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Abstract

We report de novo genome assemblies, transcriptomes, annotations, and methylomes for the 

26 inbreds that serve as the founders for the maize nested association mapping population. 

The number of pan-genes in these diverse genomes exceeds 103,000, with approximately a 

third found across all genotypes. The results demonstrate that the ancient tetraploid character of 

maize continues to degrade by fractionation to the present day. Excellent contiguity over repeat 

arrays and complete annotation of centromeres revealed additional variation in major cytological 

landmarks. We show that combining structural variation with SNPs can improve the power of 

quantitative mapping studies. Finally, we document variation at the level of DNA methylation, and 

demonstrate that unmethylated regions are enriched for cis-regulatory elements that contribute to 

phenotypic variation.

One sentence summary:

A multi-genome analysis of maize reveals previously unknown variation in gene content, genome 

structure, and methylation.

Maize is the most widely planted crop in the world and an important model system for 

the study of gene function. The species is known for its extreme genetic diversity, which 

has allowed for broad adaptation throughout the tropics and intensive use in temperate 

regions. Nevertheless, most current genomic resources are referenced to a single inbred, 

B73, which contains only 63-74% of the genes and/or low-copy sequences in the full maize 

pan-genome (1–4). Moreover, there is extensive structural polymorphism in non-coding and 

regulatory genomic regions that has been shown to contribute to variation in numerous 

traits (5). In recent years, additional maize genomes have been assembled, allowing limited 

characterization of the species pan-genome (2, 6–10). However, comparisons across genome 

projects are often confounded by differences in assembly and annotation methods.

The maize Nested Association Mapping (NAM) population was developed to study the 

genetic architecture of quantitative traits (11). Twenty-five founder inbred lines were 

strategically selected from a larger association panel (12) to represent the breadth of 

maize diversity, including lines from the non-stiff-stalk temperate heterotic group, lines 

from tropical and subtropical regions of Africa, Asia, and the Americas, and both sweet 

corn and popcorn germplasm (13). Each NAM parental inbred was crossed to B73 

and selfed to generate 25 populations of 200 recombinant inbred lines that combine 

the advantages of linkage and association mapping for important agronomic traits (14). 

Biological infrastructure continues to be developed around these lines (e.g. (15, 16)), 
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but comprehensive genomic resources are needed to fully realize the power of the NAM 

population.

Consistency and quality of genome assemblies

Here we describe assembled and annotated genomes for the 25 NAM founder inbreds and an 

improved reference assembly of B73 (Table S1). The 26 genomes were sequenced to high 

depth (63-85X) using PacBio long-read technology, assembled into contigs using a hybrid 

approach (17), scaffolded using Bionano optical maps, and ordered into pseudomolecules 

using linkage data from the NAM recombinant inbred lines and maize pan-genome anchor 

markers (4). Assembly and annotation statistics improve upon nearly all available maize 

assemblies, including the previous B73 reference genome (18), with the total length of 

placed scaffolds (2.102-2.162 Gbp) at the estimated genome size of maize, a mean scaffold 

N50 of 119.2Mb (contig N50 of 25.7 Mbp), complete gene space (mean of 96% complete 

BUSCOs; (19)), and, based on the LTR Assembly Index (LAI, mean of 28; (20)), full 

assembly of the transposable-element-laden portions of the genome (Table 1; Table S2). 

Improvements in contiguity and completeness can be attributed to recent advances in 

sequence and optical map data, as well as more effective assembly algorithms (21).

Gene identification and diversity in gene content

We sequenced mRNA from ten tissues for each inbred. These data were used for evidence-

based gene annotation of each line, which was then improved using B73 full-length cDNA 

and expressed sequence tags (ESTs). The evidence set was augmented with ab initio gene 

models and the gene structures refined for all accessions using phylogeny-based methods. 

This pipeline revealed an average of 40,621 (standard error (SE) = 117) protein-coding and 

4,998 (SE = 100) non-coding gene models per genome. The great majority of genes share 

orthologs with the grass (Poaceae) family and species in the Andropogoneae tribe of grasses, 

which includes maize and sorghum (Fig. 1A). The accuracy of the annotations, measured 

by the congruence between annotations and supporting evidence (Annotation Edit Distance, 

AED) (22), is higher than previous reference maize annotations (Fig. S1) (2, 6, 10, 18, 23).

We next assessed the gene catalog of the pan-genome. Genes with high sequence similarity, 

located within blocks of homologous sequence in pairwise comparisons, were grouped 

together as one pan-gene. In many instances, a gene was not annotated by our computational 

pipeline, yet at least 90% of the gene was present in the correct homologous location; when 

this occurred, the pan-gene was considered present (Fig. S2 A; (17)), even though in some 

cases the absence of annotation may reflect fractionation and/or pseudogenization.

Across the 26 genomes, a total of 103,033 pan-genes were identified. Previous analysis 

reported ~63,000 pan-genes based on transcriptome assemblies of seedling RNA-seq reads 

from 500 individuals (1). The superior contiguity of our assemblies and the application 

of both ab initio and evidence-based annotation using RNA-seq from a diverse set of ten 

tissues, likely accounts for the increased sensitivity. Over 80% of pan-genes were identified 

within just ten inbred lines based on a bootstrap resampling of genomes (Fig. 1B). When 

considered separately, temperate and tropical lines have differentiated sets of pan-genes but 
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show a comparable rate of pan-gene increase as lines are added, suggesting they have similar 

gene-content diversity (Fig. 1B).

Pan-genes, excluding tandem duplicates (17), were classified as core (present in all 26 lines), 

near-core (present in 24-25 lines), dispensable (present in 2-23 lines), and private (present 

in only one line) (Fig. 1C). The portion of genes classified into each of these groups was 

consistent across genotypes, with an average of 58.41% (SE = 0.07%) belonging to the 

core genome, 8.23% (SE = 0.05%) to the near-core genome, 31.75% (SE = 0.09%) to the 

dispensable genome, and 1.60% (SE = 0.08%) private genes (Fig. 1C; Fig. S2 B–C; Table 

S3). In total, there are 32,052 genes in the core/near-core portion of the pan-genome and 

70,981 genes in the dispensable/private portion. The core genes (and gene families enriched 

for core genes (Table S4)) are generally from higher phylostrata levels (i.e. Viridiplanteae 
and Poaceae), while those in the near-core and dispensable sets either share orthologs only 

with closely related species or are maize-specific (Fig. S2 E). Some private genes may be 

spurious annotations resulting from imperfect masking of repeat sequences, as the majority 

of core/near-core genes are syntenic to sorghum (57.78%), whereas this is rarely the case 

for dispensable/private genes (1.83% syntenic). Core genes were expressed in more tissues 

(Fig. 1D) and had higher transcript abundance (Fig. S2F) when compared to genes present 

in fewer individuals. However, across the relatively small number of tissues (≥ 8 per line) 

profiled for this analysis, 18% of dispensable and 32% of private genes were expressed 

in at least one tissue. A total of 16,751 pan-genes were tandemly duplicated in at least 

one genome, of which 7,040 were duplicated in a single genome. On a per gene basis in 

genomes with at least one tandem duplicate the average copy number is 2.20 (SE = 0.01) 

(Fig. S2 D).

Partial tetraploidy and tempo of fractionation

The maize ancestor underwent a whole-genome duplication (WGD) allopolyploidy event 

5-20 MYA ((24, 25), Fig. 2A). Evidence for WGD is found in the existence of two separate 

genomes that are broken and rearranged, yet still show clear synteny to sorghum (24, 26). 

Many duplicated genes have since undergone loss, or fractionation, reducing maize to its 

current diploid state (26, 27). Further, fractionation is biased towards one homoeologous 

genome (M2, more fractionated) over the other (M1, less fractionated) (26). The M1 and 

M2 subgenomes are composed almost exclusively of core (87.25%) and near-core (6.19%) 

pan-genes (Figs. 1C, 2A). The broad architecture of syntenic regions relative to sorghum is 

consistent across the NAM genomes (Fig. S3).

Given the ancient timeframe of the WGD in maize and the rapid tempo of fractionation 

observed in other species (28, 29), little variation in the retention of specific homoeologs 

is expected at the species level. In fact, prior work in temperate maize suggested that 

most fractionation occurred before domestication (6, 30). However, our diverse set of 

genomes allows for a more complete characterization of fractionation within the species. 

Since fractionation can occur at the level of small deletions (27, 31), we evaluated both 

partial and complete homoeolog loss beginning with a conservative set of 16,195 maize pan-

orthologs. We determined that 7,043 were single-copy orthologs, where the homoeologous 

gene was likely deleted prior to maize speciation (Fig. 2A). In addition, we identified 4,576 
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homoeologous pairs (Fig. 2A) of which 2,155 had the same exon structure of the sorghum 

ortholog in both homoeologs. In 1,281 pairs, at least one copy of the gene differed from 

its sorghum ortholog, but did not vary among NAM lines, likely representing fractionation 

that pre-dated Zea mays. Another 1,140 pairs varied across the genomes in their pattern 

of exon retention, segregating for deletions or structural differences in at least one copy 

of the gene. This segregating set was manually curated (Dataset S1) to remove loci where 

exons or flanking sequence could not be confidently identified (Fig. 2A), resulting in a 

curated set of 494 homoeolog pairs segregating for fractionation, which represents more 

than 10% of pairs present in the pan-genome. Of these, 281 M2 homoeologs had exon 

loss compared to 236 M1 homoeologs, a 19% difference (p < 0.05, χ2 test), suggesting 

ongoing biased fractionation. Analysis of gene ontology terms revealed putative functional 

differences between fully fractionated and segregating fractionated loci (Fig. S4, Dataset 

S1).

Population genetic theory predicts mutations segregating within a species, like the 

segregating fractionation deletions we have identified, arose within the last 4Ne generations, 

where Ne represents the effective population size of the species. Using the Ne of the maize 

progenitor teosinte as an upward bound for maize (Ne = 150,000; (32)), we can infer 

that the majority of segregating fractionation arose within the last 600,000 generations. 

Therefore, the majority of segregating fractionation substantially post-dates the WGD. 

Theory also predicts that rare deletions should be younger than those segregating at 

intermediate frequency. We constructed the unfolded site frequency spectrum (SFS) of 

segregating fractionation deletions and compared this to the unfolded SFS of non-coding 

SNPs using sorghum to define the ancestral state (Fig. 2B). The data reveal a similar 

frequency distribution in deletions and SNPs, with a preponderance of rare variants in both, 

suggesting that a subset of fractionation may be quite young, with diploidization potentially 

continuing in modern maize. We also evaluated patterns of co-exon-retention in non-stiff-

stalk temperate, tropical, and flint-derived maize, observing population-specific fractionation 

(Fig. 2C). This variation in homoeolog retention at the population level confirms previous 

suppositions about the tempo of fractionation (33) and may reflect relaxed constraint on 

retained homoeologs following domestication and migration of maize to temperate climates.

The repetitive fraction of the pan-genome

Transposable elements (TEs) were annotated in each assembly using structural features and 

sequence homology (34). Individual TE libraries from each inbred were then combined to 

form a pan-genome library, which was used to identify TE sequences missed by individual 

libraries. The annotations reveal that DNA transposons and LTR retrotransposons comprise 

8.5% and 74.4% of the genome, respectively (Table S5, Fig. S5). A total of 27,228 TE 

families were included in the pan-genome TE library, of which 59.7% were present in all 26 

NAM founders and 2.5% were unique to one genome (Fig. S6). The average percentage of 

intact and fragmented TEs were 30.5% and 69.5% (SE = 0.06%), respectively. As reported 

previously, Gypsy LTR retrotransposon families are more abundant in pericentromeric 

regions, while Copia LTR retrotransposons are enriched in the gene-dense chromosome 

arms (Fig. S7) (35). Tropical lines have significantly more Gypsy elements than temperate 

lines (p = 0.002, t-test), with mean Gypsy content of 1,018 Mbp and 988 Mbp, respectively 
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(Table S5, Fig. S5). This may reflect increasing constraint on Gypsy proliferation in 

temperate lines that have, on average, smaller genomes (Table 1).

In some maize lines, over 15% of the genome is composed of tandem repeat arrays including 

the centromere repeat CentC, the two knob repeats knob180 and TR-1, subtelomere, and 

telomere repeats (36, 37). Repeats of this type remain a major impediment to assembly. A 

mean of 60% of CentC, 70% of the 4-12-1 subtelomeric sequence (38)), 28.9% of TR-1, 

1% of knob180, and 0.09% of rDNA repeat units were incorporated in the final assemblies 

(Table 1).

A total of 110 (of 260) functional centromeres identified by CENH3 ChIP-seq (39, 40) were 

fully assembled, and of these 88 are gapless ((Fig. S8A and (40)). Chromosomes with very 

long CentC arrays (such as chromosomes 1, 6, and 7) often have assembly gaps and the 

precise location of the centromere could not be determined. However, many centromeres 

either have fully assembled small CentC arrays or the functional centromeres are located 

to one side of the CentC tracts in regions dominated by retrotransposons (Fig. 3A). By 

projecting all centromere locations onto B73, we were able to identify twelve centromere 

movement events (three on chr5 and chr9, and two on chr3, chr8 and chr10), clarifying and 

extending prior evidence for centromere shifting (39) (Fig. 3B, Fig. S8B). The variation in 

CentC abundance and positional polymorphism made it possible to gaplessly assemble at 

least two variants of all ten centromeres (Fig. S8A).

Both knob180 and TR-1 arrays are subject to meiotic drive and accumulate when a 

chromosome variant known as Abnormal chromosome 10 (Ab10) is present (37, 41). 

Although Ab10 is absent from modern inbreds, its legacy remains in the form of many 

large knobs. The majority of knob180 and TR-1 repeat arrays were identified in mid-arm 

positions (81.9%) where meiotic drive is most effective. Long knob180 and TR-1 repeat 

arrays can occur separately, but are more frequently intermingled in fragmented arrays along 

with transposons (Fig. 3A, Fig. S9) (42). Analysis of classical (cytologically visible) knobs 

on chromosome 1S, 2S, 2L, 3L, 4L, 5L, 6L, 7L, 8L, and 9S revealed that their locations are 

syntenic and that several are composed of a series of disjointed smaller knobs (Fig. 3A, Fig. 

S10). In some lines, knobs are not visible cytologically but can still be detected as smaller 

arrays at the sequence level; however, many show strict presence-absence variation among 

the NAM founder inbreds.

Tandem repeat arrays are also commonly found at the ends of chromosome arms (Table S6). 

Among the 520 chromosome ends, 57.9% contained knob180 repeats and 30.5% contained 

subtelomere repeats. At least 65.6% of chromosome ends were fully assembled as indicated 

by the presence of telomere sequences.

Structural variation and impact on phenotype

Comparative analyses among the NAM genotypes to B73 revealed a cumulative total of 

791,101 structural variants (SVs) greater than 100 bp in size. Tropical lines, which are the 

most divergent from B73, include a substantially higher number of SVs than temperate 

lines (mean = 32,976 versus 29,742; p = 0.00013) (Tables S7, S8). Structural variants are 
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more common on chromosome arms where recombination is highest (Fig. S11), similar 

to SNPs and other forms of genetic variation (43). Almost half (49.6%) of SVs were <5 

kbp in size, with 25.7% being less than 500 bp. Across all size classes SVs are skewed 

toward rare variants (Fig. S12). Several large SVs were found segregating within the 26 

NAM genomes (Fig. 3B), including 35 distinct inversion polymorphisms and 5 insertion-

deletion polymorphisms >1 Mbp. For example, a 14.6 Mbp inversion on chromosome 5 in 

the CML52 and CML322 lines, which was previously hypothesized based on suppressed 

recombination in the NAM RILs (11), is confirmed here based on assembly. Additionally, 

there is a 1.9 Mbp deletion with seven genes on chromosome 2 in the MS71 inbred, and 

a 1.8 Mbp deletion with two genes on chromosome 8 found in eight lines. Our data also 

capture a very large reciprocal translocation (involving >47 Mbp of DNA) between the short 

arms of chromosomes 9 and 10 in Oh7B that had been previously detected in cytological 

studies (38) (Fig. 3B).

The high proportion of rare SVs in maize suggests these may be a particularly deleterious 

class of variants, as observed in other species (44, 45). Indels and inversions occur in regions 

that have 49.8% fewer genic base pairs than the genomic background. Furthermore, SVs 

are 17% less likely to be found in conserved regions than SNPs (odds ratios of 0.27 and 

0.58 for SVs and SNPs, respectively, Fisher’s Exact Test, p < 0.001). Approximate Bayesian 

computation modeling revealed that selection against SVs is at least as strong as that against 

nonsynonymous substitutions (Fig. S13; See Supplemental Methods). These results suggest 

that, when they occur, SVs are particularly consequential and relevant to fitness.

To estimate the phenotypic impact of SVs, we assessed the genetic basis of 36 complex 

traits (14) using 71,196 filtered SVs in 4,027 recombinant inbred lines derived from the 

NAM founder inbreds (11) (Fig. S14A). The analysis revealed that SVs explain a high 

percentage of phenotypic variance for disease traits (60.10% ~ 61.75%) and less for 

agronomic/morphological (20.04% ~ 61.04%) and metabolic traits (4.79% ~ 26.78%). Much 

of the phenotypic variation was also explained by SNPs, which were much more numerous 

(288-fold more) relative to our conservative set of SVs (Fig. S14A). When the SNP and 

SV data were integrated into one linear mixed model, the combined markers only slightly 

surpassed values from SNPs, consistent with the fact that most SVs are in high linkage 

disequilibrium with SNPs (Fig. S14A).

We also carried out genome-wide association analyses (GWAS) to identify specific SVs 

contributing to phenotypic variation for the same suite of traits (Fig. S14B–G). Among the 

detected GWAS signals, 93.05% overlapped with those identified with SNPs and 6.95% 

were unique to SVs (no significant SNP detected within 5 Mbp of significant SVs). There 

was a significant enrichment of SVs associated with phenotypes in genic regions (z = 8.022, 

p < 1.04e-15; Fig. S15). The most significant association between a SV and a trait not 

identified using SNP markers was a QTL for northern leaf blight (NLB) on chromosome 

10 (Fig. S14F). This SV is within a gene encoding a thylakoid lumenal protein; such 

proteins could be linked to plant immunity through the regulation of cell death during 

viral infection (46). We anticipate that the effects of SVs may be even more pronounced 

in larger association panels where extensive historical recombination may help disentangle 

their effects from nearby SNPs.

Hufford et al. Page 7

Science. Author manuscript; available in PMC 2022 February 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Disease resistance in plants is frequently associated with SV in the form of tandem arrays of 

resistance genes. Complex arrays of resistance genes are retained, potentially through birth-

death dynamics in an evolutionary arms race with pathogens, or through balancing selection 

for the maintenance of diverse plant defenses (47). Nucleotide-binding, leucine-rich-repeat 

(NLR) proteins provide a common type of resistance. Our data reveal that there are fewer 

NLR genes in maize than other Poaceae (Fig. S16) and that most NAM lines have lost 

the same clades of NLRs as sorghum (Fig. S17). Only one line (CML277) retains the 

MIC1 NLR clade, which is particularly fast-evolving in Poaceae (48). Nevertheless, there 

is clear NLR variation among the NAM lines (Fig. S18), and tropical genomes contain 

a significantly higher number of NLR genes than temperate genomes (t-test, p=0.006), 

suggesting ongoing co-evolution with pathogens, particularly where disease pressure is high.

The annotated NLR genes were significantly enriched for overlap with SVs (boot-strap 

permutation test, p<0.001). An extreme example is found at the rp1 (resistance to Puccinia 
sorghi1) locus on the short arm of chromosome 10, which is known to be highly variable 

(49). We observed exceptional diversity in the NAM lines with as few as 4 rp1 copies in P39, 

and as many as 30 in M37W (Table S9). However, due to its repetitive nature, only 18 NAM 

lines have gapless assemblies of the rp1 locus.

SVs linked to transposons have been shown, through the modulation of gene expression, 

to underlie flowering-time adaptation in maize during tropical-to-temperate migration (50, 

51). Our SV and TE-annotation pipelines identified the adaptive CACTA-like insertion 

previously reported upstream of the flowering-time locus ZmCCT10 (51). We also surveyed 

173 genes linked to flowering-time (52, 53) and discovered three genes (GL15, ZCN10, 

and Dof21) with TE-derived SVs <5 kbp upstream of their transcription start sites. These 

SVs distinguish temperate from tropical lines (t < −2.346, p < 0.0358) (Fig. S19) and show 

significant correlation (F > 8.658, p < 0.001) with expression levels.

Discovery of candidate cis-regulatory elements through DNA methylation

Based on sequence alone, it can be difficult to identify functional sequences in the intergenic 

spaces. One approach is to score for unmethylated DNA, which provides both a tissue-

independent indicator of gene regulatory elements and evidence that annotated genes are 

active (5, 54, 55). We sequenced enzymatic methyl-seq (EM-seq) libraries from each NAM 

line and identified methylated bases in three sequence contexts, CG, CHG, and CHH (where 

H = A, T, or C). Results are consistent across genes and transposons, demonstrating the 

quality of the libraries (Figs. S20, S21). There is minor variation in total methylation across 

inbreds, with CML247 being noteworthy for uniformly lower CG methylation in several 

tissues (Fig. S22). Such natural variation in methylation is also observed in Arabidopsis 

ecotypes (56).

Each of the three methylation contexts reveal information on the locations of repeats, genes 

and regulatory elements. mCHH levels are generally low except at heterochromatin borders, 

whereas mCHG and mCG are abundant in repetitive regions. Both mCHG and mCG are 

depleted from regulatory elements and mCHG is depleted from exons (57). However mCG 

is often present in exons (Fig. 4) (58). Thus, to identify unmethylated regions (UMRs) 
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corresponding to regulatory elements and gene bodies, we defined UMRs using a method 

that takes into account mCHG and mCG but does not exclude high mCG-only regions (the 

term UMR is used for simplicity; some regions contain CG methylation). Comparison of 

the 26 methylomes revealed uniformity in number and length of UMRs, averaging about 

180 Mbp in total length in each genome (Figs. S23, S24). To confirm the accuracy of the 

UMR data, we also identified accessible chromatin regions (ACRs) using ATAC-seq for each 

inbred. We expect chromatin to be accessible mainly in the subset of genes expressed in the 

tissue sampled (primarily leaves) and to show concordance with UMRs. The data reveal that 

a mean of 99% of genic and 96% of non-genic (distal) ACRs overlap with UMRs in each 

genome (Figs. S25, S26).

To assess methylation diversity, we mapped UMRs from all inbreds to the B73 genome. 

Approximately 95% of genic UMRs overlap across genomes in pairwise comparisons (Fig. 

S27). UMR polymorphism is higher in the intergenic space, particularly among UMRs 

greater than 5 kbp from genes, where typically ~75% of UMRs overlap (Fig. S27). Even 

when the UMR sequence is conserved, its position relative to the closest gene may vary 

dramatically among inbreds. This is exemplified by the Miniature Seed1 gene where a 

UMR proximal to the promoter in Mo18W is displaced nearly 14 kbp upstream in B73 by 

a single Huck element (Gypsy LTR superfamily) (Fig. 4). The Huck insertion is present 

in 23 of 26 genomes, and in two of these (Oh43 and CML322), additional nested TE 

insertions increased the distance between the gene and the UMR to 27 kbp. Although UMR 

polymorphism correlates with genetic distance across NAM lines (Fig. S29), UMRs from 

Tzi8 were not substantially shared with other tropical genomes.

Adaptive variation in DNA methylation has been observed in maize (59), most likely 

through effects on gene expression. To estimate how well UMRs predict transcription, 

we identified a conservative subset of UMRs overlapping genes that were unmethylated 

in B73 but methylated in at least one other methylome. These differentially methylated 

regions were strongly correlated with differences in gene expression (Fig. 4, Fig. S30). 

We further evaluated the enrichment of significant GWAS SNPs across 36 traits in UMRs. 

Based on genome-wide estimates, UMRs show 2.50- to 3.26-fold enrichment across traits 

for significant associations. Roughly 18% of SNPs identified by GWAS lie outside of genic 

regions but within UMRs (Table S10), consistent with the view that UMRs can be used to 

identify functional, non-coding regions (5, 54, 55).

Summary

Our analysis of 26 genomes uncovered variation in both the genic and repetitive fractions 

of the pan-genome. Tropical, temperate, and flint-derived popcorn/sweet corn germplasm 

are differentiated in a number of striking ways including their pan-gene complement, 

homoeolog retention post-polyploidy, abundance of transposable elements, NLR disease-

resistance gene copy number, and methylation profiles. The available data will have broad 

utility for genetic and genomic studies and facilitate rapid associations to phenotyping 

information. For example, the genic presence-absence variation identified here may be 

imputed across additional mapping populations to clarify its contribution to heterosis 

through complementation (60). More generally, these resources should motivate a shift 

Hufford et al. Page 9

Science. Author manuscript; available in PMC 2022 February 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



away from the single reference mindset to a multi-reference view where any one of 26 

inbreds, each with different experimental and agronomic advantages, can be deployed for the 

purposes of basic discovery and crop improvement.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Pan genome analysis of the gene space. A) Pan-genes categorized by annotation method and 

phylostrata. Genes annotated with evidence have mRNA support whereas ab initio genes 

are predicted based on DNA sequence alone. Genes within progressing phylostrata - species 

Zea mays (maize), tribe Andropogoneae, family Poaceae, kingdom Viridiplantae - are more 

conserved. B) Number of pan-genes added with each additional genome assembly. Order 

of genomes being added into the pan genome was bootstrapped 1000 times. Tropical lines 

include (CML52, CML69, CML103, CML228, CML247, CML277, CML322, CML333, 
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Ki3, Ki11, NC350, NC358, Tzi8), temperate lines include (B73, B97, Ky21, M162W, 

Ms71,Oh43, Oh7B, HP301, P39, and Il14H). C) Proportion of pan-genes in the core, near 

core, dispensable, and private fractions of the pan-genome. For B and C, tandem duplicates 

were considered as a single pan-gene and coordinates were filled in when a gene was not 

annotated, but an alignment with greater than 90% coverage and 90% identity was present 

within the correct homologous block. D) Number of tissues with expression (RPKM>1) for 

each gene in each genome based on their pan-genome classification. Tissues in this analysis 

include (root, shoot, V11 base, V11 middle, V11 tip, anther, tassel, and ear).
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Figure 2. 
The tempo of fractionation in maize. A) Schematic showing how genes were categorized. 

16,195 conservatively chosen orthologs were subdivided into classes representing retained 

pairs, ancient fractionation, and recent fractionation. B) Unfolded site frequency spectrum 

(SFS) of segregating exon loss and non-coding SNPs (genic and non-genic) using sorghum 

to define the ancestral state. C) Heatmap of the number of co-retained exons between 

any two NAM lines. Lines with mixed ancestry (M37W, Mo18W, Tx303) are excluded. 
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Colors indicate the Z-score (the difference measured in standard deviations between a single 

pairwise comparison and all others in the row).
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Figure 3. 
Structural variation in the NAM founders. A) Pairwise alignments between Ki11, B73, 

Il14H on chromosome 8. Grey links represent syntenic aligned regions; gaps of unknown 

size (scaffold gaps) are marked by dashed lines. B) Large (>100 kbp) structural variants, 

centromeres, and knobs across the NAM lines versus the B73 reference. The subset of SVs 

larger than 1 Mbp were manually curated, and only those containing genes are represented. 

Features 1-5 highlight major SVs: 1) Multiple centromere movement events; 2) A major 

inversion previously hypothesized based on suppressed recombination; 3) A large deletion in 

the Ms71 inbred; 4) Knob polymorphism; 5) Reciprocal translocation between chromosome 

9 and 10 in the Oh7B inbred (both segments placed in their standard positions for display).
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Figure 4. 
UMR variation across the NAM founders. A) Annotation of the Miniature seed1 gene in the 

Mo17W inbred. An image from the MaizeGDB browser shows gene, TE, and UMR tracks. 

TE tracks are color-coded by superfamily: green/grey = LTR, red = TIR, blue = LINE. The 

grey vertical lines show 2.5 kbp intervals. B) Annotation and underlying methylation data 

for Miniature seed1 in the B73 inbred. The insertion of a Gypsy element moved part of 

the proximal UMR to a position 14 kbp upstream from the transcription start site (TSS). 

Methylation tracks indicate base-pair level methylation values from 0 to 100%. Asterisks 

indicate gaps in coverage, which are visible in separate tracks (Fig. S28). C) Relationship 

between methylation and gene expression. UMRs were mapped to B73 to identify UMRs 

that overlap with TSS. The Y axis indicates the ratio of transcripts per million (TPM, 

compared to B73) when the region is methylated (red) or unmethylated (teal).

Hufford et al. Page 26

Science. Author manuscript; available in PMC 2022 February 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hufford et al. Page 27

Table 1:

Quality metrics for genome assemblies and gene model annotations. Darker shading indicates higher quality. 

The NAM lines are shaded based on their primary grouping (gold = stiff stalk heterotic group, blue = 

non-stiff-stalk heterotic group, gray = mixed tropical-temperate ancestry, purple = popcorn, orange = sweet 

corn, green = tropical).

*
Hp301 and P39 have the lowest amounts of TR-1 and subtelomere repeats, respectively. Our methods can overestimate assembly when repeats are 

in low abundance (17).
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