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The ubiquitously expressed c-Abl tyrosine kinase localizes to the nucleus and cytoplasm. Using confocal
microscopy, we demonstrated that c-Abl colocalizes with the endoplasmic reticulum (ER)-associated protein
grp78. Expression of c-Abl in the ER was confirmed by immunoelectron microscopy. Subcellular fractionation
studies further indicate that over 20% of cellular c-Abl is detectable in the ER. The results also demonstrate
that induction of ER stress with calcium ionophore A23187, brefeldin A, or tunicamycin is associated with
translocation of ER-associated c-Abl to mitochondria. In concert with targeting of c-Abl to mitochondria,
cytochrome c is released in the response to ER stress by a c-Abl-dependent mechanism, and ER stress-induced
apoptosis is attenuated in c-Abl-deficient cells. These findings indicate that c-Abl is involved in signaling from
the ER to mitochondria and thereby the apoptotic response to ER stress.

The c-Abl protein tyrosine kinase localizes to the nucleus
and cytoplasm. Nuclear c-Abl is activated in the response to
DNA damage (16) by the DNA-dependent protein kinase (10,
13) and the product of the gene mutated in ataxia telangiec-
tasia (2, 28). Activation of nuclear c-Abl by genotoxic stress
contributes to induction of the proapoptotic c-Jun N-terminal
kinase/stress-activated protein kinase (JNK/SAPK) and p38
mitogen-activated protein kinase pathways (14–16, 25). Nu-
clear c-Abl also contributes to DNA damage-induced apopto-
sis by mechanisms in part dependent on the p53 tumor sup-
pressor and its homolog p73 (1, 7, 38, 40, 41). Other studies
have demonstrated that the cytoplasmic form of c-Abl is acti-
vated in the cellular response to oxidative stress (30). Reactive
oxygen species induce cytoplasmic c-Abl activity by a mecha-
nism dependent on protein kinase Cd (PKCd) (31). Moreover,
c-Abl is required for reactive oxygen species-induced release of
mitochondrial cytochrome c, caspase-3 activation, and apopto-
sis (30). These findings have provided support for the involve-
ment of c-Abl in the responses to genotoxic and oxidative
stress.

The endoplasmic reticulum (ER) functions as an oxidizing
compartment for the folding of membrane and secretory pro-
teins (11). Accumulation of unfolded intermediates in the ER
activates stress signals referred to as the unfolded protein
response (5). The IRE1a and IRE1b ER transmembrane pro-
tein kinases sense ER stress and activate transcription of genes
that encode protein chaperones and other ER-resident pro-
teins (33, 36). ER stress also induces activity of the PRK-like
ER kinase (PERK), phosphorylation of the eukaryotic initia-
tion factor 2 a subunit and inhibition of mRNA translation (8).
Treatment of cells with inducers of ER stress, such as the

calcium ionophore A23187, is associated with the induction of
CHOP/GADD153 expression and apoptosis (3, 21, 26, 27).
Other studies have demonstrated that caspase-12 is activated
by ER stress and that caspase-12 contributes to ER stress-
induced apoptosis (24).

The present studies show that the c-Abl kinase localizes to
the ER and is targeted to mitochondria by ER stress. The
results also demonstrate that ER stress induces mitochondrial
cytochrome c release and apoptosis by a c-Abl-dependent
mechanism.

MATERIALS AND METHODS

Cell culture. Rat1 cells and wild-type, Abl2/2, and Abl1 (Abl2/2 cells recon-
stituted to stably express c-Abl) mouse embryo fibroblasts (MEFs) (16, 19, 34)
were cultured in Dulbecco’s modified Eagle’s medium containing 10% heat-
inactivated fetal calf serum, 2 mM L-glutamine, 100 U of penicillin per ml, and
100 mg of streptomycin per ml. Cells were treated with A23187, brefeldin A, or
tunicamycin (all from Sigma).

Digital confocal immunofluorescence microscopy. Cells grown on poly-D-ly-
sine-coated glass coverslips were fixed (3.7% formaldehyde in phosphate-buff-
ered saline [PBS], pH 7.4; 10 min), permeabilized (0.2% Triton X-100; 10 min),
and blocked for 30 min in medium containing serum. After rinsing with PBS,
immunostaining was performed by incubating the cells with 50 ng of anti-c-Abl
(K-12 rabbit polyclonal; Santa Cruz) and anti-grp-78 (C-20 goat polyclonal;
Santa Cruz) per slide. After being washed with PBS, cells were incubated with a
1:250 dilution of CY-3 or fluorescein isothiocyanate-conjugated anti-rabbit or
anti-goat immunoglobulin G (IgG) secondary antibodies (Jackson ImmunoRe-
search) for 1 h. Mitochondria were stained with 0.006 ng of Mitotracker Green
FM (Molecular Probes) per slide. Nuclei were stained with 4, 6-diamino-2-
phenylindole (DAPI; 1 mg/ml in PBS). Coverslips were mounted onto slides with
0.1 M Tris (pH 7.0) in 50% glycerol. Cells were visualized by digital confocal
immunofluorescence, and images were captured with a cooled charge-coupled
device camera mounted on a Zeiss Axioplan 2 microscope. Images were decon-
volved using Slidebook software (Intelligent Imaging Innovations, Inc., Denver,
Colo.).

Immunoelectron microscopic analysis. Cells were fixed with 2% paraformal-
dehyde in 0.1 M sodium cacodylate buffer for 10 min, washed with three changes
of cacodylate buffer, postfixed with 1% osmium tetroxide for 5 min, dehydrated
in graded ethanol, and infiltrated and polymerized with Poly/bed 812 overnight.
Ultrathin sections were cut with an ultramicrotome (Nova; Leica). After etching
with sodium periodate for 10 min, the sections were rinsed with buffer and
incubated with anti-c-Abl at a dilution of 1:10 overnight at 4°C. The sections were
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rinsed with buffer, incubated with protein A-gold (15 nm) for 1 h, rinsed again,
and then fixed with 2% glutaradehyde in PBS for 2 min. After air drying, the
sections were stained with 25 aqueous uranyl acetate and with 0.5% lead citrate.
The sections were examined and photographed using a Hitachi H-600 electron
microscope (Nessei Sagnyo) at 75 kV.

Isolation of the ER fraction. Cells were washed with PBS, lysed in homoge-
nization buffer (50 mM Tris-HC1 [pH 8.0], 1 mM b-mercaptoethanol, 1 mM
EDTA, 0.32 M sucrose, and 0.1 mM phenylmethylsulfonyl fluoride), and then
centrifuged at 5,000 3 g for 10 min. The supernatant was collected and centri-
fuged at 105,000 3 g for 1 h. The pellet was disrupted in lysis buffer (50 mM
Tris-HCl [pH 7.5], 150 mM NaCl, 1% NP-40, 1 mM dithiothreitol, 1 mM sodium
orthovanadate, 1 mM phenylmethylsulfonyl fluoride, 10 mM sodium fluoride, 10
mg of leuptin and aprotinin/ml) at 4°C and then centrifuged at 15,000 3 g for 20
min. The resulting supernatant was used as the ER fraction.

Isolation of cytoplasmic and nuclear fractions. The cytoplasmic and nuclear
fractions were isolated as described previously (30).

Isolation of mitochondria. Cells were washed twice with PBS, homogenized in
buffer A (210 mM mannitol, 70 mM sucrose, 1 mM EGTA, 5 mM HEPES [pH
7.4]) with 110 mg of digitonin per ml in a glass homogenizer (Pyrex no. 7727-07)
and then centrifuged at 5,000 3 g for 5 min. Pellets were resuspended in buffer
A, homogenized in a glass homogenizer, and centrifuged at 1,500 3 g for 5 min.
The supernatant was collected and centrifuged at 10,000 3 g for 10 min. Mito-
chondrial pellets were disrupted in lysis buffer at 4°C and then centrifuged at
15,000 3 g for 20 min. Protein concentration was determined by the Bio-Rad
protein estimation kit.

Isolation of ER and plasma membranes. Cellular membranes were prepared
as described previously (4). The membranes were applied to a discontinuous
sucrose gradient and centrifuged at 100,000 3 g for 2.5 h at 4°C. Plasma mem-
branes were isolated from the interface between 0.25 and 1.2 M sucrose. ER
membranes were isolated from the interface between 1.2 and 2.0 M sucrose (4).

Immunoblot analysis. Proteins were separated by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis, transferred to nitrocellulose, and probed
with anti-c-Abl (Calbiochem), anti-grp78 (Santa Cruz), anticalreticulin (Stress-
Gen), anti-HSP60 (StressGen), anti-b-actin (Sigma), anti-PCNA (Calbiochem),
anti-cytochrome c (18), or anti-platelet-derived growth factor receptor (anti-
PDGF-R; Oncogene). Antigen-antibody complexes were visualized by enhanced
chemiluminescence (ECL; Amersham Pharmacia Biotech).

Analysis of c-Abl activity. Cell lysates were prepared as described previously
(30) and subjected to immunoprecipitation with anti-c-Abl (K-12; Santa Cruz).
The immunoprecipitates were resuspended in kinase buffer (30) containing 2.5
mCi of [g-32P]ATP and glutathione S-transferase (GST)–Crk(120–225) or GST-
Crk(120–212) for 15 min at 30°C. The reaction products were analyzed by
sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography.

Apoptosis assays. DNA content was assessed by staining ethanol-fixed cells
with propidium iodide and monitoring by FACScan (Becton Dickinson).

RESULTS

Localization of c-Abl to the ER. To assess the subcellular
distribution of c-Abl, confocal microscopy was performed to
detect colocalization of c-Abl with proteins that are selectively
expressed in different organelles. Using an antibody against the
ER protein grp78 and a digital confocal image set for the ER,
the distribution of immunofluorescence was compared to that
obtained with anti-c-Abl (Fig. 1A). Colocalization of grp78
(green) and c-Abl (red) was supported by overlay of the signals

(overlay of red and green yields a yellow-orange signal). (Fig.
1A). These findings provided support for localization of c-Abl
to the ER. As c-Abl is also expressed in the nucleus, digital
confocal images set at a different depth confirmed nuclear
localization of the c-Abl protein (Fig. 1B). As a control, similar
studies were performed on Abl2/2 and Abl1 cells. The finding
that cytoplasmic and nuclear staining is detectable in Abl1 but
not Abl2/2 cells confirmed specificity of the anti-c-Abl anti-
body (Fig. 1C). To extend the analysis, cells were subjected to
immunogold labeling with anti-c-Abl. The results demonstrate
expression of c-Abl in the cytoplasm, mitochondria, and rough
ER (Fig. 1D, left). By contrast, there were no detectable sig-
nals when similar studies were performed on Abl2/2 cells (Fig.
1D, right). These findings indicate that c-Abl localizes to the
ER.

Subcellular fractionation studies were performed to define
the fraction of c-Abl that associates with the ER. To assess
intracellular distribution, ER, cytosolic, and mitochondrial
fractions were subjected to immunoblotting with anti-c-Abl.
Analysis of equal amounts of proteins from the fractions indi-
cated that the concentration of c-Abl in the ER is higher than
that found in the cytosol or mitochondria (Fig. 2A). The purity
of the ER fraction was confirmed by immunoblotting with
antibodies against calreticulin, b-actin, and HSP60. Thus, the
ER fraction included calreticulin and little if any cytosolic
b-actin or mitochondrial HSP60 (Fig. 2A). Whereas these
studies used equal amounts of proteins from the fractions,
additional experiments were performed by immunoblot anal-
ysis of fractions obtained from equal numbers of cells. Analysis
of c-Abl protein in the different fractions, including the nu-
cleus, indicated that c-Abl localized to the ER comprises about
20% of c-Abl protein in the total cell lysate (Fig. 2B). To
determine whether c-Abl associates with ER membrane, cell
membrane preparations were fractionated by sucrose density
centrifugation. Immunoblot analysis of ER membranes dem-
onstrated levels of c-Abl expression that were higher than that
found in equal amounts of protein from plasma membranes
(Fig. 2C). Purity of the membrane preparations was confirmed
by immunoblotting with antibodies against grp78 and PDGF-R
(Fig. 2C). These findings collectively demonstrate that c-Abl
associates with ER membranes.

ER stress decreases ER-associated c-Abl. To assess whether
ER stress affects the subcellular localization of c-Abl, ER frac-
tions were isolated from cells treated with A23187. Immuno-
blot analysis demonstrated that A23187 treatment is associated
with a time-dependent decrease in c-Abl levels (Fig. 3A). As
shown previously (20), ER stress induced by A23187 was as-

FIG. 1. (A) Colocalization of c-Abl and ER-associated proteins. Rat1 cells grown on poly-D-lysine-coated coverslips were fixed, permeabilized,
and blocked in medium containing serum. Rat1 cells were subjected to immunofluorescence staining with goat anti-grp78 antibody and rabbit
anti-c-Abl. The green signals for grp78 were obtained with fluorescein isothiocyanate-conjugated donkey anti-goat IgG (left). The red signal
(c-Abl) was obtained with CY-3-conjugated donkey anti-rabbit IgG secondary antibody (middle). Overlay resulted in yellow signals indicative of
colocalization (right). The digital confocal image was set for the ER. (B) Rat1 cells were incubated with DAPI (left, blue signal) and rabbit
anti-c-Abl. The red signal for c-Abl was obtained with the CY-3-conjugated donkey anti-rabbit IgG (middle). The overlay demonstrates localization
of c-Abl in the nucleus (right). The confocal image was set for the nucleus. (C) Rat1 cells were incubated with CY-3-conjugated donkey anti-rabbit
IgG (no anti-c-Abl; left). Abl2/2 (middle) and Abl1 (right) cells were incubated with anti-c-Abl and CY-3-conjugated donkey anti-rabbit IgG. The
confocal image was set for the nucleus and cytoplasm. (D) Rat1 (left) and Abl2/2 (right) cells were subjected to immunogold labeling with
anti-c-Abl. Gold particles were counted in nine Rat1 cells. The average number of gold particles per cell was 29 6 14 (mean 6 standard deviation).
The percentages of total particles in the following subcellular fractions were 57% 6 14% (nucleus), 12% 6 8% (ER), 2% 6 4% (mitochondria),
and 29% 6 9% (cytoplasm). Magnification, 330,000.
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sociated with increases in expression of grp78 (Fig. 3A). Equal
loading of the lanes was confirmed by immunoblotting with
anticalreticulin (Fig. 3A). ER fractions isolated from cells
treated with brefeldin A to inhibit transport of protein from
the ER to the Golgi were also subjected to immunoblotting
with anti-c-Abl. The results demonstrate that brefeldin A, like
A23187, decreases levels of c-Abl associated with the ER (Fig.
3B). Brefeldin A treatment was also associated with increases
in grp78 and had little if any effect on levels of calreticulin (Fig.
3B). These findings demonstrate that ER stress downregulates
localization of c-Abl to the ER.

ER stress targets c-Abl to mitochondria. The subcellular
relocalization of c-Abl in response to ER stress was investi-
gated by measuring intracellular fluorescence. Examination of
the distribution of fluorescence markers in control Rat1 cells
showed distinct patterns for anti-c-Abl (red signal) and a mi-

FIG. 2. Subcellular distribution of c-Abl. (A) ER, cytoplasmic
(Cyto), and mitochondrial (Mito) fractions were isolated from Rat1
cells. Equal amounts of protein (5 mg) from each fraction were sub-
jected to immunoblotting (IB) with anti-c-Abl, anticalreticulin, anti-b-
actin, or anti-HSP60. (B) Rat1 cells (2 3 107) were divided into five
aliquots for preparation of total cell, nuclear, cytoplasmic, ER, and
mitochondrial lysates. The lysates were adjusted to 500 ml with PBS,
and aliquots (20 ml) were subjected to immunoblotting with anti-c-Abl.
Signal intensities were analyzed by densitometric scanning. The results
are presented as the percentage of c-Abl in each subcellular fraction
compared to that in the total cell lysate. (C) ER and plasma membrane
preparations were isolated from Rat1 cells. Equal amounts of protein
(5 mg) were subjected to immunoblot analysis with anti-c-Abl, antical-
reticulin, and anti-PDGF-R.

FIG. 3. ER stress decreases ER-associated c-Abl. Rat1 cells were
treated with 10 mM A23187 (A) or 10 mg of brefeldin A per ml (B) and
harvested at the indicated times. ER fractions were isolated and sub-
jected to immunoblotting with anti-c-Abl (upper panels), anti-grp78
(middle panels), or anticalreticulin (lower panels). The signal intensi-
ties of c-Abl protein were compared to that of the control.

6236 ITO ET AL. MOL. CELL. BIOL.



tochondrion-selective dye (Mitotracker; green signal) (Fig.
4A). By contrast, treatment with A23187 was associated with a
change in fluorescence signals (red and green yield yellow-
orange) supporting translocation of c-Abl to mitochondria
(Fig. 4A). Similar results were obtained with brefeldin
A-treated Rat1 cells (Fig. 4A) and with A23187-treated Abl1

cells (Fig. 4B). By contrast, there was little if any change in
expression of c-Abl in the cytoplasm or nucleus (data not
shown). These results indicate that ER stress-induced down-
regulation of c-Abl in the ER is associated with targeting of
c-Abl to mitochondria.

ER stress activates the c-Abl kinase. To further define the
distribution of c-Abl in response to ER stress, cytoplasmic and
nuclear fractions from A23187-treated cells were assessed by
immunoblot analysis with anti-c-Abl. The results demonstrate
that A23187 has little if any effect on c-Abl levels in the cyto-
plasm or nucleus (Fig. 5A). Purity of the fractions was con-
firmed by immunoblotting with anti-b-actin, anti-PCNA, and
anticalreticulin (Fig. 5A). In contrast to the cytoplasm and
nucleus, immunoblot analysis of the mitochondrial fraction
from A23187-treated cells demonstrated a time-dependent in-
crease in c-Abl protein (Fig. 5B). The mitochondrial fraction
was also subjected to immunoprecipitation with anti-c-Abl.

Analysis of the immunoprecipitates for phosphorylation of
GST-Crk (120–225) demonstrated that A23187 treatment is
associated with increases in mitochondrial c-Abl activity (Fig.
5C). As a control, there was no detectable phosphorylation of
GST-Crk (120–212) that lacks the c-Abl Y-221 phosphoryla-
tion site (data not shown). Densitometric scanning of the sig-
nals obtained for phosphorylation of GST-Crk (120–225) com-
pared to those obtained for immunoprecipitated c-Abl protein
indicated that A23187 induces c-Abl activity (Fig. 5C). The
average increase in mitochondrial c-Abl activity compared to
that for c-Abl protein for three separate experiments is shown
(Fig. 5D). The results support activation of the c-Abl protein
that localizes to mitochondria.

Targeting of c-Abl to mitochondria was similarly assessed in
cells treated with brefeldin A. Immunoblot analysis of the
cytoplasmic and nuclear fractions showed no detectable effect
of brefeldin A on c-Abl levels (Fig. 6A). As found with A23187,
analysis of the mitochondrial fraction demonstrated brefeldin
A-induced increases in c-Abl protein (Fig. 6B). In addition,
brefeldin A treatment was associated with increases in mito-
chondrial c-Abl activity (Fig. 6C). Comparison of the signals
found for GST-Crk (120–225) phosphorylation and c-Abl pro-
tein indicated that brefeldin A induces activation of the c-Abl

FIG. 4. ER stress targets c-Abl to mitochondria. (A) Rat1 cells (left) were treated with 10 mM A23187 for 6 h (middle) or 10 mg of brefeldin
A per ml for 8 h (right). (B) Abl1 cells (left) were treated with 10 mM A23187 for 6 h (right). After being washed, the cells were immobilized on
slides, fixed, and incubated with anti-c-Abl antibody followed by Texas red-conjugated goat anti-rabbit IgG. Rat1 cells were also stained with DAPI,
while no DAPI was used for staining of the Abl1 cells. Mitochondria were stained with the mitochondrion-selective dye Mitotracker green. The
slides were visualized using a fluorescence microscope coupled to a high-sensitivity charge-coupled device camera and image analyzer. Red signal,
c-Abl; green signal, Mitotracker; yellow-orange signals, colocalization of c-Abl and Mitotracker.
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kinase (Fig. 6C and D). These findings and those obtained with
A23187 demonstrate that ER stress is associated with targeting
of c-Abl to mitochondria and stimulation of c-Abl activity.

ER stress induces cytochrome c release and apoptosis by a
c-Abl-dependent mechanism. To assess the functional signifi-
cance of ER stress-induced targeting of c-Abl to mitochondria,
wild-type and Abl2/2 MEFs were treated with A23187. Immu-
noblot analysis of the mitochondrial fraction demonstrated
A23187-induced increases in mitochondrial c-Abl levels in
wild-type but not Abl2/2 cells (Fig. 7A). Cytoplasmic fractions
were also subjected to immunoblot analysis to assess release of
mitochondrial cytochrome c. The results demonstrate that
A23187 induces the release of cytochrome c in wild-type but
not Abl2/2 MEFs (Fig. 7A). Similar results were obtained in
wild-type and Abl2/2 cells treated with brefeldin A (Fig. 7B).
To confirm dependence on c-Abl, Abl1 cells were treated with
inducers of the ER stress. The results demonstrate that
A23187 treatment is associated with targeting of c-Abl to mi-
tochondria and cytochrome c release (Fig. 7C). Similar results
were obtained with brefeldin A and tunicamycin (Fig. 7C). As
additional controls, wild-type, Abl2/2, and Abl1 cells were
treated with A23187 and analyzed for activation of grp78. The
results demonstrate that grp78 is activated in the different cell
types (Fig. 7D). Similar findings were obtained with brefeldin
A (Fig. 7E). These results demonstrate that c-Abl is not in-

volved in initiating ER stress but is required for transducing
ER stress signals to mitochondria.

In concert with these findings, A23187 treatment was asso-
ciated with the induction of sub-G1 DNA in wild-type cells but
had little effect on the induction of apoptosis in c-Abl2/2 cells
(Fig. 8A). The finding that ER stress-induced apoptosis is also
abolished in Abl2/2 MEFs treated with brefeldin A provided
further support for involvement of c-Abl in this response (Fig.
8B). To extend these studies, Abl1 cells were analyzed for ER
stress-induced apoptosis. The results demonstrate that Abl1

cells respond to A23187 with induction of sub-G1 DNA (Fig.
8C). Similar results were obtained with brefeldin A and tuni-
camycin (Fig. 8C). As additional controls, independently de-
rived wild-type, Abl2/2 MEFs (19) were treated with tunica-
mycin. Wild-type but not Abl2/2 cells responded to
tunicamycin with the induction of apoptosis (Fig. 8D). These
results demonstrate that ER stress induces cytochrome c re-
lease and apoptosis by a c-Abl-dependent mechanism.

DISCUSSION

Stress signaling from the ER to mitochondria. The ER
responds to alterations in homeostasis with the transduction of
signals to the nucleus and cytoplasm. In this context, eukary-
otic cells respond to the accumulation of unfolded or excess

FIG. 5. A23187 induces mitochondrial translocation of c-Abl. (A)
Rat1 cells were treated with 10 mM A23187 and harvested at 6 h.
Cytoplasmic and nuclear fractions were isolated and subjected to im-
munoblotting (IB) with anti-c-Abl, anti-b-actin, anti-PCNA, or anti-
calreticulin. (B) Rat1 cells were treated with 10 mM A23187 and
harvested at the indicated times. Mitochondrial fractions were isolated
and subjected to immunoblotting with anti-c-Abl or anti-HSP60. The
signal intensities of c-Abl protein were compared to that of the control.
(C) Rat1 cells were treated with 10 mM A23187 and harvested at the
indicated times. Mitochondrial fractions were subjected to immuno-
precipitation (IP) with anti-c-Abl. The precipitates were analyzed in a
c-Abl kinase assay using GST-Crk(120–225) as the substrate or sub-
jected to immunoblotting with anti-c-Abl. The signal intensities of
c-Abl activity and protein were compared to that of the controls. (D)
The increases in mitochondrial c-Abl protein (solid bars) and activity
(open bars) are expressed as the means plus standard deviations ob-
tained from three separate experiments.
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proteins in the ER with (i) transcriptional activation of genes
encoding ER-resident proteins and (ii) repression of protein
synthesis (23). The ER-resident transmembrane kinases,
IRE1a and IRE1b, are activated by the presence of incorrectly
folded proteins within the ER lumen and transduce signals that
induce JNK/SAPK activity and gene transcription (29, 33, 35).
Inhibition of protein synthesis in the response to unfolded
proteins is signaled by the PERK transmembrane ER-resident
kinase (8). PERK has a luminal domain similar to that of IRE1
and a cytoplasmic kinase domain that phosphorylates eIF2a
(8). ER stress responses are also activated by disruption of ER
calcium homeostasis. The calcium ionophore A23187 induces
ER stress by increasing intracellular calcium pools (11). Brefel-
din A, by contrast, induces ER stress by blocking transport of
proteins from the ER to the Golgi. Under conditions of exces-
sive ER stress, cells activate signaling pathways that induce
apoptosis (37). However, the mechanisms responsible for ER
stress-induced apoptosis have been largely unknown. The re-
sults of the present studies demonstrate that the ER responds
to diverse types of stress with the transduction of signals to
mitochondria and thereby the induction of apoptosis.

c-Abl confers ER stress signals to mitochondria. The avail-
able evidence has shown that c-Abl is expressed in the nucleus
and cytoplasm. The present results demonstrate that c-Abl also
localizes to the ER. Confocal microscopy studies demonstrate

that c-Abl colocalizes with the ER-associated grp78 protein.
Localization of c-Abl to the ER was confirmed by immuno-
electron microscopy and subcellular fractionation studies. Nu-
clear c-Abl is activated in the cellular response to genotoxic
stress by mechanisms dependent on DNA-dependent protein
kinase and the product of the gene mutated in ataxia telangi-
ectasia (2, 10, 13, 28). Cytoplasmic c-Abl is activated in the
response to oxidative stress by a PKCd-dependent mechanism
(30, 31). Other studies have supported a role for c-Abl in the
apoptotic response to both genotoxic and oxidative stress (9,
30, 39). The finding that c-Abl is required for the release of
cytochrome c in the oxidative stress response has further sup-
ported a role for c-Abl in targeting proapoptotic signals to
mitochondria (30). The present studies extend the link be-
tween c-Abl and cellular stress by demonstrating that ER stress
is associated with mitochondrial targeting of c-Abl. The results
support a model in which ER stress induces translocation of
the ER-associated c-Abl to mitochondria. The results also sup-
port a functional role for c-Abl in transducing proapoptotic
signals that are activated by ER stress.

ER stress induces cytochrome c release and apoptosis by
targeting c-Abl to mitochondria. The cellular response to
genotoxic stress includes c-Abl-dependent signaling that me-
diates the release of mitochondrial cytochrome c and induction
of apoptosis (16, 17). Activation of c-Abl in the response to

FIG. 6. Brefeldin A induces mitochondrial translocation of c-Abl.
(A) Rat1 cells were treated with 10 mg of brefeldin A per ml for 8 h.
Cytoplasmic and nuclear fractions were subjected to immunoblotting
(IB) with anti-c-Abl, anti-b-actin, anti-PCNA, or anticalreticulin. (B)
Rat1 cells were treated with 10 mg of brefeldin A per ml for the
indicated times. Mitochondrial fractions were subjected to immuno-
blotting with anti-c-Abl or anti-HSP60. The signal intensities of c-Abl
protein were compared to that of the control. (C) Rat1 cells were
treated with 10 mg of brefeldin A per ml and harvested at the indicated
times. Mitochondrial fractions were subjected to immunoprecipitation
(IP) with anti-c-Abl. The precipitates were analyzed in a c-Abl kinase
assay using GST-Crk(120–225) as the substrate or subjected to immu-
noblotting with anti-c-Abl. The signal intensities of c-Abl activity and
protein were compared to that of the control. (D) The increases in
mitochondrial c-Abl protein (solid bars) and activity (open bars) are
expressed as the means plus standard deviations obtained from three
separate experiments.
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FIG. 7. ER stress induces cytochrome c release and apoptosis by a
c-Abl-dependent mechanism. (A) MEF (c-Abl1/1) and c-Abl2/2 cells
were treated with 10 mM A23187 and harvested at the indicated times.
Mitochondrial fractions were isolated and subjected to immunoblot-
ting (IB) with anti-c-Abl or anti-HSP60. Cytoplasmic fractions were
subjected to immunoblotting with anti-cytochrome c (Cyt c) or anti-
b-actin. The signal intensities of c-Abl and cytochrome c were com-
pared to that of the control. (B) MEF (c-Abl1/1) and c-Abl2/2 cells
were treated with 10 mg of brefeldin A per ml (Bref A) and harvested
at the indicated times. Mitochondrial fractions were subjected to im-
munoblotting with anti-c-Abl or anti-HSP60. Cytoplasmic fractions
were subjected to immunoblotting with anti-cytochrome c or anti-b-
actin. (C) MEF (c-Abl1/1), Abl2/2, and Abl1 cells were treated with
10 mM A23187 for 6 h, 10 mg of brefeldin A per ml for 8 h, or 10 mg
of tunicamycin per ml for 8 h. Mitochondrial fractions were analyzed
by immunoblotting with anti-c-Abl and anti-HSP60. Cytoplasmic frac-
tions were analyzed by immunoblotting with anti-cytochrome c and
anti-b-actin. (D and E) MEF (c-Abl1/1), Abl2/2, and Abl1 cells were
treated with 10 mM A23187 (D) or 10 mM of brefeldin A per ml (E)
for the indicated times. ER fractions were analyzed by immunoblotting
with anti-grp78 and anticalreticulin.
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oxidative stress has also been associated with release of cyto-
chrome c and the induction of apoptosis by a c-Abl-dependent
mechanism (30). In the cytosol, cytochrome c associates with a
complex of Apaf-1 and caspase-9 and thereby induces the
activation of caspase-3 (22, 42). The induction of apoptosis is
associated with caspase-3-mediated cleavage of poly (ADP-
ribose) polymerase, PKCd, and other proteins (6, 12, 32).
While ER stress can induce apoptosis (37), the involvement of
cytochrome c release in this response has been unknown. In
the present studies, the finding that ER stress induces the
release of mitochondrial cytochrome c provided further sup-
port for signaling from the ER to mitochondria. Importantly,
the induction of cytochrome c release by ER stress was atten-
uated in Abl2/2 cells. Moreover, Abl2/2 cells were defective
in the apoptotic response to ER stress. These findings in-
dicate that ER stress-induced cytochrome c release and
apoptosis are mediated by targeting c-Abl from the ER to
mitochondria.
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