TABLE II:
Parameter | TCAS-H’21 [18] | JETCAS’19 [101] | CICC’20 [100] |
---|---|---|---|
Process | 180 nm | 28 nm | 180 nm |
Classifier | Multi-ANN+ | CNN | DNN |
Application | Migraine Detection | Emotion Detection | Emotion Detection |
Features | HFO, BPF, Peak latency | Off-chip | ZCD, SK |
Signal Modality | SEP | EEG | EEG |
Closed-loop | N | N | N |
# of Sensing Channels | 6 | 2 | |
ML Energy Efficiency | N.A. | N.A. | 10.13 μJ/class. |
ML Power | 249 μW | 76.61 mW | N.A. |
Total Area (ML Area) | 0.5 (0.5) mm2 | 3.35 (3.35) mm2 | 16 (6.02*) mm2 |
Sampling Rate/Ch. | 5 kS/s | 250 S/s | N.A. |
Accuracy | 76% | 83.4%** | 85.2% |
Dataset (# patients) | MI, MII (42), HV (15) | DEAP (32) | DEAP (32), SEED |
Latency | 50 ms† | 0.45 s† | <1min† |
ML Energy/Ch. | 49.8 nJ/S | 51.1 μJ/S | N.A. |
ML Area/Ch. | 0.5 mm2 | 0.558 mm2 | 3.01 mm2 |
ML E-A FoM | 24.9 nJ·mm2/S | 29 μJ·mm2/S | N.A. |
Post place-and-route results.
ML (feature extractor and classifier) area estimated from chip micrograph
Accuracy metric
Processing (system) latency