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Abstract
Statistical modeling of temporal point patterns is an important problem in several areas. The Cox process, a Poisson process
where the intensity function is stochastic, is a common model for such data. We present a new class of unidimensional Cox
process models in which the intensity function assumes parametric functional forms that switch according to a continuous-
time Markov chain. A novel methodology is introduced to perform exact (up to Monte Carlo error) Bayesian inference based
on MCMC algorithms. The reliability of the algorithms depends on a variety of specifications which are carefully addressed,
resulting in a computationally efficient (in terms of computing time) algorithm and enabling its use with large data sets.
Simulated and real examples are presented to illustrate the efficiency and applicability of the methodology. A specific model
to fit epidemic curves is proposed and used to analyze data from Dengue Fever in Brazil and COVID-19 in some countries.

Keywords Uniformization · Metropolis-Hastings algorithm · Fast computation

1 Introduction

Temporal point pattern statistical models aim at modeling
the occurrence of a given event of interest in a given interval
on the real line, which is commonly interpreted as time. The
most widely used point process model is the Poisson pro-
cess (PP) in which the number of events in any interval has
Poisson distribution and is independent for disjoint intervals.
The Poisson process dynamics is mainly determined by its
intensity function (IF) and is called a homogeneous Poisson
process when this function is constant. Cox processes are a
statistically appealing generalization of the Poisson process
that allow the intensity function to vary stochastically across
the interval under consideration.

A variety of classes of Cox process models can be defined
in terms of the stochastic dynamics of the intensity func-
tion. Several of those models have appeared in the literature,
including non-parametric models in which such dynamics
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is described by a Gaussian process. The most popular of
those is the log Gaussian Cox process (Møller et al. 1998)
that defines the IF as the exponential of a Gaussian process.
Other (than the exponential) link functions are also consid-
ered in the literature, for example, functions proportional to:
the square function (Walder and Bishop 2017); the logis-
tic function (Adams et al. 2009); the standard normal c.d.f.
(Gonçalves and Gamerman 2018). Gonçalves et al. (2020)
considers the case in which the IF is a diffusion process,
allowing for non-Gaussian dynamics.

Non-parametric Cox process models as the ones above are
appealing due to their flexibility to model the IF dynamics.
However, they impose some complex statistical challenges.
The intractability of their likelihood function often requires
from the existing methodologies the use of approximations
that have to deal with the trade-off between precision and
computational cost. Although approximation-free method-
ologies have already been introduced (Adams et al. 2009;
Gonçalves and Gamerman 2018), their associated computa-
tional cost prevents them from being applied to moderately
large datasets. That motivates the development of novel
methodologies that offer modeling flexibility at a reasonable
computational cost and, preferably, do not consider approx-
imations.

A simple yet appealing model is the Markov modulated
Poisson process (MMPP), in which the IF follows a con-
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tinuous time Markov chain (CTMC). This means that the
IF is piece-wise constant with jumps having a Markovian
dynamics. This class of models has been explored under
a statistical perspective by different authors. In particular,
Fearnhead and Sherlock (2006) and Rao and Teh (2013)
propose exact Markov chain Monte Carlo (MCMC) method-
ologies to perform Bayesian inference. Both methodologies
consider MCMC algorithms that iterate between two main
sampling steps: i) sampling from a collection of CTMC
bridges (former) or a collection of homogeneous PPs (lat-
ter); ii) performing a forward-backward algorithm over a
collection of time points. On one hand, the algorithm from
Fearnhead and Sherlock (2006) does not introduce extra
latent variables, as it is done in the algorithm of Rao and Teh
(2013), that slows down the mixing of the MCMC chain.
On the other hand, the two main sampling steps described
above are performed considering: the observation times in
Fearnhead and Sherlock (2006); and the transition times of
an (augmented) CTMC in Rao and Teh (2013). This and the
fact that the former algorithm requires the computation of the
exponential of matrices whereas the latter does not, imply a
higher cost for the two steps of the former algorithm. In a
typical example, the number of events is much larger than
the number of changes in the underlying CTMC, therefore
favoring the algorithm from Rao and Teh (2013).

This paper introduces a generalization of Markov mod-
ulated Poisson processes—called the generalized MMPP
(GMMPP), that allows the intensity function to jump among
different and pre-specified functional forms. The jumps are
determined by a continuous-time Markov chain but in a way
that each state of the chain is associated with one functional
form. One special case of the GMMPP, for example, has a
piecewise continuous, linear intensity function, which starts
at a fresh random value when the underlying Markov chain
enters state 1, and increases with slope β while the CTMC
remains in state 1, then jumps to a new random value and
decreases with a slope γ when the CTMC enters state 2.
Parameters indexing the functional forms, like β and γ in
the aforementioned example, may be assumed unknown and
estimated in the inference process. This construction offers
a quite flexible yet parametric solution to model the IF of
unidimensional Cox processes.

The proposed class of Cox processes is expected to fill
a gap between Markov modulated Poisson processes and
fully non-parametric Cox processes. Compared to the for-
mer, GMMPPs providemuchmore flexibility tomodel the IF
dynamics. An MMPP model would typically require the use
of CTMCs with large state spaces with many state changes
(short visits) which would seriously compromise model par-
simony and, consequently, the implied computational cost.
On the other hand, when compared to fully non-parametric
approaches, for example, when the IF dynamics depends on
a Gaussian process, GMMPPs are expected to provide a sim-

ilarly good fit in many cases but with huge gains in terms of
computational cost.

An MCMC algorithm is developed to perform exact
Bayesian inference for GMMPPs. It is exact in the sense
that the devised Markov chain converges to the exact poste-
rior distribution of all the unknown quantities of the model,
including the IF. The algorithm builds upon the ideas intro-
duced in Rao and Teh (2013) so that it scales with the
number ofMarkov jumps and does not suffermassivelywhen
increasing the number of observations. Further non-trivial
developments are presented to circumvent the fact that a
forward-filtering-backward-sampling (FFBS) cannot be used
to sample one of the blocks of theGibbs sampling as it is done
inRao andTeh (2013). In fact, one of the ideas developedhere
can be used to further improve the algorithm of Rao and Teh
(2013). The proposed MCMC is computationally efficient in
terms of computing time and, therefore, feasible to be used
with very large data sets. This way, the main contributions of
this paper are twofold: first, a novel class of parametric unidi-
mensional Cox process which is flexible yet parsimonious is
introduced, and second, a computationally efficient MCMC
algorithm is devised to perform exact Bayesian inference.
The methodology offers an appealing (and much cheaper)
alternative to non-parametric Cox processes in a variety of
problems in which the latter ought to be a suitable choice.

Tomotivate the use of GMMPPswe consider two real data
sets regarding coal mining disasters and the exchange rate
between Brazilian Real (BRL) and USDollar (USD). For the
former, each event represents an explosion that killed ten or
moremen inBritain. For the latter, each event represents a day
in which the variation w.r.t. the previous day was greater than
1%. A kernel method (see Diggle 1985) is used to estimate
the IF as it is shown in Fig. 1 and suggests that the IF ought to
be well described, in both examples, by a GMMPP with an
increasing and a decreasing line with varying starting values.
Both examples are revisited in Sect. 5.

Finally, we propose a specific model to fit epidemic
curves, allowing for asymmetry between the growth and
decay behaviors. The model allows for simplifications in the
proposed MCMC algorithm, which lead to reasonable com-
putational times even for very large data sets—with more
than 300 thousand observations. The model is applied to
data sets regarding Dengue Fever epidemics in Brazil and
the COVID-19 pandemic. This is presented in “Appendix
E”.

Other examples of point process models that do not
assume the stochastic independence property of Poisson pro-
cesses, are the self-exciting Hawkes process (Rasmussen
2013, see, for example) and the Matérn repulsive process
(Rao et al. 2017, see, for example).

This paper is organized as follows. Sections 2 and 3
present the GMMPP and the MCMC algorithm, respec-
tively. Section 4 explores simulated examples to discuss
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Fig. 1 Two real data sets and the respective empirical IF. Left: Coal mining disasters—time unit is year. Right: daily variation over 1% in the
BRLxUSD exchange rate—-time unit is month

the efficiency of the methodology and compare it to a non-
parametric Cox process approach, in terms of inference and
computational cost. Finally, Sect. 5 applies the methodology
to real datasets. Two of them are the ones presented in Fig. 1
regarding coal mining disasters and the BRLxUSD exchange
rate.

2 GeneralizedMarkovmodulated Poisson
processes

Let Y := {Y (s)}s∈R+ be a non-homogeneous Poisson pro-
cess (NHPP) with intensity function λ := {λ(s)}s∈R+ and
consider K functional forms gk , k = 1, . . . , K . These may
be, for example, constants, increasing or decreasing lines,
exponential functions, etc. The IF λ switches among the
different functional forms according to the transitions of a
continuous-time Markov chain X := {X(s)}s∈R+ , with Q-
matrix Qθ , initial distribution π0 and state space {1 : E} :=
{1, 2, . . . , E}, for E ≥ K , where θ is the vector of parame-
ters indexing Qθ . Furthermore, in its most general form, we
allow the IF to switch from the same functional form to itself
and have different starting values every time a functional
form is revisited. We call the resulting process Y a general-
ized Markov modulated Poisson process with mathematical
representation given as follows.

Define T0 = 0, T = (T1, T2, . . .) as the jump times of
X and Z = (Z1, Z2, . . .) as the corresponding sequence of
visited states, i.e. Zi = X(Ti ), i ∈ N, and Z0 = X(0). For
each s, the surjective function hs := h(X(s)) : {1 : E} →
{1 : K } assigns a functional form gk to each of the states
of X and ζs := ζs(X) = max

i≥0
{Ti : Ti ≤ s}. Additionally,

R = (R0, R1, . . .), with Ri := Ri (X) = λ(Ti ), is the value

of the IF at Ti and ψ is a vector of parameters indexing the
gk’s. The generalized Markov modulated Poisson process is
formally defined as follows.

Y ∼ NHPP(λ), (1)

λ(s) = ghs (s, ζs, R, ψ), (2)

X ∼ CTMC(π0, Qθ , E), (3)

π(R|T , Z0, Z , ψ) = π(R0|Z0, ψ)

×
∏

i∈N
π(Ri |Ri−1, Ti−1, Ti , Zi−1, Zi , ψ). (4)

We can set any subset of the functional forms (from none to
all of them) to allow for self-jumps—the i th jump is a self-
jump if h(X(Ti−1)) = h(X(Ti )). This way, the size of the
state space E can be anything from K to 2K . Some choices
for the prior on R are presented in Sect. 3. For example,
suppose that g1 is a straight line with slope β, then, for a
given s such that the IF assumes the functional form g1 at
s ∈ [Ti , Ti+1), we have that λ(s) = Ri + β(s − ζs).

The IF can be interpreted in two ways: i) a discrete time
Markov chain and a sequence of exponentially distributed
random variables Ti+1 − Ti as well as initial values R, from
which a piecewise deterministic function is constructed; ii) a
piecewise deterministic Markov process conditioned on the
values of a discrete time Markov chain. Naturally, the IF
is required to be non-negative. Formally, we deal with this
issue by assigning zero to the density of Y conditional on any
trajectory of the IF that assumes negative values.

In the simpler case in which the IF is not allowed to switch
from each gk to itself, we set h(k) = k, k = 1, . . . , K . On the
other hand, if that feature is allowed, we set h(k) = h(K +
k) = k, k = 1, . . . , K . In order to favor model identifiability
in a statistical context, some entries of the Qθ matrix are set
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Fig. 2 Three examples of GMMPPs. Left: CTMC trajectory, right: IF trajectory and generated PP events (circles). Each example considers,
respectively, one of the three possible priors on R presented in Sect. 3. Self-jumps are allowed on the third example

to be zero so that a jump to the kth functional form that is
not a self-jump can only happen through the kth state of X
and never through the (K + k)th one. Figure 2 illustrates the
proposed class of models by presenting a realization for three
examples of GMMPPs.

3 Bayesian inference

We aim at performing inference for GMMPPs based on the
observation of the process over a finite time interval [0, S].
The inference process consists in obtaining the posterior dis-
tribution of the intensity function and unknown parameters.
Given the structure of the proposed class of models, this is
equivalent to the distribution of (Z0, Z , T , R, θ, ψ |y), where
y represents a realization of the process Y in [0, S]. In order
to fully specify the model under the Bayesian approach we
need to assign a prior distribution to parameters θ andψ . We
define ψ = (ψ1, . . . , ψK ), where ψk is the set of parameters

indexing the kth functional form, θ· = {θk : k = 1, . . . , K }
as the rates of the waiting times of X and θk· = {θk j : j =
1, . . . , K and j �= k} as the transition probabilities from the
states corresponding to the kth functional form. The param-
eter vectors θ and ψ are assumed to be independent a priori.
Independence among all the ψk’s and among the compo-
nents of θ· and vectors θk· is also assumed. In the case that
no self-jumps are allowed, the full prior specification of θ is
completed by setting, for k = 1, . . . , K ,

θk ∼ Gamma(αk, βk),

θk· ∼ Dirichlet(γk1, . . . , γkk−1, γkk+1, . . . , γkK ). (5)

If self-jumps are allowed, each row of Qθ has K non-zero
probabilities due to the restrictions imposed to have model
identifiability.Moreover, the transition probabilities between
the two states corresponding to the same functional form are
the same and the transition probabilities between the k1th
and k2th functional forms are the same when moving from
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either of the two states corresponding to the k1th form to
state k2. This means that there are K transition probabilities
associated to each functional form and the vector of these
probabilities are assumed to follow a Dirichlet distribution,
i.e.,

θk· ∼ Dirichlet(γk1, . . . , γkK ), (6)

for k = 1, . . . , K .
The rate parameters of the waiting times are set to be

the same for the two states corresponding to the same func-
tional form for which self-jumps are allowed. In order to
illustrate all the restrictions imposed to the Qθ matrix, con-
sider an example with three functional forms, all allowed to
self-jump. The resulting Qθ matrix is then given by

⎛

⎜⎜⎜⎜⎜⎜⎝

−θ1 θ1θ12 θ1θ13 θ1θ11 0 0
θ2θ21 −θ2 θ2θ23 0 θ2θ22 0
θ3θ31 θ3θ32 −θ3 0 0 θ3θ33
θ1θ11 θ1θ12 θ1θ13 −θ1 0 0
θ2θ21 θ2θ22 θ2θ23 0 −θ2 0
θ3θ31 θ3θ32 θ3θ33 0 0 −θ3

⎞

⎟⎟⎟⎟⎟⎟⎠
.

We consider a few options for the prior of the set R of
starting values. Note that the (random) dimension of R is
(|T | + 1), where |T | is the size of T in [0, S]. One possible
choice for the prior on R is to fix the starting value of each
functional form to be the same on every visit to that form.
This implies that the initial value of each functional form gk
is a parameter indexing that form and, if this is unknown, it
is added to the parameter vector ψk . We call this the prior 1
for R.

Another option for the prior on Ri (prior 2) is a point-
mass distribution depending on (Ri−1, Ti−1, Ti , Zi−1, ψ)

that leads to a continuous IF trajectory, being therefore closer
in form to the traditional logGaussianCoxprocess. This prior
is defined by

P(Ri = ghTi−1
(Ti , Ti−1, Ri−1, ψ)) = 1. (7)

A third option (prior 3) assumes

π(Ri |Ri−1, T , Z0, Z , ψ) = π(Ri |Zi ),

π(Ri |Zi = k) = πk, (8)

for some distribution πk , k = 1, . . . , K . This means that
all the starting values referring to the same functional form
are independent and identically distributed. Furthermore, in
order to have a feasibleMCMC algorithm, the constant func-
tional form is the only one forwhich a continuous prior can be
adopted, in particular, a gamma distribution. For all the other
forms, a discrete prior must be adopted and, unless useful
information is available, we shall assume uniform discrete

priors on supports chosen according to the scale of the IF. A
more flexible approach is to fix the size of the support of this
discrete distribution but set the actual values to be unknown
and assuming a joint continuous prior.

3.1 Model elicitation and identifiability

The proposed class of GMMPPs offers a considerably
flexible structure to model a variety of point process phe-
nomena. This flexibility, however, gives rise to complex
important issues that have a great influence on the quality
of the statistical analysis. More specifically, model and prior
elicitation should be carefully performed to avoid identifi-
ability problems and favor a reasonable model fit. Reliable
prior information about the phenomenon under study should
always be used to elicit informative priors. One may also
consider a preliminary analysis of the data and the use of
informative priors. A non-parametric kernel estimate of the
density function can be used to guide the choice of the func-
tional forms and other features of the model, like self-jumps
and prior structure of the initial values.

The use of informative priors should be considered based
on the (prior) information acquired. For example, if few tran-
sitions are expected, the datawould provide little information
about the parameters indexing the Qθ matrix. In this case,
the information that few transitions are expected could be
used to elicit informative priors for the mean waiting time
parameters θi in terms of the scale of the model (magnitude
of the waiting times). Moreover, scenarios in which the IF is
estimated to have few transitions will be weakly informative
about parameters indexing the Q-matrix, yielding a low pre-
dictive power. On the other hand, if the IF is estimated to have
a considerable number of transitions, reasonable information
about the Q-matrix will be available and, in turn, reasonably
precise predictions can be made. Finally, prior information
may also be used to elicit informative priors for the parame-
ters ψ .

Generally speaking, the proposed class of models does
not aim at emulating non-parametric structures, whichwould
imply the need for many functional forms with short visits to
each one. This would compromise model identifiability and
computational cost. The actual aim is to provide good model
fitting and prediction with high gains in terms of computa-
tional cost in situations in which a non-parametric structure
for the IF is expendable.

All of the issues discussed above are explored in the sim-
ulated and real examples presented in Sects. 4 and 5.

3.2 Model augmentation and theMCMC algorithm

The target posterior distribution of (Z0, Z , T , θ, ψ |y) is
highly complex, which suggests the use of MCMC methods
as the most reasonable choice to perform inference. Devel-
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oping an efficient algorithm, however, is not straightforward
and should consider non-trivial techniques to achieve that
goal. We consider a model augmentation approach simi-
lar to the one used in Rao and Teh (2013) but with some
adaptations to gain computational efficiency. Themodel aug-
mentation is based on the augmented representation of a
CTMC introduced in Hobolth and Stone (2009) and referred
to as uniformization. The CTMC is represented as a discrete
time Markov chain (DTMC) subordinated to a Poisson pro-
cess. This means that the times of the DTMC, which has the
same state space of the CTMC X , are defined by a Poisson
process. The augmented component comes from the fact that
the DTMC may have transitions between the same state. We
shall refer to those transitions as virtual jumps.

The difference between our approach and the one in Rao
and Teh (2013) is that we consider a non-homogeneous Pois-
son process instead of a homogeneous one. The gain in
efficiency due to the use of a non-homogeneous PP will be
made clear further ahead in the text. The representation using
non-homogeneous PP is also used in Rao and Teh (2012) in
the context of inference for semi-Markov jump processes.
Nevertheless, the authors do not provide a proof for the result.

Let us start by defining K constants 
1, . . . , 
K such
that 
k > |Qk |, where Qk is the kth diagonal element of
Qθ . Now let V0, V1, . . . be a sequence of discrete random
variables on {1 : E} and W = (W1,W2, . . .) a sequence of
random times on R+. For W0 = 0, we define the following
stochastic process:

V0 ∼ π0, (9)

(W� − W�−1|V�−1 = j,W�−1) ∼ Exp(
h( j)), (10)

(V�|V�−1 = j) ∼ P(E, Bj ·), (11)

Bj · = 1 j + 1


h( j)
Q j ·, (12)

for � = 1, . . . , |W |, where P(E, Bj ·) is a discrete distribu-
tion on E with probability vector Bj ·, Q j · is the j th row of
Qθ and 1 j is a row vector of size E with the j th element
being 1 and all the others being 0.

As it is stated in Proposition 1 below, the process (V0, V ),
where V = (V1, V2, . . .), subordinated to times W is an
alternative representation for the CTMC X . We shall refer to
this process as the augmented CTMC. Note that the virtual
times are an extra component that is not defined in the original
definition of a CTMC. Finally, note that the result is valid
for 
k ≥ |Qk | but, in order to use this representation in
our MCMC context, the strict inequality is required. This is
because the equality implies the almost surely non-existence
of virtual jumps, which, in turn, precludes the validity of the
MCMC algorithm. This argument will be made clear further
ahead in the text.

Fig. 3 Graphical representation of the proposed augmented GMMPP
model

Proposition 1 For any 
k ≥ |Qk |, the process (V0, V ,W )

defines the same continuous timeMarkov chain X with initial
distribution π0 and Q-matrix Qθ .

Proof See “Appendix A”. �	
Consider now the augmented model that replaces the

CTMC X in the original model in (1)–(4) by the augmented
CTMC defined in (9)–(12)—its graphical representation is
presented in Fig. 3 and Table 5 in “Appendix B” presents
an overview of the model. We define U and T as the vir-
tual and non-virtual jump times of the augmented CTMC,
respectively. The vector of all the unknown quantities in the
augmented model is ϕ = (W ,U , T , V0, V , V (T ), R, θ, ψ),
where V (T ) is V at times T . This means that the aim of
the inference procedure is to obtain the posterior distribution
of (ϕ|y). Note that there are redundancies in the definition
of ϕ since W = U ∪ T and V (T ) ⊂ V , nevertheless, that is
required due to the particular sampling scheme to be adopted
in the MCMC.

Wedesign aGibbs sampling algorithm,with aMetropolis-
Hastings (MH) step for one of the blocks. Each block is
iteratively sampled conditioned on all the other compo-
nents appearing in ϕ. The blocking scheme and sampling
algorithms to be adopted aim at simultaneously optimizing
the convergence properties and computational cost of the
algorithm. We consider the following blocks: (U ,W , V );
(V0, V , V (T ),U , T , R); θ ; ψ .

We present the joint density of (Y , ϕ) which is useful to
derive the algorithms to sample from each block. We have
that

π(Y , ϕ) = π(Y |V0, V ,W , R, ψ)π(V0, V ,W |θ)

×π(R|V0, V ,W , ψ)π(θ)π(ψ), (13)

where each density above is obtained w.r.t. some suitable
dominating measure. The likelihood π(Y |·) := π(Y |V0, V ,
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W , R, ψ) is written w.r.t. the probability measure of a Pois-
son process with constant positive rate such that

π(Y |·) ϕ∝ exp

{
−

∫ S

0
λ(s)ds

} NS∏

n=1

λ(tn), (14)

where NS is the number of events from y in [0, S] and tn is
the time of the nth event. The densitiesπ(V0, V , T ,U ,W |θ),
π(R|V0, V , T ) and π(θ) can be obtained from (9)–(12), (7)–
(8) and (5)–(6), respectively. Finally, π(ψ) is some suitable
continuous density.

Sampling (U,W,V)

First note that, conditional on (T , V (T ), θ), (U ,W , V ) is
independent of the data and consists of the virtual jumps.
These are sampled directly from their full conditional distri-
bution, which is given by the following proposition.

Proposition 2 DefiningU (i) as the virtual jumps in (Ti , Ti+1),
with T0 = 0 and T|T |+1 = S, the full conditional distribution
of the virtual jumps is such that:

i. the U (i)’s are mutually independent;
ii. for i = 0, . . . , |T |, U (i) is a homogeneous Poisson pro-

cess with rate 
h(V(i)) + Qh(V(i)), where V(i) is the state
of V at Ti .

Proof See “Appendix A”. �	
Note that, if 
k = |Qk |, the number of virtual jumps is

almost surely zero and, as a consequence, the MCMC chain
is reducible since the non-virtual jumps would be restricted
to the set defined by its initial value. In fact, the values of
the 
k’s have a great impact on the efficiency of the algo-
rithm. If these are increased, the mean number of virtual
jumps also does, which, in turn, improves the mixing of the
chain. On the other hand, an increase in the number of virtual
jumps leads to an increase in the computational cost of each
iteration of the algorithm, in particular, on the step where
(V0, V , V (T ),U , T , R) is sampled. Rao and Teh (2013) sug-
gests the use of 
 = 2max

k
|Qk | in the context of inference

for MMPP, based on empirical results. Note however that the
authors consider a unique
 for all k, as presented in the orig-
inal augmented CTMC representation of Hobolth and Stone
(2009). This leads to different local mixing properties of the
MCMCwith respect to different states (in our case, different
functional forms) of the CTMC. Moreover, an optimal local
choice w.r.t. the state (functional form) with the larger |Qk |
ought to penalize the local computational cost associated to
the other states. That issue is the main motivation for us to
propose the alternative augmented CTMCwith distinct
k’s.
It allows for a finer optimization of the chain’s properties in

the sense of globally optimizing the mixing without penal-
izing the computational cost. Finally, based on the results of
Rao and Teh (2013), we set 
k = 2|Qk | for all k.

The original algorithm fromRao and Teh (2013) may also
benefit from the use of distinct dominating rates 
k , for the
same reasons discussed in the previous paragraph. The step
to sample the virtual jumps would be performed according
to the result in Proposition 2 and, therefore, be identical to
the same step in our algorithm. The other step, in which the
states of the subordinated Markov chain are sampled, would
be performed by the FFBS algorithm proposed in the original
paper but considering the j th row of the transition matrix of

the subordinated Markov chain to be
(
1 j + Q j ·


h( j)

)
.

Sampling (V0,V,V(T),U, T, R)

The full conditional density of (V0, V , V (T ),U , T , R) is pro-
portional to (13), hence

π(V0, V ,U , T , R|y, θ, ψ,W ) ∝ L0(V0, R0)π0(V0)

×
|W |∏

l=1

Ll(V0:l , R0:(l))π(Vl |Vl−1, θ)

×
(l)∏

i=0

π(R(l)|V(l)),

where V0:l = (V0, . . . , Vl), (l) is the number of non-virtual
jumps up to Wl and R0:(l) are all the starting values up to Wl

(which are not necessarily l values). Also,

Ll(V0:l , R0:(l)) = exp

⎧
⎪⎨

⎪⎩
−

Wl+1∫

Wl

λ(s)ds

⎫
⎪⎬

⎪⎭

×
∏

tn∈[Wl ,Wl+1)

λ(tn).

Direct sampling from the full conditional distribution
of (V0, V , V (T ),U , T , R) requires the computation of its
probability mass function, which is a (at least) E |W |-
dimensional vector. Therefore, in the majority of cases, the
computational cost associated to this algorithm is impracti-
cal. Furthermore, note that, for GMMPP’s, each likelihood
term Ll(V0:l , R0:(l)) depends on V and R up to time Wl ,
because of the dependence on the last non-virtual jump
up to Wl . For that reason, unlike in the case of inference
for MMPP’s (see Rao and Teh 2013), an FFBS scheme
cannot be devised to sample from the full conditional dis-
tribution of (V0, V , V (T ),U , T , R). Instead, we propose an
independent Metropolis Hastings step with a proposal distri-
bution q(V0, V , R) that aims at approximating the target full
conditional by adding suitable normalizing constant terms
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for each of the |W | terms Ll(V0:l , R0:(l))π(Vl |Vl−1, θ) or
Ll(V0:l , R0:(l))π(Vl |Vl−1, θ)π(R(l)|V(l)), accordingly. More
specifically,

q(V0, V , R) = c0
π0(V0)

c0(V0)
c0(V0)L0(V0, R0)

× π(R0|V0, τ )

|W |∏

l=1

{
cl

π(Vl |Vl−1, θ)

cl(Vl)
cl(Vl)

× Ll(V0:l , R0:(l))[π(R(l)|Vl)I(Vl−1 �= Vl)

+I(Vl−1 = Vl)]} , (15)

where cl(Vl) is the normalizing constant of Ll(V0:l ,
R0:(l))π(R(l)|Vl) and cl is the normalizing constant of
π(Vl |Vl−1, θ)

cl(Vl)
. Note that when Vl corresponds to a vir-

tual jump, cl is the constant that normalizes π(Vl |Vl−1,

θ)Ll(V0:l , R0:(l)).

The acceptance probability of the MH step is given by

α = 1 ∧
|W |∏

l=1

cl
c∗
l
, (16)

where the cl ’s and c∗
l ’s refer to the current and proposal

values, respectively. Note that any trajectory that leads to
negative values for the IF is rejected with probability 1.

As described before, the constant functional form is the
only one for which we assume a continuous prior for its
starting values—a gamma prior. For all the other forms,
the required normalizing constants above would typically be
intractable for continuous priors. The detailed algorithm to
perform the MH step described above is presented in Algo-
rithm 1 of “Appendix B”. The algorithm for the simpler
case with no varying starting value is obtained by applying
straightforward simplifications.

We use the general result from Mengersen and Tweedie
(1996) to establish the uniform ergodicity of the proposed
MH sub-chain.

Proposition 3 The Metropolis-Hastings sub-chain defined
by (15) and (16) is uniformly ergodic.

Proof See “Appendix A”. �	
Since this is an independent MH algorithm, its efficiency

relies heavily on its acceptance rate—the higher the bet-
ter. Note that this rate should be reduced as the number of
non-virtual jumps increases. For that reason, we propose an
adaptation of the algorithm by partitioning the interval [0, S]
and separately sampling (V0, V , V (T ),U , T , R) in each of
these time intervals. In order to have a robustly efficient
algorithm, we propose an adapting strategy that starts by
updating (V0, V , V (T ),U , T , R) in one block and then par-
titions this into more blocks if required. The adaptation is
considered up to a certain iteration of the Markov chain so
to guarantee its convergence. Finally, the algorithm to sam-
ple (V0, V , V (T ),U , T , R) in each sub-interval of time is a
direct and straightforward adaptation of Algorithm 1 that is
presented in “Appendix B”.

The partitioning strategy ought to be executed with care
in order to guarantee that the respective full conditional dis-
tribution depends on the likelihood only inside the respective
time interval. This means that the limits of the intervals have
to be times Ti ’s of non-virtual jumps and the proposal distri-
bution is truncated so that the upper limit of the respective
time interval remains as a non-virtual jump time and does
not change the initial functional form of the next time inter-
val. For a partition (0 = s0, s1, . . . , sB = S), the blocks are
defined by the intervals [0, s1], [s1, s2], . . ., [sB−2, sB−1],
[sB−1, S].

The adapting partition strategy goes as follows. Set a num-
ber of iterations M large enough to obtain a reliable estimate
of the acceptance rate and a reasonable threshold r for the
rate. The algorithm startswith one block (B = 1). Then, after
every M iterations, the acceptance rate in those last M itera-
tions is evaluated. If this rate is smaller than r , we make B =
B + 1. The adaptation carries on until the computed rate is
larger than r . Following the results fromLee andNeal (2018),
we suggest r ≈ 0.25. A partition with B blocks is defined
by setting the intervals’ limits to be the Ti ’s which are the
closest to the times |W |/B, 2|W |/B, . . . , (B − 1)|W |/B.
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Finally, the continuous time Markov chain trajectory may
be highly correlated with some parameters in ψ , which may
compromise the mixing of those parameters. A simple and
efficient way to mitigate this problem is to perform multiple
updates of (U ,W , V ) and (V0, V , V (T ),U , T , R) on each
iteration of the Gibbs sampling. This issue is illustrated in
the simulated examples.

Sampling� andÃ

It is straightforward to simulate from the full conditional
distribution of θ given the conditional independence struc-
ture and conjugation of its prior. The full conditional
distribution of θk is a Gamma(αk + mk(V0, V ), βk +
τk(V0, V , T )), where mk(V0, V ) and τk(V0, V , T ) are the
total number of visits to and the total time spent at the
kth functional form in [0, S], respectively. Moreover θk·
has a Dirichlet full conditional distribution with parameter
vector (γk1 + mk1(V0, V ), . . . , γkK + mkK (V0, V )), if self-
jumps are allowed, and (. . . , γkk−1+mkk−1(V0, V ), γkk+1+
mkk+1(V0, V ), . . .), if no self-jumps are allowed, where
mk1k2(V0, V ) is the total number of transitions from func-
tional form k1 to functional form k2 in [0, S],

Concerning parameters ψ , we have from (13) that its full
conditional density is

π(ψ |·) ∝ exp

{
−

∫ S

0
λ(s)ds

} NS∏

n=1

λ(tn)π(ψ).

The prior independence among the ψk’s implies the condi-
tional independence of the respective K full conditionals.
Moreover, for a constant gk with fixed starting value, a
Gamma(ηk, νk) leads to a full conditional

Gamma(ηk + nk(y), νk + τk(V0, V , T )),

where nk(y) is the number of events from y occurring dur-
ing the time that the IF assumes the functional form gk . For
all the other functional forms we perform MH steps with an
adapted random walk proposal (see Roberts and Rosenthal
2009, Section 2) for each vector ψk . The acceptance proba-
bility for each ψk is given by

1 ∧ π(ψ∗
k |·)

π(ψk |·) ,

whereψk andψ∗
k are the current and proposal values, respec-

tively, and π(ψk |·) is proportional to the product of the
likelihood in (14) and the prior density of ψk .

3.3 Prediction

Prediction is a common procedure associated with the sta-
tistical analysis of stochastic processes. In the context of
unidimensional Poisson processes, prediction consists in
estimating the future behavior of the process, in particular,
its intensity function and/or events. The Bayesian approach
allows for the prediction to be made under a probabilistic
approach through the predictive distribution. Consider the
full Bayesian model of a GMMPP Y in [0,∞] and let y be a
realization of the process in [0, S].Nowdefine g(Y , V , T , ψ)

to be some measurable function, in the probability space of
the full Bayesian model, that depends on (Y , V , T ) only
in (S,∞). Then, prediction about g(Y , V , T , ψ) is made
through the predictive distribution of g(Y , V , T , ψ)|y.

In an MCMC context, it is straightforward to obtain a
Monte Carlo (MC) sample from the predictive distribution
as long as it is feasible to simulate from the fullmodel.AnMC
sample is obtained by simulating g(Y , V , T , ψ) conditional
on each value simulated along the MCMC (after a burn-in
period) due to the fact that

π(g(Y , V , T , ψ)|y)=
∫

π(g(Y , V , T , ψ)|ϕ, y)π(ϕ|y)dϕ.

Appealing examples of g(Y , V , T , ψ) include:

i. λ̇ := {λ(s)}s∈(S,S+Ṡ), for Ṡ > 0;

ii. �Ṡ =
∫ S+Ṡ

S
λ(s)ds;

iii. NS+Ṡ − NS .

For examples i . and i i ., it is enough to simulate the CTMC X
conditional on each sample of (X(S), θ) and compute g for
the respective sampled value ofψ . For example i i i ., an extra
step is required to simulate froma Poisson(�Ṡ) distribution,
conditional on each simulated valued of �Ṡ .

4 Simulated examples

This section presents a collection of simulated examples to
explore important issues related to the methodology pro-
posed in this paper. In particular, we explore: 1. the impact of
the number of observations and the number of jumps in the
IF on the computational cost of the MCMC algorithm; 2. a
sensitivity analysis for the priors ofψ and θ ; 3. the efficiency
in estimation and prediction (with replications).

Convergencediagnostics are obtainedbasedon theMCMC
chain for the parameters, for some functions of the CTMC
and for the log-posterior density (logarithm of the non-
normalized posterior density). Computational cost is eval-
uated in terms of the average time (in seconds) to obtain
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Table 1 The cost as a function
of the number of observations

Scen. g1 g2 g3 E[NS] NS

ψ11 ψ12 Stay ψ21 ψ22 Stay ψ31 Stay

A1 0.5 0.25 [36.5, 50] 6 − 0.25 [0, 14.2) 0.5 [14.2, 36.5) 100.68 103

A2 2.5 1.25 [36.5, 50] 30 − 1.25 [0, 14.2) 2.5 [14.2, 36.5) 503.38 512

A3 10 5 [36.5, 50] 120 − 5 [0, 14.2) 10 [14.2, 36.5) 2013.5 1985

A4 50 25 [36.5, 50] 600 − 25 [0, 14.2) 50 [14.2, 36.5) 10,068 9991

A5 150 75 [36.5, 50] 1800 − 75 [0, 14.2) 150 [14.2, 36.5) 30,203 30,113

Description of the five scenarios simulated—ψ , length of stay, mean and actual number of observations

100 effective samples of the log-posterior density. We con-
sider the running time including the calibration of the MH
proposal for ψ and the adapting partition of [0, S] to sam-
ple (V0, V , V (T ),U , T , R). The effective sample size of an
MCMC sample of size n is defined as ness = n

1+2
∑∞

j=1 ρ j
,

where ρ j is the autocorrelation of order j of the chain. It is
such that the variance of the ergodic average of the n values
from the chain is the same as the variance of the ergodic aver-
age of an independent sample (from the target distribution)
of size ness . The sum in the denominator is truncated at the
last lag for which the autocorrelation is significantly different
from zero (based on an asymptotic confidence interval). For
the four examples in which the GMMPP is compared to a
non-parametric IF model, we consider the effective samples
of the log-likelihood instead of the log-posterior density.

All the examples are implemented in Ox (Doornik
2007) and run on an i7 3.4GHz processor with 16MB
RAM. Codes are available at https://github.com/liviadutra/
bayesian-inference-for-gmmpp.

4.1 Investigating the computational cost

In this section, we investigate the computational cost associ-
ated to the proposed methodology. In particular, we investi-
gate the impact of the number of observations and the number
of changes in the IF trajectory. As emphasized before, the low
computational cost is at the core of the main contributions of
this paper.

The cost as a function of the number of observations
We simulate five scenarios with the same behavior for the

IF (functional forms and changes) in the same time inter-
val but with different levels of magnitude. We consider three
functional forms—increasing and decreasing lines and a con-
stant, with fixed starting values and no self-jumps allowed.
Table 1 presents the specific functional forms, length of
stay, mean number and actual number of observations. We
fix the Q-matrix so that all the states have a mean stay-
ing time of 20 units and uniformly distributed transition
probabilities. Multiple updates of blocks (U ,W , V ) and
(V0, V , V (T ),U , T , R) are performed to control the high
autocorrelation of the parameters of the increasing line func-
tional form—5 updates for scenarios A1 and A2, 15 for A3

Fig. 4 Computational cost, measured in terms of the time per 100
effective samples of the log-posterior density, versus the number of
observations

and A4 and 25 for A5. Moderately informative priors are
adopted forψ in scenario A1, namelyψ11 ∼ N (1, 22) (inter-
cept of the increasing line),ψ12 ∼ N (0.5, 0.62) (slope of the
increasing line),ψ21 ∼ N (5, 22) (intercept of the decreasing
line), ψ22 ∼ N (−0.5, 0.62) (slope of the decreasing line),
ψ31 ∼ Gamma(1, 1) (constant). For all the other scenarios,
independent uniform improper priors are used for all param-
eters but ψ31, for which a Gamma(1, 1) is also used.

Results regarding the estimation of the IF and ψ are pre-
sented in Fig. 13 and Tables 6 and 7 in “Appendix C”.
They already show a reasonably good recovery of the IF
and parameters for the dataset with only 103 observations,
with the estimation improving substantially with the size of
the dataset. MCMC diagnostics are presented in Figs. 16 and
17 in “Appendix D”.

The relation between the computational cost and the num-
ber of observations is shown in Fig. 4. We highlight the
computational efficiency of the proposed MCMC algorithm
shown by the running times. The methodology has shown to
be quite efficient to be applied for very large datasets. For
example, the total running time to obtain an effective sample
size of 100 for the log-posterior density is around 2.3min for
the dataset with 10 thousand observations and 18min for the
dataset with 30 thousand observations.

The cost as a function of the number of changes in the IF
Wesimulate three scenarioswith the sameaverage number

of observations and three functional forms—increasing and
decreasing lines and a constant, with fixed starting values
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Table 2 The cost as a function
of the number of changes in the
IF

Scen. g1 g2 g3 |T | NS

ψ11 ψ12 Av. st. ψ21 ψ22 Av. st. ψ31 Av. st.

B1 1.7 0.85 15 20.4 − 0.85 15 1.7 15 10 2013

B2 1 0.5 15 12 − 0.5 15 1 15 20 2004

B3 0.5 0.25 15 6 − 0.25 15 0.5 15 40 1991

Description of the three scenarios simulated—ψ , average length of stay per visit, number of changes in the
IF and number of observations

Fig. 5 Computational cost, measured in terms of the time per 100 effec-
tive samples of the log-posterior density, versus the number of changes
in the IF

and self-jumps allowed. The IF is simulated from the same
CTMC prior but considering different total observed time
in order to have considerably different numbers of changes
in the IF. The number of observations is approximately 2
thousand for all the scenarios. Table 2 presents the specific
functional forms, average length of stay per visit and number
of changes in the IF. The priors on the Q-matrix diagonal
parameters are θ1 ∼ Gamma(1, 10), θ2 ∼ Gamma(1, 10)
and θ3 ∼ Gamma(1, 5) and, for the transition probability
vectors, we adopt a uniform prior on the respective simplex.
Finally, uniform improper priors are adopted for all the ψ

parameters. Blocks (U ,W , V ) and (V0, V , V (T ),U , T , R)

are updated 5 times in each iteration of the Gibbs sampling.
Results regarding the estimation of the IF and of the ψ

and θ parameters are presented in Fig. 14 and Tables 6 and 7
in “Appendix C”. They show a very good recovery of the IF
and parameters.MCMCdiagnostics are presented in Figs. 18
and 19 in “Appendix D”.

The relation between the computational cost and the real
number of changes in the IF is shown in Fig. 5. Again,
we highlight the computational efficiency of the proposed
MCMC algorithm shown by the running times. The total
running time to obtain an effective sample size of 100 for the
log-posterior density is around 105s for the dataset with 40
changes in the IF and approximately 2 thousandobservations.

4.2 Prior sensitivity analysis

We perform a prior sensitivity analysis for parameters ψ for
scenarios A1, A3, A5 and B2. Those examples are run with
non-informative and moderately informative priors. The lat-
ter ones are set based on the scale of each example. Also, a
prior sensitive analysis for parameters θ in the diagonal of
the Q-matrix is performed for scenarios B1 and B3. Again,
non-informative and moderately informative priors are used.

In the first analysis, the Q-matrix is fixed for all the A∗
scenarios at the same values as in Sect. 4.1. For scenario B2,
the same non-informative priors from Sect. 4.1 are adopted.
The prior on the constant IF parameter ψ31 is set to be
Gamma(1, 1) in all the cases. For the parameters index-
ing the other two functional forms, we compare the results
for improper uniform priors and the moderately informative
priors shown in Table 3. Results for the parameter estima-
tion are presented in Table 8 in “Appendix C” and show that
greater differences are observed only for the parameters of
the increasing line. As it should be expected, the variances
of those parameters are greater for the non-informative pri-
ors, for which the posterior density is also more asymmetric.
Results for the IF go in the same direction, with significant
differences observed only for scenario A1 in the time period
associated with the increasing line. It can be noticed that the
posterior distribution of the IF is more influenced by the data
for the non-informative prior, as expected—see Fig. 15 in
“Appendix C”.

The second sensitivity analysis concerns the prior distri-
bution on the parameters θ in the diagonal of the Q-matrix.
Improper uniform priors are adopted for all theψ parameters
except for the constant value ψ31 which has a Gamma(1, 1)
non-informative prior. Uniform priors on the simplex are
adopted for all the transition probability vectors in the Q-
matrix. The non-informative priors for theQ-matrix diagonal
parameters are improper uniforms distributions and the infor-
mative ones are θ1 ∼ Gamma(1, 10), θ2 ∼ Gamma(1, 10)
and θ3 ∼ Gamma(1, 5). Results (omitted here) are vir-
tually the same for the two prior specifications w.r.t. the
estimated IF, ψ parameters and transition probability vec-
tors from the Q-matrix. As for the parameters in the diagonal
of the Q-matrix, small yet non-negligible differences are
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Table 3 Informative priors for
the sensitivity analysis of ψ

Scen. ψ11 ψ12 ψ21 ψ22

A1 N (1, 22) N (0.5, 0.62) N (5, 22) N (−0.5, 0.62)

A3 N (10, 52) N (6, 42) N (120, 202) N (−6, 42)

A5 N (150, 502) N (75, 402) N (1800, 1502) N (−75, 402)

B2 N (2, 22) N (1, 1) N (12, 42) N (−1, 1)

Fig. 6 Results for 50 replications of scenario A1. Top left: true (black
line) and posterior mean of the IF for each replication. Top right: pos-
terior density of the measure of fit in (17) for each replication. Bottom:
mean and 95% CI for the integrated IF for each replication. Horizontal
line represents the real value

observed, with slightly larger variances for the casewith non-
informative priors.

4.3 Efficiency in estimation and prediction

Examples with replications

We now investigate the efficiency of the proposed method-
ology in terms of estimation and prediction by considering
replications of the same model. We consider the IF from sce-
narios A1, A3 and B2 and generate 50 independent datasets
for each one. Prediction for the integrated IF in the interval
[400, 800] is performed for scenario B2 by sampling from
its predictive distribution.

In order to summarize the performance of the methodol-
ogy we consider the posterior distribution of the following
measure of fit:

1

S

∫ S

0
|λ(s) − λR(s)|ds, (17)

where λR is the real intensity function.
Results are shown in Figs. 6, 7 and 8 and reveal a very

good performance to estimate and predict the IF.

Fig. 7 Results for 50 replications of scenario A3. Top left: true (black
line) and posterior mean of the IF for each replication. Top right: pos-
terior density of the measure of fit in (17) for each replication. Bottom:
mean and 95% CI for the integrated IF for each replication. Horizontal
line represents the real value

Fig. 8 Results for 50 replications of scenario B2. Top left: true (black
line) and posterior mean of the IF for each replication. Top right: pos-
terior density of the measure of fit in (17) for each replication. Bottom
left: mean and 95% CI for the integrated IF for each replication. Hori-
zontal line represents the real value. Bottom right: real (black line) and
posterior predictive density of the integrated IF in [400, 800]

Comparison to non-parametric Cox process model

We compare our methodology to that from Gonçalves and
Gamerman (2018), in which the IF is assumed to be a con-
tinuous positive function of a latent Gaussian process. As it
is demonstrated in that paper, this is the most computation-
ally efficient exact methodology for Gaussian process-driven
IF Cox processes. The computational cost associated to the
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Fig. 9 Comparison between the estimated IF (posterior mean and 95%
pointwise CI) for the GMMPP (red) and the non-parametric IF (blue)
models for scenarios C1, C2 and C3. Black dashed line is the true IF
and circles are the observations. (Color figure online)

MCMC algorithm from Gonçalves and Gamerman (2018)
is O((λsupS)3), where λsup is the supremum of the IF in
[0, S]. It is defined by the cost to generate multivariate nor-
mal distributions which are required due to the use of a latent
Gaussian process. This implies that not only the cost is larger
and grows much faster than the cost from our methodology
but also that it is not feasible to apply the methodology to
very large datasets.

We consider three scenarios—C1, C2 and C3, with deter-
ministic IFs. Scenario C1 considers a dataset of size 302
generated from the IFλ(s) = 20 exp{−x/5}+1.5 exp{−(x−
25)2/50} in [0, 50] and excluding the 8 observations gener-
ated in [9, 14] (so, there is no “true” IF). The GMMPP is
fitted with decreasing and increasing lines and a constant, all
with non-varying intercept (prior 1 for R). Uniform improper
priors are adopted for all the parameters indexing the increas-
ing and decreasing lines and aGamma(1, 1) for the constant
one. A prior Gamma(1, 20) is adopted for all the three diag-
onal parameters of the Q-matrix. The prior on the probability
vectors of the Q-matrix are uniform Dirichlet. The estimated
IF for both models are shown in Fig. 9.

Table 4 Time (in min) per 100 effective samples of the log-likelihood
function

Scenario GMMPP Non-parametric

C1 0.255 120

C2 7.33 138

C3 2.59 110

Scenarios C2 and C3 consider the IFs shown in Fig. 9,
along with the estimated IF for both models. C2 has 452
observations and C3 has 519. The GMMPPs fitted in the
C2 considers increasing and decreasing lines with varying
starting values (prior 3 for R) and a non-varying constant
line (prior 1 for R). C3 considers increasing and decreas-
ing lines with varying starting value only for the former.
We set priors N (1.3, 1) and N (−1.3, 1) for the slope of
the increasing and decreasing functions in C2 and uniform
discrete priors on (3, 3.2, . . . , 11) and (8, 8.2, . . . , 16) for
the intercepts of the increasing and decreasing lines, respec-
tively. A Gamma(1, 10) prior is adopted for all the three
diagonal parameters of the Q-matrix. All of those priors basi-
cally set the scale of the IF to favor model identifiability. For
C3, we set N (15, 4) for the intercept of the decreasing line,
uniform improper priors for the slope parameters and a uni-
form discrete prior on (3, 3.2, . . . , 13) for the intercept of
the increasing line. PriorsGamma(1, 5) andGamma(1, 10)
are adopted for the two diagonal parameters of the Q-matrix,
respectively. The priors on the probability vectors of the Q-
matrix are uniform Dirichlet for both scenarios.

Results for the three scenarios show that similar results
are obtained for the GMMPP and the non-parametric mod-
els.We also compare thosemodels in terms of computational
efficiency—see Table 4, to reinforce the computational
advantages of the proposed methodology.

5 Applications

Here, we present two applications to illustrate our method-
ology. Furthermore, in “Appendix E”, we propose a specific
model to fit epidemic curves and analyze data from Dengue
Fever in Brazil and COVID-19 in Switzerland and Roma-
nia. This is a data-driven statistical approach that allows for
uncertainty quantification in estimation and prediction and is
computationally feasible to be applied to large datasets.

5.1 Coal mining disasters

We apply the proposed methodology to the classic coal min-
ing disasters data of Jarrett (1979), consisting of the dates of
191 explosions in coal mines that killed ten or more men in
Britain between 15th March 1851 and 22nd March 1962 (re-
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Fig. 10 Top: posterior
probability of each functional
form—constant (black),
increasing line (green) and
decreasing line (orange).
Bottom: estimated IF for the
coal mining data for the
GMMPP and non-parametric IF
models. Red line and pale-red
shadow are the posterior mean
and 95% CI for the GMPP and
blue line and pale-blue shadow
are the same statistics for the
non-parametric model. Circles
are the observations. (Color
figure online)

scaled to [0, 111], year unit). We also analyze these data with
the non-parametric IF model of Gonçalves and Gamerman
(2018).

Based on an empirical analysis of the data (see Fig. 1), we
set three functional forms—decreasing and increasing lines
and a constant, all with varying starting values (prior 3 for R).
We adopt the following priors: Uniform(0.1, 0.3, . . . , 4.7)
for the varying starting values of the increasing and decreas-
ing lines and a Gamma(1, 1) for the constant; N (0.1, 0.22)
and N (−0.1, 0.22) for the slopes; the three diagonal param-
eters of the Q-matrix are fixed at 1/60 and the transition
distributions are fixed to be uniform. The former consid-
ers the time scale of the data to penalize scenarios with
expendable changes in the intensity function but without
compromising its estimation.

The computational time per 100 effective samples of the
log-likelihood is 3.8min for the GMMPP and 8.6min for the
non-parametric IF model (with no approximations to simu-
late from the Gaussian process). The estimated IF for both
models is shown in Fig. 10, along with the posterior prob-
ability of each functional form. The posterior mean of the
integrated IF is 201.7 (standard deviation = 15.5) for the
GMPP and 193.4 (14.5) for the non-parametric IF model.
The posterior mean of the slopes are -0.0811 (0.0966) for the
negative one and 0.0904 (0.1009) for the positive one.

5.2 BRLxUSD exchange rate

We consider the exchange rate between US Dollar to Brazil-
ian Real. The dataset consists of the 1163 days, between Jan
2000 and Dec 2017 (re-scaled to [0, 216], month unit), in
which the daily variation was higher than 1%. Prediction is
performed for the period of Jan 2018 to Apr 2020.

Based on an empirical analysis of the data (see Fig. 1), we
set two functional forms—decreasing and increasing lines,
bothwith varying starting values.We adopt the following pri-
ors: Uniform(5, 5.2, . . . , 12) andUniform(0, 0.2, . . . , 6) for
the varying starting values of the decreasing and increasing
lines, respectively, and uniform improper priors for both the
slopes. AGamma(1, 40) is assumed for the diagonal param-
eters of the Q-matrix and uniform Dirichlet priors are used
for the transition probabilities. The observed time interval is
divided into 6 blocks to update the CTMC component.

The MCMC algorithm takes around 4.6min to draw 100
effective samples. The estimated IF and the posterior prob-
ability of each functional form are shown in Fig. 11. The
posterior mean and standard deviation of the integrated IF
is 1143.1 and 34.3. The posterior mean of the slopes are
–0.3102 (standard deviation = 0.0651) for the negative one
and 0.1176 (0.0355) for the positive one. The same statistics
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Fig. 11 Top: posterior
probability of each functional
form—increasing line (green)
and decreasing line (orange).
Bottom: Estimated IF (posterior
mean and 95% CI) for the
exchange rate data. Circles are
the observations

Fig. 12 Posterior predictive density of the integrated IF for the
exchange rate example. The vertical line represents the real observed
number of events in the predicted period

for themeanwaiting times are 11.70 (4.18) for the decreasing
line and 9.36 (3.16) for the increasing line.

The predictive distribution of the integrated intensity
between Jan 2018 and Apr 2020 is shown in Fig. 12 and
has mean 151.4, standard deviation 35.80 and 95% CI
(78.44, 218.29). The real observed number of events is 151.

6 Conclusions

This paper proposed a novel class of unidimensional Cox
processes in which the intensity function assumes predefined
functional forms and alternates among these according to the
jumps of a continuous time Markov chain. This novel class
aims at providing an efficient way to perform useful statis-
tical analysis of unidimensional point processes at a very
reasonable computational cost, especially when compared
to non-parametric approaches based on latent Gaussian pro-
cesses.

Important issues regarding model elicitation and iden-
tifiability and some aspects of the MCMC algorithm are
discussed and explored in simulated studies. Model elici-
tation should be based on prior knowledge and/or empirical
analysis of the data.Whilst non-informative priors work well
for the parameters indexing the functional forms, prior elic-
itation for the parameters in the Q-matrix requires special
attention. If not many changes are expected, parameters in
the diagonal should be fixed at values coherent with the scale
in a way to avoid very short visits. For the transition proba-
bilities, uniform priors are suitable in any case.

The proposedMCMC algorithm performs exact Bayesian
inference for GMMPPs so that only Monte Carlo error is
involved. The algorithm is carefully devised to efficiently
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sample from the posterior distribution of all the unknown
quantities in the model. In particular, the blocking scheme
to sample from the CTMC trajectory has been shown to be
crucial to obtain a computationally efficient algorithm. Sim-
ulated studies illustrated the computational and statistical
efficiency of the proposed methodology under different cir-
cumstances. In particular, efficient solutions for largedatasets
are obtained at a reasonable cost.

Two real datasets are also analyzed and prediction is per-
formed for one of them, providing good results. Finally,
results indicate that, typically, models with only straight lines
(increasing, decreasing and constant) are enough to provide
a good fit.
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Appendix A: Proofs

Proof of Proposition 1

LetW(1) be the first non-virtual jump and V(1) the state of V at
W(1). The density of (W(1)|V0) with respect to the Lebesgue
measure is

πW(1)|V0= j (t) =

=
+∞∑

m=1

πW(1) (t |V0:m−1 = j, Vm �= i)

× P(V1:m−1 = j, Vm �= j |V0 = j)

= e−
h( j)t
h( j)(1 − Bj j )

+∞∑

m=0

(
h( j)t B j j )
k

k!
= 
h( j)(1 − Bj j )e

−
h( j)(1−Bj j )t

= |Qh( j)|e−|Qh( j)|t ∼ Exponential(|Qh( j)|), i ∈ E .

Similar calculations show that (Wl − Wl−1|Vl−1 = j,
Wl−1) ∼ Exponential(|Qh( j)|), j ∈ E , l ∈ N. Furthermore,

P(V(1) = j2|V0 = j1) =

=
+∞∑

m=1

P(Vm = j2|V0:m−1 = j1)P(V0:m−1 = j1|V0 = j1)

=
+∞∑

m=1

Bj1 j2B
m−1
j1 j1

= Bj1 j2
1

1 − Bj1 j1

= −Q j1 j2

Q j1 j1
,∀ j2 �= j1 ∈ E .

Analogous calculations establish the required result for
(Vl |Vl−1). �	

Proof of Proposition 2

Clearly,

π(U ,W , V |T , V (T ), θ) = π(V , T ,U ,W |θ)

π(T , V (T )|θ)

=
π0(V0)

[∏|T |−1
i=0 π(U (i), Ti+1, V(i+1)|V(i), Ti )

]

π0(V0)
[∏|T |−1

i=0 π(Ti+1, V(i+1)|V(i), Ti )
]

× π(U (|T |), IS|V(|T |), T|T |)
π(IS|V(|T |), T|T |)

=
[∏|T |−1

i=0 π(V(i+1)|V(i))π(Ti+1|V(i), Ti )π(U (i)|V(i), Ti , Ti+1)
]

[∏|T |−1
i=0 π(V(i+1)|V(i))π(Ti+1|V(i), Ti )

]
π(IS|V(|T |), T|T |)

× π(IS|V(|T |), T|T |)π(U (|T |)|V(|T |), T|T |, IS)

=
⎡

⎣
|T |−1∏

i=0

π(U (i)|V(i), Ti , Ti+1)

⎤

⎦π(U (|T |)|V(|T |), T|T |, IS),
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where IS := I(T|T |+1 > S). This gives P(IS = 1|T|T |) =
e−QV(|T |) (S−T|T |). The result above establishes part i . of the
proposition.

We now obtain the full conditional density of U (i), i =
0, . . . , |T | − 1, w.r.t. the measure of a unit rate Poisson pro-
cess. We have that

π(U (i)|V(i), Ti , Ti+1) = π(U (i), Ti+1|V(i), Ti )

π(Ti+1|V(i), Ti )

=



|Ui |+1
h(V(i))

e−
h(V(i))(Ti+1−Ti )B|Ui |
V(i)V(i)

(1 − BV(i)V(i) )

e−(Ti+1−Ti )|QV(i) |e−|QV(i) |(Ti+1−Ti )

=



|Ui |+1
V(i)

e−
h(V(i))(Ti+1−Ti )
(
1 − |QV(i) |


V(i)

)|Ui | ( |QV(i) |

h(V(i))

)

e−(Ti+1−Ti )|QV(i) |e−|QV(i) |(Ti+1−Ti )

= (

h(V(i)) + QV(i)

)|Ui | e
−
(

h(V(i))+QV(i)

)
(Ti+1−Ti )

e−(Ti+1−Ti )
,

where |Ui | is the number of virtual jumps in [Ti , Ti+1). This
establishes part i i . of the proposition for i = 0, . . . , |T | − 1.
For i = |T |, we have that

π(U (|T |)|V(|T |), T|T |, IS) = π(U (|T |), IS|V(|T |), T|T |)
π(IS|V(|T |), T|T |)

=



|U|T ||
V(|T |) e

−
h(V(|T |))(S−T|T |)B
|U|T ||
V(|T |)V(|T |)

e−(S−T|T |)e−|QV(|T |) |(S−T|T |)

= (

h(V(|T |)) + QV(|T |)

)|U|T ||

× e
−
(

h(V(|T |))+QV(|T |)

)
(S−T|T |)

e−(S−T|T |) ,

which concludes the proof. �	

Proof of Proposition 3

In order to establish uniform ergodicity for an independent

MH chain, it is enough to show that the ratio
q

π
, where π is

the target density, is uniformly bounded away from zero on
the support of π (Mengersen and Tweedie 1996). Note that

q

π
(V0, V , R) = 1

κ

|W |∏

l=1

cl >
β

κ
= minV

∏|W |
l=0 cl

κ
,

where κ > 0 is a constant and V is the support of the full
conditional distribution of (V0, V , V (T ),U , T , R). The fact
that cl > 0, for all l, completes the proof. �	

Appendix B: Model andMCMC details

See Table 5.

Table 5 Overview of the proposed augmented GMMPP

Component Description Prior

Y Observed Poisson process

gk kth functional form

V States of the DTMC that determines the functional
forms of the IF of Y

W Times of the DTMC that determines the functional
forms of the IF of Y

T Non-virtual jump times of the DTMC—indicate an
actual change in the IF

U Virtual jump times of the DTMC

R A set with the initial value of the IF at each of the
non-virtual jump times

1. Continuous prior when the initial value is the same in all
visits of each functional form. 2. Degenerate conditional prior
to guarantee a continuous trajectory for the IF. 3. Continuous
prior for the constant functional form and discrete prior for
each of all the others when the initial value varies among
visits to the same gk

θk Inverse of the mean waiting time of the IF at gk Gamma

’ θk· Vector of transition probabilities from gk to each of
the K functional forms

Dirichlet

ψ Parameters indexing the functional forms Various
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Appendix C: Results from the simulations

See Tables 6, 7, 8 and Figs. 13, 14, 15.

Table 6 Posterior statistics of the parameters for scenarios A and B in Sect. 4.1

Scen. Parameter True value Mean SD 95% CI

A1 ψ11 0.5 1.38 1.02 (0.08, 3.91)

ψ12 0.25 0.38 0.28 (0.02, 1.15)

ψ21 6 5.84 0.92 (4.18, 7.81)

ψ22 −0.25 − 0.27 0.11 (−0.50, −0.06)

ψ31 0.5 0.60 0.25 (0.22, 1.04)

A2 ψ11 2.50 3.07 2.31 (0.16, 8.79)

ψ12 1.25 1.45 0.29 (0.94, 2.10)

ψ21 30.00 29.86 2.63 (24.83, 35.13)

ψ22 −1.25 − 1.20 0.30 (−1.78, −0.64)

ψ31 2.50 2.35 0.35 (1.71, 3.07)

A3 ψ11 10 13.75 6.67 (2.47, 27.43)

ψ12 5 4.50 0.52 (3.41, 5.45)

ψ21 120 119.15 5.37 (108.83, 129.65)

ψ22 −5 −4.68 0.60 (−5.85, −3.50)

ψ31 10 9.03 0.64 (7.82, 10.31)

A4 ψ11 50 40.81 13.65 (19.79, 67.81)

ψ12 25 24.69 0.94 (22.83, 26.46)

ψ21 600 597.80 11.89 (574.64, 621.42)

ψ22 −25 −24.88 1.30 (−27.45, −22.31)

ψ31 50 47.66 1.47 (44.83, 50.59)

A5 ψ11 150 202.53 24.65 (129.16, 240.98)

ψ12 75 72.54 1.84 (68.95, 76.17)

ψ21 1800 1800.26 20.91 (1759.32, 1840.96)

ψ22 −75 −76.16 2.29 (−80.55, −71.65)

ψ31 150 144.11 2.48 (139.27, 149.01)

B1 ψ11 1.7 2.07 0.97 (0.78, 4.81)

ψ12 0.85 0.86 0.07 (0.72, 0.98)

ψ21 20.4 19.47 1.15 (17.20, 21.68)

ψ22 −0.85 −0.79 0.10 (−0.97, −0.57)

ψ31 1.7 1.50 0.21 (1.11, 1.95)

θ1 0.066 0.07 0.03 (0.02, 0.14)

θ2 0.066 0.09 0.04 (0.03, 0.17)

θ3 0.066 0.07 0.05 (0.01, 0.20)

(θ11, θ12, θ13) (1/3, 1/3, 1/3) (0.24, 0.50, 0.26) (0.16, 0.18, 0.17) –

(θ21, θ22, θ23) (1/3, 1/3, 1/3) (0.39, 0.32, 0.29) (0.22, 0.17, 0.20) –

(θ31, θ32) (0.5, 0.5) (0.71, 0.29) (0.22, 0.22) –

B2 ψ11 1 1.15 0.52 (0.44, 2.57)

ψ12 0.5 0.49 0.03 (0.43, 0.55)

ψ21 12 11.68 0.67 (10.36, 12.96)

ψ22 −0.5 −0.47 0.06 (−0.59, −0.35)

ψ31 1 1.07 0.12 (0.84, 1.29)

θ1 0.066 0.07 0.02 (0.03, 0.13)

θ2 0.066 0.08 0.03 (0.03, 0.15)
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Table 6 continued

Scen. Parameter True value Mean SD 95% CI

θ3 0.066 0.09 0.04 (0.04, 0.19)

(θ11, θ12, θ13) (1/3, 1/3, 1/3) (0.23, 0.22, 0.55) (0.15, 0.13, 0.17) –

(θ21, θ22, θ23) (1/3, 1/3, 1/3) (0.37,0.25,0.38) (0.21, 0.16, 0.21) –

(θ31, θ32) (0.5, 0.5) (0.72, 0.28) (0.16, 0.16) –

B3 ψ11 0.5 0.68 0.22 (0.29, 1.15)

ψ12 0.25 0.25 0.02 (0.20, 0.29)

ψ21 6 5.88 0.26 (5.39, 6.39)

ψ22 −0.25 -0.24 0.02 (−0.28, −0.20)

ψ31 0.5 0.43 0.06 (0.32, 0.54)

θ1 0.066 0.09 0.02 (0.05, 0.15)

θ2 0.066 0.09 0.02 (0.05, 0.13)

θ3 0.066 0.07 0.03 (0.03, 0.14)

(θ11, θ12, θ13) (1/3, 1/3, 1/3) (0.12, 0.47, 0.41) (0.09, 0.14, 0.14) –

(θ21, θ22, θ23) (1/3, 1/3, 1/3) (0.55, 0.25, 0.20) (0.17, 0.14, 0.14) –

(θ31, θ32) (0.5, 0.5) (0.67, 0.33) (0.18, 0.18) –

Table 7 Posterior statistics for
the number of CTMC jumps
(#jumps) and time of the first
change in the IF (T1) for
scenarios A and B in Sect. 4.1

True value Mean SD

A1 #jumps 2 2.68 0.93

T1 14.2 14.28 3.74

A2 #jumps 2 2.29 0.59

T1 14.2 14.43 1.1

A3 #jumps 2 2.13 0.45

T1 14.2 14.13 0.74

A4 #jumps 2 2.16 0.45

T1 14.2 14.18 0.43

A5 #jumps 2 2.02 0.20

T1 14.2 14.18 0.42

B1 #jumps 10 14.23 2.48

T1 12.8 8.23 5.47

B2 #jumps 20 30.34 5.96

T1 23.6 16.53 8.94

B3 #jumps 40 67.0 9.14

T1 12.4 10.03 5.56
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Table 8 Posterior statistics of the parameters for the examples in Sect. 4.2. Inf. andN-inf refer to informative and non-informative priors, respectively

Scen. Param. True Mean SD 95% CI

Inf. N-inf. Inf. N-inf. Inf. N-inf.

A1 ψ11 0.5 1.38 2.35 1.02 2.81 (0.08, 3.91) (0.11, 10.52)

ψ12 0.25 0.38 0.47 0.28 0.52 (0.02, 1.15) (0.03, 2.20)

ψ21 6 5.84 5.73 0.92 0.96 (4.18, 7.81) (4.05, 7.77)

ψ22 −0.25 − 0.27 − 0.26 0.11 0.12 (−0.50, −0.06) (−0.47, −0.05)

ψ31 0.5 0.60 0.69 0.25 0.18 (0.22, 1.04) (0.36, 1.07)

A3 ψ11 10 11.03 13.75 4.25 6.67 (3.29, 19.02) (2.47, 27.43)

ψ12 5 4.68 4.50 0.42 0.52 (3.88, 5.50) (3.41, 5.45)

ψ21 120 119.4 119.15 5.18 5.37 (109.3, 129.7) (108.83, 139.65)

ψ22 −5 − 4.72 − 4.68 0.59 0.60 (−5.86, −3.56) (−5.85, −3.50)

ψ31 10 8.99 9.03 0.63 0.64 (7.79, 10.28) (7.82, 10.31)

A5 ψ11 150 190.7 202.53 28.20 24.65 (120.8, 230.7) (129.16, 240.98)

ψ12 75 73.1 72.54 1.78 1.84 (69.5, 76.5) (68.95, 76.17)

ψ21 1800 1800.6 1800.26 20.23 20.91 (1760.5, 1840.3) (1759.32, 1840.96)

ψ22 −75 − 76.2 − 76.16 2.22 2.29 (−80.5, −71.8) (- 80.55, −71.65)

ψ31 150 144.1 144.11 2.47 2.48 (139.3, 149.0) (139.27, 149.01)

B2 ψ11 1 1.23 1.15 0.51 0.52 (0.51, 2.54) (0.44, 2.57)

ψ12 0.5 0.49 0.49 0.03 0.03 (0.43, 0.55) (0.43, 0.55)

ψ21 12 11.67 11.68 0.66 0.67 (10.37, 12.97) (10.36, 12.96)

ψ22 −0.5 − 0.47 − 0.47 0.06 0.06 (−0.60, −0.35) (−0.59, −0.35)

ψ31 1 1.07 1.07 0.12 0.12 (0.84, 1.29) (0.84, 1.29)

θ1 0.066 0.07 0.07 0.02 0.02 (0.03, 0.12) (0.03, 0.12)

θ2 0.066 0.08 0.08 0.03 0.03 (0.03, 0.15) (0.03, 0.15)

θ3 0.066 0.09 0.09 0.04 0.04 (0.04, 0.19) (0.04, 0.19)

Fig. 13 True and estimated (posterior mean and pointwise 95% CI)
intensity function for scenarios A in Sect. 4.1, ordered by row

Fig. 14 True and estimated (posterior mean and pointwise 95% CI)
intensity function for scenarios B in Sect. 4.1, ordered by row
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Fig. 15 True and estimated (posterior mean and pointwise 95% CI)
intensity function for scenariosA1 in Sect. 4.2 for the informative (blue)
and non-informative (red) priors on ψ . (Color figure online)

Appendix D: MCMC diagnostics

See Figs. 16, 17.

Fig. 16 Trace plot and autocorrelation plot for the log-posterior den-
sity, number of CTMC jumps and time of the first change in the IF,
respectively, for scenario A1 in Sect. 4.1

Fig. 17 Trace plot and autocorrelation plot for the log-posterior den-
sity, number of CTMC jumps and time of the first change in the IF,
respectively, for scenario A5 in Sect. 4.1

Appendix E: Modeling epidemic curves

We consider a model which we believe to be of practical use
to model epidemic phenomena. The idea is to model each
cycle of the IF to have an exponential growth, some period
of stabilization and then an exponential decay. Moreover, in
order to mimic the expected behavior of epidemic curves,
we need the exponential growth and decay rates to change
over time. This behavior can be emulated by using a cdf as
part of the functional form, in particular the standard normal
cdf. The parameterization is such that the model is flexible
and parameters have a clear interpretation. In order to fit the
proposed model, we need either to observe an entire cycle
or up to a time when the IF has already started to decrease,
in which case, prediction for the remainder of the cycle may
be performed. The IF is assumed to start in the increasing
functional form and then having one change to the decreasing
one (Figs. 18, 19). The model is the following:
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Fig. 18 Trace plot and autocorrelation plot for the log-posterior den-
sity, number of CTMC jumps and time of the first change in the IF,
respectively, for scenario B1 in Sect. 4.1

g1(s, ψ) = b1 + a�(d1 + c1s)

g2(s, ψ) = b2 + γ (ψ, T1)�(d2 − c2(s − T1)),

where g1 and g2 are the increasing and decreasing curves,
respectively, and γ (ψ, T1) is set to be (b1+a�(d1+c1T1)−
b2)/�(d2) to guarantee the continuity of the IF at the change
time.

We impose some restrictions on the parameter space so to
ease model identifiability and parameter interpretation. We
set c1 > 0, c2 > 0, a > 0, b1 ≥ 0 and b2 ≥ 0 as stan-
dard identifiability restrictions. We also set the less obvious
restriction d2 < 3 so that the time period of constant behav-
ior of the IF is more likely to be accommodated by the end of
the increasing function g1 and, consequently, identifiability
of the change point is favored. Also, note that in order to
estimate the stabilization level b2 the data needs to include
the stabilization period, otherwise, this parameter should be
fixed (for example, at zero).

The restrictions above lead to a clear interpretation of the
model’s parameters as follows.

– b1: identifies the initial value of the IF—typically around
b1;

– a: defines the maximum value assumed by the IF—
typically ≈ b1 + a;

Fig. 19 Trace plot and autocorrelation plot for the log-posterior den-
sity, number of CTMC jumps and time of the first change in the IF,
respectively, for scenario B3 in Sect. 4.1

– d1: defines the initial growth rate of the IF curve;
– c1: defines the rate in which the growth curve changes
and the maximum growth rate;

– d2: defines the initial decay rate of the IF curve;
– c2: defines the rate in which the decay curve changes and
the maximum decay rate;

– b2: defines the stabilization level after the epidemic
period.

Furthermore, the maximum slope of the growth and decay

curves are given by ċ1 = a√
2π

c1 and ċ2 = −γ (ψ,T1)√
2π

c2,

respectively. In order to improve the mixing of the MCMC
algorithm by reducing the correlation among parameters,
we reparameterize the model in terms of (ċ1, ċ2) instead of
(c1, c2). This implies that

g1(s, ψ) = b1 + a�

(
d1 +

√
2π

a
ċ1s

)
, (18)

g2(s, ψ) = b2 + γ (ψ, T1)

×�

(
d2 −

√
2π

γ (ψ, T1)
ċ2(s − T1)

)
, (19)

γ (ψ, T1) = (b1 + a�(d1 +
√
2π
a ċ1T1) − b2)

�(d2)
. (20)
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We highlight the fact that the Bayesian approach and the
variance of the Poisson process conditioned on its IF provide
considerable flexibility and suitable uncertainty quantifica-
tion to model epidemic curves, especially when compared
to deterministic models directly applied to the number of
events.

Moreover, this model can be extended to have more flexi-
ble curves by considering the cdf of other distributions such
as student-t, skew-normal and skew-t. This can account, for
example, for skewed growth and decay curves and for cases
in which the epidemic curve decays faster than it grows up to
a certain time but then takes longer to stabilize, suggesting
the use of a heavy tail cdf to model the decay.

Finally,we can also consider a sequence of cycles tomodel
epidemics with several waves. Furthermore, if a reasonable
number of waves are observed, we can adopt generalized
linear model priors for the waiting time parameters θk with
covariates that help to explain it, such as social isolation
indexes, hospital occupation rates, vaccination percentages,
etc. This approach could then be used to forecast the future
behavior of the epidemics in terms of future waves.

Inference for the epidemic model

The model in (18)–(20) has features that allow for some
improvements in the MCMC from Sect. 3.2. It is now possi-
ble to sample directly from the full conditional distribution of
the block (V0, V , V (T ),U , T , R) at a reasonable computa-
tional cost. That is because the condition of having only one
change in the IF is imposed and, therefore, the size of the state
space of this discrete full conditional distribution is |W |. This
also allows us to increase the value of 
k and, consequently,
improve the mixing of the chain, without compromising the
cost. One may consider, for example, 
k = 5|Qk |.

Another strategy to boost computational efficiency is to
truncate the change time to be inside a suitable interval, based
on the empirical IF. This interval is conservatively chosen so
that it is certain that the change occurs inside it.

Dengue Fever epidemic

We analyze data from the 2019 Dengue Fever epidemic in
Ceará (CE) state, Brazil, and the 2019/2020 Dengue Fever
epidemic in Paraná (PR) state, Brazil. The raw data consists
of the number of cases per epidemic week, from week 52
of 2018 (23/12/2018) to week 52 of 2019 (28/12/2019)—
371 days, for Ceará, and from week 36 of 2019 (01/09/2018)
to week 22 of 2020 (30/05/2020)—273 days, for Paraná. In
order to analyze the data, we distribute the cases uniformly
in their respective week and use day as the scale unit. The
total number of cases in that period was 30700 in Ceará and
331411 in Paraná. The epidemic curve in Paraná is relatively
close to stabilization, but still decaying, so we also predict

Fig. 20 Estimated IF (posterior mean and 95% CI (red) and predictive
mean and 95% predictive interval (blue)) for the Dengue Fever data—
Ceará (top) and Paraná (bottom). (Color figure online)

the time until stabilization—when the IF hits 110. Data is
available in the InfoDengue system (Codeco et al. 2018).

For the Ceará data, we were compelled to restrict param-
eter a to be in the interval (0, 250)—safely higher than the
maximum of the empirical IF, in order to avoid the growth
curve to be fit by only (around) half of the cdf. This avoids
identifiability and computational problems. For parameter d2
we set priors Uniform(−∞, 3) for Ceará and Uniform(0, 3)
for Paraná. Uniform improper priors are adopted for all the
other parameters. The diagonal values of the Q-matrix are
fixed at (1/120, 1/250), for Ceará, and (1/180, 1/90), for
Paraná. Results are shown in Fig. 20 and Table 9.

COVID-19 epidemic

Wealso analyze data from theCovid-19pandemic inSwitzer-
land and Romania. Whilst the epidemic curve has already
stabilized for the former, it is still decaying for the latter. For
that reason, we predict the time until stabilization—when
the IF hits 20, for Romania. The dataset for Switzerland con-
cerns the 30845 cases notified from Feb 25th (date of the
first notification) to May 30th—96 days. The dataset from
Romania concerns the 19133 cases notified from Feb 26th
(date of the first notification) to May 30th—95 days. Data is
obtained from theCoronavirusResourceCenter of JohnHop-
kins University through the R package covid19br (Demarqui
and Santos 2020).

For the Switzerland data, we restrict parameter a to be in
the interval (0, 1300) for the same reasons we restrict that
parameter for the Ceará Dengue Fever data. For parame-
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Table 9 Posterior statistics for the Dengue Fever and COVID-19 models

a b1 c1 d1 b2 c1 d2 IIF Pred. Time Pred. IIF

CE Mean 248.3 8.80 2.47 − 2.22 12.78 1.25 0.99 30558.3 – –

s.d. 1.67 2.04 0.082 0.088 1.00 0.024 0.13 174.2 – –

PR Mean 3510.4 154.2 77.5 − 8.17 80 46.6 0.785 331541 314.4 (July 12th) 9266.8

s.d. 18.9 1.28 0.66 0.087 − 0.282 0.043 574.7 0.80 242.0

Swi. Mean 1295.7 10.20 98.11 −4.16 22.14 36.14 0.64 30548.9 – –

s.d. 4.06 1.51 1.81 0.07 1.55 0.84 0.096 169.5 – –

Rom. Mean 358.6 0.78 19.14 − 4.00 0 5.77 0.66 19137.6 147.9 (July 23rd) 3096.3

s.d. 10.10 0.36 0.47 0.11 − 0.31 0.46 138.4 7.44 471.6

IIF is the integrated IF in the observed interval, Pred. time is the predictive time at which the IF reaches 110 and Pred. IIF is the predictive integrated
IF until that time

Fig. 21 Estimated IF [posterior mean and 95% CI (red) and predictive
mean and 95% predictive interval (blue)] for the COVID-19 data—
Switzerland (top) and Romania (bottom). (Color figure online)

ter d2 we set priors Uniform(−∞, 3) for Switzerland and
Uniform(0, 3) for Romania. Uniform improper priors are
adopted for all the other parameters. The diagonal values
of the Q-matrix are fixed at (1/30, 1/60), for Switzerland,
and (1/50, 1/40), for Romania. Results are shown in Fig. 21
and Table 9.
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