Skip to main content
. Author manuscript; available in PMC: 2022 Dec 9.
Published in final edited form as: IEEE Trans Biomed Circuits Syst. 2021 Dec 9;15(5):877–897. doi: 10.1109/TBCAS.2021.3112756

TABLE II:

Comparison of Machine Learning SoCs

Parameter TCAS-H’21 [18] JETCAS’19 [101] CICC’20 [100]
Process 180 nm 28 nm 180 nm
Classifier Multi-ANN+ CNN DNN
Application Migraine Detection Emotion Detection Emotion Detection
Features HFO, BPF, Peak latency Off-chip ZCD, SK
Signal Modality SEP EEG EEG
Closed-loop N N N
# of Sensing Channels 6 2
ML Energy Efficiency N.A. N.A. 10.13 μJ/class.
ML Power 249 μW 76.61 mW N.A.
Total Area (ML Area) 0.5 (0.5) mm2 3.35 (3.35) mm2 16 (6.02*) mm2
Sampling Rate/Ch. 5 kS/s 250 S/s N.A.
Accuracy 76% 83.4%** 85.2%
Dataset (# patients) MI, MII (42), HV (15) DEAP (32) DEAP (32), SEED
Latency 50 ms 0.45 s <1min
ML Energy/Ch. 49.8 nJ/S 51.1 μJ/S N.A.
ML Area/Ch. 0.5 mm2 0.558 mm2 3.01 mm2
ML E-A FoM 24.9 nJ·mm2/S 29 μJ·mm2/S N.A.
+

Post place-and-route results.

*

ML (feature extractor and classifier) area estimated from chip micrograph

**

Accuracy metric

Processing (system) latency