latency and 3× increase in 

power cost. This scheme can potentially be useful in latency-constrained applications.

C. Interpretable DTs for Neural Prostheses

Closed-loop stimulation is a safety-critical application, favoring an interpretable decision 

process. Another distinct advantage of tree-based models is their interpretability, in contrast 

to most classical machine learning and deep learning methods that lack transparency 

and interpretability. This is critical to understanding a specific therapeutic strategy for a 

particular neurological symptom or behavior. We can simply visualize the decision process 

of DTs and the informative biomarkers used in making predictions. Therefore, tree-based 

models are widely used in clinical applications that require high interpretability [133], [134].

For example, Fig.17(a) shows the contributions from time- and spectral-domain features in 

tremor detection task, using shapley additive explanations [135]. The feature values at the 

visualized window are shown on the left, and the red/blue colors represent features that 

indicate a high/low risk of tremor, respectively. The power over low beta and tremor bands 

are the most predictive features. The model predicts a tremor state according to the weighted 

contribution of all features.

Figure 17(b) visualizes the decision process of an oblique tree on seizure detection task. We 

used pie charts at internal and leaf nodes to represent the class distribution. Both seizure 

and non-seizure samples are mixed at the internal nodes, while each leaf node is dominated 

by either seizure or non-seizure samples. The decision process follows an explainable rule 
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list structure, with the left branch leading samples directly to a leaf node. The percentage 

of samples that travel through a node (internal or leaf) is shown next to that node. We also 

show the approximate power and latency to process each internal node. For comparison, Fig. 

17(c) shows the decision process of a cost-aware oblique tree trained on the same patient. 

As shown in this figure, the power cost to evaluate the internal nodes is significantly reduced 

in the cost-aware approach. Particularly, the most notable reduction in power (i.e., node 

complexity) is observed at the root node, as it is the most frequently visited node in the tree. 

Moreover, the overall latency along the root-leaf path in Fig. 17(c) is shorter than that of Fig. 

17(b), indicating a reduction of processing latency.

VII. Conclusion

In this paper, we reviewed the latest developments in closed-loop neural interface design, 

with a particular focus on system-on-chips that integrate machine learning for symptom 

detection. The current commercial and research-based closed-loop devices, advances in 

electrode and circuit design, and clinical applications were discussed. We reviewed various 

hardware approaches used to implement machine learning on neural prostheses, design 

trade-offs and hardware/performance comparisons. We further proposed a novel tree-based 

neural decoder, Depth-Variant Tree Ensemble, to reduce latency in neurological symptom 

detection. A cost-aware learning approach was applied to DVTE to further reduce power 

and latency. We also integrated various techniques, including cost-aware learning and model 

compression, to construct resource-efficient oblique trees. Testing on epileptic seizure and 

PD tremor detection tasks, the proposed model improved both power and latency, and 

reduced the memory requirement, while maintaining a high performance. We also discussed 

the interpretability of tree-based models, as an essential component for next-generation 

intelligent neural prostheses.
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Fig. 1: 
Symbolic view of a closed-loop neural prosthesis. Multi-channel neural signals such 

as ECoG and LFP are recorded by cortical and deep-brain electrodes and sent to the 

implantable microchip. The on-chip biomarker extraction and ML processor detect the onset 

of symptoms and trigger a therapeutic neurostimulator.
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Fig. 2: 
Standard and emerging electrodes for neural recording and stimulation via noninvasive, 

minimally-invasive, and invasive technologies; (a) Standard scalp-EEG electrodes. (b) 

The Epios subscalp EEG device for chronic epilepsy monitoring [39]. (c) Standard and 

high-density ECoG [40]. (d) Stereo-EEG leads [41]. (e) Clinical DBS (Medtronic’s FDA-

approved 3389, left), emerging directional DBS leads (8-channel direct STNAcute and 40-

channel Medtronic-Sapiens, middle) and the Willsie and Dorval 1760-contact micro-DBS 

lead (right) [42].
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Fig. 3: 
Existing clinical or research-based closed-loop neuromodulation devices (with or without 

on-device ML); (a) The NeuroPace RNS device for epilepsy. (b) The AspireSR (Cyberonics, 

now known as LivaNova) device for epilepsy. (c) The Medtronic Percept PC device for 

movement disorders. (d) The Newronika AlphaDBS system for Parkinson’s disease. (e) The 

DyNeuMo Mk-1 system for movement disorders.
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Fig. 4: 
Hardware architectures and chip micrographs of ML-embedded neural prostheses 

for epilepsy: (a) Linear dual-detector SVM classifier and closed-loop transcranial 

neurostimulator [13], (b) non-linear SVM-based seizure detector [14], (c) linear least square 

(LLS) classifier and closed-loop stimulator [17], (d) ridge regression classifier (RRC) and 
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closed-loop stimulator [88]. (e) Gradient-boosted tree ensemble for seizure detection [12], 

(f) exponentially decaying-memory SVM and closed-loop stimulator [16], (g) AdaBoost 

decision tree classifier and closed-loop stimulator [29], (h) two-level coarse/fine classifier 

and closed-loop stimulator [89].
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Fig. 5: 
Hardware architectures and chip micrographs of ML-embedded neural prostheses for 

various applications: (a) Linear SVM for epilepsy [11], (b) ANN for migraine state detection 

[18], (c) DNN for Autism emotion detection [100], (d) CNN for emotion detection [101].
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Fig. 6: 
A DVTE with eight decision trees. Unlike conventional tree ensembles that uniformly set 

the maximum depth on all trees, the maximum depths in a DVTE are different (1–4). The 

internal and leaf nodes are shown in blue and black, respectively.
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Fig. 7: 
The outputs of decision trees in a DVTE. Latency is defined as the time difference between 

the expert-marked seizure onset and the state change of each tree’s output. d is the maximum 

depth of each tree.
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Fig. 8: 
Performance comparison of DVTE and conventional tree ensemble with a maximum depth 

of 4. DVTE reduced the latency by 2.5× with a marginal performance reduction (<3% in 

sensitivity and <1% in specificity). Error bars indicate the standard errors across patients.
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Fig. 9: 
Hardware cost as a function of the regularization coefficient C in DVTE. Large C imposes 

strong regularization and reduces the power/latency cost. The power cost was calculated as 

the average power consumption to extract features along the decision path. Latency was 

estimated as the average time to traverse a root-to-leaf decision path in the tree.
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Fig. 10: 
Seizure detection performance as a function of (a) power consumption and (b) latency. 

Shaded area indicates the standard errors across patients. The experiment was performed 

using DVTE and the following setting: 8 trees, depths varying from 1 to 4.
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Fig. 11: 
The number of extracted features in DVTE for different regularization coefficients. With 

greater C, the cost-aware model tends to use hardware-friendly features (e.g., LLN, Var). 

Features with longer windows (δ, θ, α) are also penalized in the cost-aware model. The 

power cost and latency for each C are shown in the legend, while the X-axis shows 

individual feature costs. For C = 0.01, we achieved an average power cost of 268nW and 

latency of 0.52s.
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Fig. 12: 
Hardware implementation of the proposed DVTE classifier: (a) system architecture, (b) 

layout, (c) area breakdown of the DVTE processor and a single decision tree, and (d) system 

power breakdown.
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Fig. 13: 
Comparison of ResOT and axis-aligned tree ensemble on seizure and tremor detection tasks. 

The conventional gradient boosted ensemble (lightGBM [128]) and gradient boosting with 

power-efficient training (PEGB) were included. For PEGB, We used fixed-point thresholds 

and leaf weights, in contrast to floating points in lightGBM [105]. Cross-subject standard 

errors are shown by error bars.
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Fig. 14: 
The number of extracted features with different regularization coefficients in ResOT. With 

greater power- and latency-aware regularization terms, oblique trees prioritize low-power 

and low-latency features.
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Fig. 15: 
Parallel node evaluation scheme. (a) One internal node is evaluated per window. (b) Two 

layers (maximum 3 nodes) are concurrently evaluated per window. (c) All nodes are 

evaluated in parallel. The evaluated nodes are shown in color and bold lines represent the 

decision path. Node colors represent successive windows.
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Fig. 16: 
The power-latency trade-off with parallel node evaluation. With more nodes evaluated in 

parallel, latency is reduced at the cost of increased power consumption. Experiments were 

conducted with ResOT on epilepsy task.
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Fig. 17: 
(a) Interpretation of the tremor detection process using a tree ensemble and shapley additive 

explanations. Features plotted in red predicted an increased risk of tremor, while those 

in blue were associated with a low tremor risk. (b) Visualization of the seizure detection 

process in an oblique tree in one arbitrary patient. We show the percentage of samples 

visiting each node, and the required power and latency to evaluate each internal node. 

There are multiple “short paths” which allow dynamic early exiting. (c) Visualization of a 

cost-aware oblique tree, showing a significant reduction in the power cost of the root node.
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TABLE II:

Comparison of Machine Learning SoCs

Parameter TCAS-H’21 [18] JETCAS’19 [101] CICC’20 [100]

Process 180 nm 28 nm 180 nm

Classifier
Multi-ANN

+ CNN DNN

Application Migraine Detection Emotion Detection Emotion Detection

Features HFO, BPF, Peak latency Off-chip ZCD, SK

Signal Modality SEP EEG EEG

Closed-loop N N N

# of Sensing Channels 6 2

ML Energy Efficiency N.A. N.A. 10.13 μJ/class.

ML Power 249 μW 76.61 mW N.A.

Total Area (ML Area) 0.5 (0.5) mm2 3.35 (3.35) mm2 16 (6.02*) mm2

Sampling Rate/Ch. 5 kS/s 250 S/s N.A.

Accuracy 76% 83.4%** 85.2%

Dataset (# patients) MI, MII (42), HV (15) DEAP (32) DEAP (32), SEED

Latency
50 ms

†
0.45 s

†
<1min

†

ML Energy/Ch. 49.8 nJ/S 51.1 μJ/S N.A.

ML Area/Ch. 0.5 mm2 0.558 mm2 3.01 mm2

ML E-A FoM 24.9 nJ·mm2/S 29 μJ·mm2/S N.A.

+
Post place-and-route results.

*
ML (feature extractor and classifier) area estimated from chip micrograph

**
Accuracy metric

†
Processing (system) latency
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TABLE III:

Epilepsy features, their power and latency costs

Features and description Power (nW) Latency (s)

Delta (δ): Bandpower over 1-4Hz 250.6 1

Theta (θ): Bandpower over 4-8Hz 250.6 0.5

Alpha (α): Bandpower over 8-13Hz 250.6 0.5

Beta (β): Bandpower over 13-30Hz 250.6 0.25

Low-Gamma (γ1): Bandpower over 30-50Hz 250.6 0.25

Gamma (γ2) Bandpower over 50-80Hz 250.6 0.25

High-Gamma (γ3) Bandpower over 80-150Hz 250.6 0.25

Ripple: Bandpower over 150-250Hz 250.6 0.25

Line-Length (LLN): 1
d ∑d ∣ x[n] − x[n − 1] ∣ d = window size 7.4 0.25

Variance (Var): 1
d ∑d (x[n] − μ)2, μ = 1

d ∑d (x[n]) 21.6
0.25
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