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Abstract

While it is established that the functional impact of genetic variation can vary across
cell types and states, capturing this diversity remains challenging. Current studies
using bulk sequencing either ignore this heterogeneity or use sorted cell
populations, reducing discovery and explanatory power. Here, we develop scDALI, a
versatile computational framework that integrates information on cellular states with
allelic quantifications of single-cell sequencing data to characterize cell-state-specific
genetic effects. We apply scDALI to scATAC-seq profiles from developing F1
Drosophila embryos and scRNA-seq from differentiating human iPSCs, uncovering
heterogeneous genetic effects in specific lineages, developmental stages, or cell
types.
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Background
The functional impact of genetic variants on molecular traits such as gene expression

can be influenced by the cell type or cell state. Particularly non-coding variants in en-

hancer elements can impact a gene’s expression in one tissue and not in others.

Population-scale genetics studies, using bulk sequencing across individuals, have iden-

tified many such tissue-specific [1–3] and developmental stage-specific [4] effects,

which often involve rare genetic variants. However, even carefully dissected tissues are

composed of heterogeneous cell types, thus motivating the application of single-cell se-

quencing to reveal cell-state dependencies of genetic effects. Recent single-cell RNA-

seq studies in in vitro models revealed changing genetic dependencies across different

cellular transitions [5–7].

However, most existing analysis strategies for single-cell genetic studies have been

based on computational methods originally developed for bulk-sequencing data [5, 6,

8], requiring the discretization of cellular states and thus potentially failing to detect

more fine-grained differences in regulation. Computational strategies that allow for the
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unbiased identification of cell-state-specific effects are only beginning to emerge [9, 10]

and currently rely on profiling a large number of genetically diverse individuals, which

is particularly limiting for in vivo analyses and non-human model systems. The latter

could be addressed by measuring allele-specific signals, i.e., quantifying molecular traits

separately for each haplotype [9, 11–14], which in principle allows for identifying gen-

etic effects even in a single individual. The combination of allele-specific quantifications

coupled with the use of single-cell technologies could be a powerful strategy to dissect

the functional impact of genetic variants both within and across multiple cell types con-

tained in a complex tissue. Prior studies have quantified allele-specific properties at a

single-cell level to characterize transcriptional bursting and stochasticity in gene ex-

pression [15, 16]. However, the analysis of allele-specific patterns to unravel allelic

regulation at the single-cell level are only beginning to emerge [8, 17], and principled

computational methods for this task are not established.

To address the aforementioned challenges, we developed a versatile computational

model and analysis framework, scDALI (single-cell differential allelic imbalance).

scDALI leverages allele-specific quantifications in single cells to identify and compre-

hensively test for different types of allelic effects, including homogeneous effects that

are shared across all cell states or heterogeneous effects that are specific to some cell

states. Intuitively, our model is similar in spirit to differential expression testing but

aimed at identifying loci that exhibit heterogeneous allelic imbalance rather than vari-

ation in total expression. Critically, the model does not require the definition of cell

states or clusters a priori and can cope with both discrete cellular states or continuous

transitions. Additionally, scDALI enables the estimation of allelic imbalance from

sparse sequencing data in individual cells, thereby facilitating the visualization and

downstream interpretation of allelic regulation. scDALI is applicable to single-cell data-

sets obtained from different modalities and sequencing technologies.

We applied scDALI to study allele-specific variation in single-cell chromatin accessi-

bility data (sciATAC-seq) in developing F1 embryos of Drosophila melanogaster, where

we identified hundreds of regulatory regions with allelic imbalances in specific cell

types or developmental stages. Among these effects, we identify putative enhancer re-

gions with opposing allelic imbalance in different cell lineages, which are missed by

bulk assay profiling. We then leveraged scDALI to fine-map the cell-type specificity of

known expression quantitative trait loci (eQTL) in a population cohort of human in-

duced pluripotent stem cells (iPSC), by assessing allelic regulation of single-cell tran-

scriptomes. scDALI offered increased detection power compared to previous methods

and uncovered how subtle differences in cell states can substantially affect allelic regu-

lation. scDALI is therefore applicable to diverse species and data types, and leverages

single-cell technologies to avoid cell sorting, thereby providing the means to discover

and quantify the functional impact of cell state-specific genetic effects in a systematic

and unbiased manner.

Results and discussion
scDALI enables the analysis of context-specific allelic regulation from single-cell se-

quencing data, either generated from outbred individuals or F1 crosses of inbred wild-

isolates. Key to our approach is the integration of two independent signals that can be

obtained from the same single-cell sequencing experiment: total counts and allele-
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specific quantifications. These signals can be derived from single-cell RNA-sequencing,

single-cell ATAC-sequencing, and a range of other epigenetic assays. scDALI first uses

total counts, quantified at individual features, to define a manifold of cell types and cell

states, similar to established workflows for the inference of state clusters [18] or

pseudo-temporal orderings [19]. Second, from the same dataset, allele-specific counts

from matched cells are extracted, which allow for quantifying allelic imbalances and

therefore genetic effects (Fig. 1a).

scDALI is a probabilistic model that can dissect dependencies between both of these

signals, while aggregating evidence across cells to mitigate the sparsity of single-cell

data. Briefly, our method can be cast as a generalized linear mixed model (GLMM) with

a Beta-Binomial likelihood that accounts for count noise and residual overdispersion

due to unmodeled variability in the data (Methods). This formulation extends the clas-

sical Beta-Binomial framework, which has previously been used for allele-specific ana-

lyses of bulk sequencing data [9, 12, 13, 20]. The model is also conceptually related to

random effect models that have been proposed to study genotype-environment

Fig. 1 scDALI overview and model validation using simulated data. a Illustration of the causes and quantification of
allelic imbalance. Heterozygous variants within quantified genomic features (T and G variant) are used to assign reads
to either haplotype. A cis-regulatory genetic variant (A and G variant, yellow) impacts the efficacy of a trans-acting
factor on the maternal allele, which results in allelic imbalance. If the trans-acting factor is cell-state specific, this effect
will be heterogeneous across cell states, otherwise homogeneous. b Integration of total and allelic counts per cell.
scDALI models allelic imbalance in single cells as the sum of a fixed expected rate (rbase, e.g., 0.5 for autosomes),
optional covariates, a global homogeneous component (μhom), and a heterogeneous cell state-specific component
(fhet), which is characterized by a cell state kernel matrix. Three alternative score tests allow for assessing the evidence
for global allelic imbalance (scDALI-Hom), heterogeneity across cell states (scDALI-Het), or to jointly test for either form
of allelic imbalance (scDALI-Joint). c, d Assessment of power of alternative tests for allelic imbalance using simulated
data. Allelic counts were simulated using alternative cell state kernels derived from real data (Additional file 1: Fig. S2,
Methods). c Varying the simulated fraction of explained variance (FEV) of heterogeneous vs. homogeneous allelic
imbalance. Whereas scDALI-Het and scDALI-Hom detect signals with simulated persistent or heterogeneous effects
respectively, scDALI-Joint identifies either type of allelic imbalance. d Varying between simulating from a discrete and
continuous cell state model. Shown are results from scDALI-Het and a baseline based on ANOVA to test for
differences between discrete cell clusters (24 clusters; Methods)
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interactions in population-scale studies [10, 21]. scDALI captures both homogeneous

deviation from a specified base allelic rate (e.g., 0.5 for autosomes in diploid organisms),

as well as heterogeneity in allelic rates across cells using a kernel matrix that explains

cell states, which is estimated from total counts [22, 23]. Our framework can capture a

variety of cell state effects, including discrete cell clusters as well as continuous devel-

opmental trajectories. It is also possible to incorporate additional known covariates,

such as batch or sample structure as fixed effects. Within the scDALI framework, we

formulate computationally efficient score tests [24, 25] that allow us to identify sites

that exhibit different types of allelic imbalance. In particular, scDALI implements tests

specific to global homogeneous (pervasive) imbalance (scDALI-Hom), heterogeneous

genetic effects that vary across cell types and cell states (scDALI-Het) or either of these

effects (scDALI-Joint) (Fig. 1b). scDALI also allows for estimating the fraction of the

total allele-specific variance that can be explained by cell state effects, and the model

can be used to estimate and visualize allelic imbalances across cell states (Methods).

Our framework is designed for the analysis of single-cell sequencing data from a small

number of genetically distinct individuals, and hence the focus is not the discovery of

novel quantitative trait loci but rather to leverage allelic imbalance to characterize the

cell-state specificity of genetic factors.

Model validation using simulated data

Initially, we validated our approach using simulated data, which was designed to mimic

real count data as expected from a very heterogeneous sample (single-cell data from

whole embryos), by adapting key parameters from empirical sciATAC-seq profiles from

whole Drosophila melanogaster embryos (continuous and discretized cell states, over-

dispersion parameters; Additional file 1: Fig. S1a, 2, Methods). First, we assessed the

calibration of all three scDALI tests by simulating from the corresponding null models,

confirming uniformly distributed P-values (Additional file 1: Fig. S1b, c). Notably, a

variant of scDALI-Het using a Binomial rather than Beta-Binomial observation model

was not calibrated at overdispersion levels estimated from real data (Additional file 1:

Fig. S1c). We also considered two alternative tests for modeling empirical allelic rates

(maternal counts divided by total counts): a one-way ANOVA, testing for differences

between discrete clusters and a multiple-degrees-of-freedom likelihood ratio test based

on an ordinary least squares regression model (OLS, Methods). While the ANOVA

model was calibrated, the OLS model led to inflated P-values when testing high-

dimensional cell states relative to the sample size (Additional file 1: Fig. S1 d). Next, we

simulated allelic counts from the scDALI model, varying the proportion of homoge-

neous versus heterogeneous allelic imbalance (Fig. 1c, Additional file 1: Fig. S2, 3a). As

expected, scDALI-Joint identified effects of both classes, generalizing the individual

tests scDALI-Het and scDALI-Hom. We then went on to simulate allelic counts either

assuming continuous states, discrete cell state clusters derived from these states, or

weighted combinations thereof (Fig. 1d, Additional file 1: Fig. S2, 3b, Methods). We

compared scDALI to an ANOVA test based on the discretized cell state representation,

finding that scDALI-Het offered substantial advantages in the presence of additional

continuous variation, whereas ANOVA is most suitable to detect purely discrete effects.

We also considered a range of additional settings, varying the levels of overdispersion
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and kernel variance (Additional file 1: Fig. S3), finding that scDALI was robust to a

range of different parameters. scDALI is implemented as computationally efficient

open-source software, scaling to the analysis of large datasets with up to tens of thou-

sands of cells (Additional file 1: Fig. S4).

scDALI identifies heterogeneous allelic imbalance in scATAC-seq from developing

Drosophila embryos

Having validated the model, we applied scDALI to open chromatin regions during em-

bryonic development in F1 hybrid embryos of Drosophila melanogaster. We profiled

single-cell chromatin accessibility by sciATAC-seq in F1 embryos obtained by mating

the same mother to four genetically distinct fathers [20]. To ensure that we captured

regulatory variation associated with major developmental events, we collected embryos

from four F1 crosses at three key stages of embryonic development (Fig. 2a, 2–4 h, 6–8

h, and 10–12 h after egg laying), which correspond to stages when the majority of cells

are multipotent, or are undergoing lineage commitment, and or tissue differentiation,

respectively. Sequencing the resulting 12 sciATAC-seq libraries generated a dataset of

35,485 single cells (between 8000 and 10,000 cells per cross) that passed stringent qual-

ity metrics (Additional file 1: Fig. S5; Methods). Overall, our dataset features all the

hallmarks of high-quality sciATAC-seq, including the appropriate nucleosomal banding

pattern (Additional file 1: Fig. S5a), and a high concordance to previously identified

peaks from a time-matched sciATAC-seq dataset in a reference strain [26] (Additional

file 1: Fig. S6).

To infer a common cell state representation for all time points and crosses, we

adapted a variational autoencoder (VAE) [27] that was previously developed for

scRNA-seq data [28] to scATAC-seq. Briefly, a VAE is a neural network with a prob-

abilistic bottleneck layer that learns the distribution of the data by compressing high-

dimensional observations into a lower dimensional latent space. Our implementation

(Additional file 1: Fig. S7a) incorporates a size-factor adjusted Bernoulli likelihood

model tailored to the binary nature of scATAC-seq data. Furthermore, the model not

only integrates measurements across datasets and batches but also allows to explicitly

model information about different sampling times for developmental datasets (Add-

itional file 1: Fig. S7d, e). This extension enables our model to infer continuous tem-

poral ordering of cells by coupling the VAE objective function with a regression

problem to predict sampling time from the latent cell state representation (Methods).

We trained the model using the top 25,000 most accessible peaks across all crosses and

time points. The VAE yielded a well-aligned latent space for all F1 crosses (Additional

file 1: Fig. S7c) that captured progressive changes across developmental time (Fig. 2b,

Additional file 1: Fig. S7d, e). We used the VAE latent space to define the cell state co-

variance for scDALI (see below). For annotating cell types, cells were clustered based

on this lower-dimensional representation using the Leiden algorithm [29, 30] (28 clus-

ters, Additional file 1: Fig. S7b), followed by an assignment of tissue identities based on

the enrichment for enhancers with validated in vivo spatio-temporal activity in specific

tissues during embryogenesis and genes with known tissue-specific expression [26]

(Methods). Four smaller clusters with ambiguous annotations that likely correspond to

barcode collisions were excluded from further analysis. This annotation process
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resolved seven cell populations that are representative of major embryonic lineages, in-

cluding muscle, nervous system, and ectoderm (Fig. 2b).

Next, we quantified chromatin accessibility on an allele-specific level. We applied

WASP [13] to avoid allelic mapping artifacts, filtering between 7 and 8% of mapped

reads (Additional file 1: Fig. S8a, Methods). Allele-specific chromatin accessibility was

quantified within 1 kb regions centered on ATAC peaks, requiring that each read over-

lapped at least one heterozygous variant. This resulted in a haplotype assignment for

20% of the reads (based on 5–6 variants per region on average, Additional file 1: Fig.

S8b, c). After discarding peaks with low allelic coverage (mean count of reads that

could be assigned to either allele < 0.1), we obtained between 8040 and 12,861 open-

chromatin peaks per cross for further analysis resulting in a combined set of 39,530

peaks to be tested (Additional file 1: Fig. S9d, e).

Fig. 2 Application of scDALI to sciATAC-seq of Drosophila F1 embryos. a Experimental design. Chromatin
accessibility was profiled in four F1 crosses at three distinct developmental stages (2–4, 6–8, and 10–12 h
after egg laying), resulting in 12 sciATAC-seq libraries. b UMAP visualization of the full integrated dataset
(34,053 cells from 12 sciATAC-libraries, excluding cell clusters with ambiguous annotations) based on the
latent space of the Variational Autoencoder (VAE) (Methods). Top: Cells colors by the continuous temporal
ordering as estimated from the VAE model. Bottom: Colored by the major lineage annotation. c Number of
sites across crosses and time points with allelic imbalance identified by scDALI-Joint, scDALI-Hom, and
scDALI-Het. Top: Number of discoveries as a function of the FDR threshold (Benjamini Hochberg adjusted).
Bottom: Overlap between the sites identified by all three scDALI tests (FDR < 0.1). d Scatter plot of negative
log P-values between scDALI-Joint and scDALI-Hom (top) and scDALI-Het versus scDALI-Hom (bottom)
respectively. Color denotes the estimated fraction of allele-specific variance explained by cell-state-specific
effects; non-significant peaks marked in grey (adjusted scDALI-Joint P > 0.1). Inset plots zoom in on peaks
with pronounced cell state-specific imbalances. The red circle highlights the peak chr3R:20310056-
20311056, a region showing prominent cell state-specific effects with no discernable global imbalance (c.f.
Fig. 3a–c)
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We applied scDALI to test for homogeneous or heterogeneous allelic imbalance at

each of the 39,530 peaks, jointly considering cells across all developmental stages for

each cross (Fig. 2c, d, Additional file 1: Fig. S9; using the VAE latent space coordinates

to define the cell state kernel; Methods). scDALI-Joint identified 7823 (~ 20%) ATAC

peaks with evidence for allelic imbalance (FDR < 0.1, Benjamini-Hochberg adjusted).

Notably, the majority of these peaks were also identified by scDALI-Hom (83%), indi-

cating that homogeneous imbalance is prevalent. However, scDALI-Het identified 415

sites with evidence for cell state-specific allelic imbalance, 200 of which were missed by

scDALI-Hom. This indicates that strong heterogeneity can preclude the identification

of allelic imbalance by bulk sequencing or analysis strategies that assume exclusive

homogenous effects. For instance, a peak (region chr3R:20310056-20311056) in cross

F1-DGRP-307 was identified with high significance by scDALI-Joint (P = 1.93 × 10−8)

and scDALI-Het (P = 5.45 × 10−8), but was globally consistent with a model that as-

sumes no allelic imbalance (scDALI-Hom P = 0.81, Fig. 2d). We also assessed whether

heterogeneous allelic imbalance at peaks identified by scDALI-Het could be explained

by variation in total accessibility of the corresponding peak, finding no evidence for

such a relationship for the vast majority of peaks (Additional file 1: Fig. S10 c, d). To

evaluate to what extent scDALI is affected by the specific choice of cell-state represen-

tations, we also considered two alternative methods to define a cell state kernel, latent

semantic indexing [26] (LSI), and cisTopic [31] (Methods). This comparison indicated

that peaks with significant heterogenous imbalance were robustly identified across all

three cell-state representations (Additional file 1: Fig. S10 a, b).

Properties of regions with heterogeneous allelic imbalance

We applied scDALI to estimate allele-specific accessibility in individual cells for 415

peaks with significant heterogeneous allelic imbalance. We considered two alternative

strategies for annotating cell-state-specific effects. First, we aggregated estimated allelic

rates for each of the 7 annotated lineages and compared the rate distribution and mean

allelic rates to identify lineages with pronounced differential allelic imbalance. Second,

we estimated transcription factor (TF) activity scores for each cell based on the total ac-

cessibility of a curated set of 65 transcription factor motives [4] (using chromVAR [32])

and ranked TFs based on the correlation between their activity and estimated allelic

rates (Methods). Notably, the latter approach avoids the definition of discrete cell clus-

ters and thus can be used to identify specific regulatory programs associated with allelic

imbalance.

We find several cases in which allelic imbalance affects known lineage-specific regula-

tory elements. For example, region chr3R:22877489-22878489 (scDALI-Het P = 2.7 ×

10−5) has been previously identified as a neuronal-specific DNase Hypersensitive Site

(DHS) [33] and has been demonstrated to function as a nervous system enhancer

in vivo (CAD4 database [26]). Accordingly, this region is identified as predominantly

accessible in the nervous system (Fig. 3a). In addition, while cells from other lineages

show no appreciable allelic imbalance, accessibility in the nervous system is strongly

biased for the paternal allele (Fig. 3b, Additional file 1: Fig. S11b). Ordering cells by

their estimated allelic rate and computing the difference between the top and bottom

10% quantiles (Qdiff10), we define a measure of the effect size of heterogeneous allele-
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specific imbalances, which captures the variation in allelic rates between the most ex-

treme populations (Additional file 1: Fig. S11a). For this specific example, we obtain a

Qdiff10 of 0.24 despite the overall mean allelic rate being close to 0.5 (Additional file 1:

Fig. 3 Examples and analysis of ATAC peaks with heterogeneous allelic imbalance. a UMAP visualization
displaying cells colored by their predicted allelic rate (maternal accessibility relative to total accessibility) for
region chr3R:22877489-22878489 in cross F1-DGRP-639. Black dots indicate cells with observed allelic rates
(non-zero allelic total counts) that were used to fit the scDALI model. b Genome browser tracks for region
chr3R:22877489-22878489 illustrating allele-specific aggregate accessibility for the nervous system and other
populations. c Left: Correlation between estimated allelic rates and chromVAR transcription factor (TF)
activity scores in individual cells. Shown are the ten strongest associations, with plus and minus signs
indicating the direction of correlation. Right: Curated lineage annotation for each TF. e–g Example region
chr2R:13675707-13676707 in cross F1-DGRP-639, revealing opposing effects in the nervous system and
muscle lineage. h–j Example region chr3R:20310056-20311056 in F1-DGRP-307, revealing lineage-specific
differences in allelic rates for the muscle, primordium, and midgut, as well as intra-lineage variation within
the muscle population. k Violin plots of effect size estimates for heterogeneously (Qdiff10, i.e., 10% quantile
difference as in d) and homogeneously imbalanced (absolute deviation from 0.5) peaks, considering distal
and promoter-proximal regions separately. Distal peaks are associated with both larger absolute allelic
imbalance and stronger heterogeneity (P = 5.6 × 10−5, P = 2.17 × 10−26, one-sided Mann-Whitney U test). l
Total number of peaks tested and peaks with allelic imbalance identified using alternative tests (FDR < 0.1),
stratified by the peak distance to the transcription start site (TSS) of the closest gene. Heterogeneously
imbalanced peaks are markedly more common at distal regions. m, n By-lineage analysis of allelic
imbalance using scDALI-Het for peaks with significant heterogeneous imbalances. m Distribution of the
number of differentially imbalanced lineages per peak. n Distribution of the number of peaks with
increasing numbers of differentially imbalanced lineages. The majority of peaks show imbalance in a
single lineage
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Fig. S11b). In accordance with the allelic imbalance identified by scDALI at this locus,

the assessment of TFs associated with heterogeneity in allelic effects identified known

nervous system regulators, such as Tramtrack (ttk) and Hairy (h) (Fig. 3c, Additional

file 1: Fig. S11e).

Interestingly, we found a number of regulatory regions that show opposing allelic im-

balances in different lineages. For example, region chr2R:13675707-13676707 has only

a small maternal bias (estimated overall mean rate 0.61) when considering the global al-

lelic rate but is identified as a site with pronounced allelic heterogeneity by scDALI

(scDALI-Het P = 1.5 × 10−8, Fig. 3e). This region has previously been identified as a

neuronal and muscle-specific DHS [33] and accordingly shows increased accessibility

in the nervous system and muscle in our data. However, accessibility is biased for the

maternal allele in the muscle and the paternal allele in the nervous system (Qdiff10 =

0.29, Fig. 3f, Additional file 1: Fig. S11c). This pattern of opposing allelic imbalance is

also reflected in the correlation with the activity of TFs active in these tissues. For ex-

ample, known muscle regulators, such as Twist (twi) and Tinman (tin) are correlated

with the maternal allelic rate, while factors active in the nervous system, for example,

Tramtrack (ttk), Disconnected (disco), and Kruppel (Kr), are correlated with the pater-

nal rate (Fig. 3g, Additional file 1: Fig. S11f).

Another example is chr3R:20310056-20311056 (scDALI-Het P = 5.45 × 10−8), a region

spanning an intron of the gene CG42668. The total accessibility of this region largely

coincides with the known tissue-specific gene expression of CG42668 in the cells of the

midgut and visceral muscle. Our allele-specific analysis revealed differential allele-

specific effects in both tissues, suggesting distinct regulatory programs orchestrating

the tissue-specific activity of CG42668 (Fig. 3h, i). Furthermore, muscle cells showed

additional intra-lineage variation, resulting in a bi-modal distribution of allelic rates

(Additional file 1: Fig. S11d). Despite the presence of strong inter- and intra-lineage

variation (quantile difference 0.39), this effect is obscured in a bulk-level analysis

(scDALI-Hom P = 0.81). The activity score of GATAe, a known midgut TF, is highly

correlated (Pearson r > 0.5) with the maternal rate, while Zelda (vfl), which has a role

in zygotic genome activation and early developmental patterning in the embryo primor-

dium, with the paternal rate, consistent with the allelic bias observed in these cell popu-

lations (Fig. 3j, Additional file 1: Fig. S11g). The temporal intra-lineage variation within

the muscle population is also reflected in the correlation with the activity of known

early and late muscle TFs. Twist (twi) and Tinman (tin) are active in the early muscle

primordium (mesoderm) where they direct the specification of the muscle lineages, and

concordantly their activity scores are correlated with the paternal allelic rate observed

in the early muscle cells. TF Lameduck (lmd) is instead correlated with the maternal

rate, as it is required during later stages of muscle formation for the proper specifica-

tion of the somatic and visceral muscle (Fig. 3j, Additional file 1: Fig. S11g).

More globally, allele-specific effects are stronger at distal regulatory elements (poten-

tial enhancers) compared to promoter-proximal regions, both for peaks with heteroge-

neous (one-sided Mann-Whitney U test, P = 5.6 × 10−5) as well as homogeneous (one-

sided Mann-Whitney U test, P = 2.17 × 10−26) imbalance (Fig. 3k). Furthermore, imbal-

ances are significantly more common at distal versus proximal regions (Fig. 3l), similar

to what has been observed in bulk ATAC-seq data at time-matched developmental

stages [20]. These differences between distal and proximal sites are less pronounced

Heinen et al. Genome Biology            (2022) 23:8 Page 9 of 24



when considering discoveries from scDALI-Hom (two-sided Binomial test P = 0.02),

with about 61% of significant regions being found at proximal regions compared to

62% of all tested peaks. Interestingly, however, we find this effect to be markedly more

prominent for heterogeneously imbalanced regions (two-sided Binomial test P = 2.15 ×

10−10), with only 47% of peaks discovered by scDALI-Het being located near gene

promoters.

To further characterize heterogeneous imbalances, we used scDALI to assess differ-

ential lineage effects, testing for differences in mean allelic rates between each lineage

and all remaining cells (Methods). Briefly, this test can be formulated under the

scDALI-Het framework, replacing the continuous cell state kernel with a block-

diagonal matrix to indicate lineage membership. Unsurprisingly, the frequency of sig-

nificant imbalances by lineage (FDR < 0.1) largely resembled the overall read count dis-

tribution, which influences the detection power for allelic imbalance (Fig. 3m,

Additional file 1: Fig. S12a). For the majority of peaks, allele-specific variation was at-

tributable to one or two differentially imbalanced lineages (72%); however, 11% of peaks

showed differences between three of four lineages (Fig. 3n). Interestingly, for 17% of

scDALI-Het discoveries, allele-specific effects do not differentiate any single lineage, in-

dicating the presence of significant intra-lineage variation, for example due to variation

in developmental time.

Identification of sites with heterogeneous allelic imbalance linked to developmental time

Developmental time is a major driver of variation in our dataset and therefore a prom-

ising predictor of allele-specific changes within lineages. We applied scDALI to test for

time-specific allelic imbalances within muscle, the lineage with the largest number of

cells, using the pseudo-temporal ordering estimated by the VAE model as a cell state

representation (Fig. 4d). Leveraging the scDALI framework, we design a kernel captur-

ing both linear and nonlinear (polynomial) temporal dependencies (Methods). Out of

363 peaks with significant heterogeneous allelic imbalance that are accessible in muscle

(mean total allelic count within lineage < 0.1), scDALI identified 69 (19%) peaks with

significant time-specific effects (FDR < 0.1; Fig. 4a, b). Notably, 27% of these peaks with

time-specific allelic imbalance did not show any lineage-specific effects (Fig. 4c). As an

example, region chr2R:13675707-13676707 discussed above (Fig. 3f) does indeed ex-

hibit strong time-specific imbalances (Fig. 4e, Fig. 4f), consistent with the observed

intra-lineage variation specifically in muscle cells.

Application of scDALI to identify cell-type-specific effects of eQTL

To demonstrate that scDALI is also applicable to single-cell RNA-seq, we considered a

recently published multi-donor single-cell RNA-seq dataset of human induced pluripo-

tent stem cells (iPSCs) differentiating towards definitive endoderm [5]. Samples were

profiled using a full-length sequencing protocol (Smart-seq2, [34]), allowing for the

quantification of gene expression in haplotype-resolved manner and thus providing the

basis for an analysis using scDALI. Briefly, this study spans 34,254 cells (after basic fil-

tering, Methods) from 125 donors at four time points during cell differentiation. We

considered 3966 eQTL (SNP-gene pairs) that were identified in the primary analysis

and applied scDALI-Het to assess the evidence for heterogeneous allelic gene
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expression. Briefly, for each of these eQTL, we aggregated allele-specific counts across

all cells from donors with a heterozygous query eQTL variant relative to this variant

(using haplotype phasing, c.f. Methods and [5]). We then used the first 20 principal

components from total expression counts to construct a cell state kernel for the

scDALI analysis (Methods).

While allelic rates are generally less susceptible to confounding variables such as

batch effects, donor-specific read mapping biases as well as differences in the represen-

tation of cell types and cell states can lead to spurious signals of heterogeneous allelic

variation. Indeed, we confirmed the need to account for the donor identities (donorID)

in this analysis to retain calibrated test statistics (10 PCs, Fig. 5a, b; assessed using per-

muted cell coordinates; Methods).

We assessed the number of eQTL with heterogeneous imbalance discovered by

scDALI-Het when varying the number of principal components used to construct the

cell-state kernel, finding that more complex kernels yielded a larger number of discov-

eries, which however saturated for five or more components (Fig. 5c). For example, a

model using the first PC to define a cell state kernel (which primarily captures differen-

tiation, Additional file 1: Fig. S13) identified 611 eQTL with heterogeneous allelic im-

balance compared to 812 eQTL when using 10 components (Fig. 5d, FDR < 0.1). This

indicates that although variation in gene expression in this data is predominantly ex-

plained by the differentiation state (Fig. 5e), the remaining sources of variation drive a

substantial fraction of distinct genetic regulation. One example of such an effect is an

eQTL with heterogeneous ASE for CPNE1 (P = 3 × 10−9, scDALI-Het). CPNE1 has been

Fig. 4 scDALI-Het identifies time-specific intra-lineage variation. a Scatter plot of negative log P-values for
scDALI-Het versus a scDALI test for time-specific variation in the muscle population. Red circle highlights
region chr2R:13675707-13676707. b Of 363 peaks identified by scDALI-Het that are accessible in the muscle,
19% showed significant temporal effects (FDR < 0.1). c The majority of peaks with a time-specific effect in
the muscle did not show significant differential allelic imbalance between lineages. d Temporal order for
the muscle lineage estimated by the variational autoencoder model. e, f Estimated allelic rates across time
for region chr2R:13675707-13676707. Black dots denote cells with observed allele-specific counts in
this region
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shown to play a role in neuronal progenitor cell differentiation [35]. Intriguingly, the

pattern of allelic imbalance is confined to a distinct subpopulation of iPS cells, which is

marked by expression of UTF1. Notably, this UTF1-positive iPS subpopulation has re-

cently been associated with differentiation efficiency towards a midbrain neural fate [6]

(Fig. 5g).

Conclusion
The majority of disease associated variants impact non-coding regions, disrupting the

function of regulatory elements such as enhancers and promoters. As enhancers regu-

late when and where genes are expressed, genetic variation within enhancers naturally

has cell type-specific effects. However, capturing and understanding these genetic ef-

fects is an enormous challenge. Resolving these effects to specific cell types using

Fig. 5 scDALI-Het applied to scRNA-seq of differentiating iPSCs reveals cell-state specificity of eQTL. a, b Q-
Q plot of scDALI-Het P-values when permuting the cell-state coordinates of cells from the same donor. A
model that does not account for the donor identity yields inflated p-values (a), whereas scDALI-Het with
donor identities as fixed effects yields calibrated results (b). c Number of discoveries for varying numbers of
principal components (PCs) used to define the cell state kernel. If donor identity is not accounted for, using
a larger number of PCs for the cell-state definition leads to an increasing number of discoveries. d Scatter
plot of negative log P-values, comparing a model using only the leading PC versus scDALI-Het with 10 PCs.
Orange dots are discoveries that are exclusively identified by the general cell-state test (10 PCs). Indicated
are the number of significant discoveries in each quadrant (10% FDR). e UMAP visualization of collection-
and pseudotime. f Estimated allelic rates for the eGene-QTL pair (CPNE1, chr20:34344225 T/A). g Expression
of UTF1, a previously identified marker for neuronal differentiation success
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classical quantitative trait loci (QTL) mapping would require FACS sorting different

cell types from a heterogeneous tissue across a large panel of individuals, a huge task

that is often impossible as specific markers for cell isolation are not available for many

cell types and transitions.

To address this, we developed scDALI, a computational framework to characterize the

cell-type specificity of genetic effects from single-cell sequencing data in an unbiased fash-

ion. Our model provides a principled strategy for exploiting two independent signals that

can be obtained from the same sequencing experiment, whether that is gene expression

or epigenetic data: (1) total counts, which we use to derive cell types and states, and (2)

allele-specific quantifications of genetic effects within genomic features such as genes or

ATAC peaks of accessibility. Combining these two measurements allowed us to test for

both pervasive, homogeneous imbalance and cell-state-specific heterogeneous effects,

without the need to define cell types or cell states a priori.

We applied scDALI to newly generated scATAC-seq profiles from an F1 cross design,

assaying dynamic and discrete changes in allele-specific chromatin accessibility of de-

veloping Drosophila melanogaster embryos, a naturally very heterogeneous sample. Our

model discovers thousands of imbalanced regions, hundreds of which show distinct cell

state-specific effects. About half of the regulatory regions with allelic imbalance in spe-

cific cell types are not detectable in a pseudo-bulk analysis, as opposing effects cancel

out across the cell state space. Although the total number of discoveries with heteroge-

neous effects is relatively modest, we expect this to increase dramatically as the number

of profiled cells increases. Even with the numbers profiled here, our analysis identified

genetic effects at a number of characterized tissue-specific developmental enhancers.

scDALI estimates allele-specific effects in individual cells, which allows dissecting this

heterogeneity at different resolutions. We have shown how this map can be used to

identify the underlying regulatory programs by associating differential allelic imbalance

with pathway or transcription factor activity scores. Alternatively, it is possible to aggre-

gate allelic rates at the level of known (discrete) clusters, thereby assessing the distribu-

tion of estimated allelic activity both between and within lineages or cell types. We find

that developmental time is an important contributor to intra-lineage variation of allelic

imbalance, pinpointing developmental stage-specific enhancers. Furthermore, our ana-

lysis revealed that allele-specific effects are significantly stronger and more common at

distal elements (putative enhancers) compared to promoter-proximal regions. Notably,

these differences are markedly more pronounced among peaks with heterogeneous (tis-

sue-specific) imbalances compared to homogeneous effects, confirming and extending

previous results on bulk-sequencing data [20]. We then applied scDALI to a published

scRNA-seq dataset from 125 human iPS cell lines and demonstrated how our model

can be used to discover context-specific genetic effects of known eQTL and

characterize the associated cellular subpopulations.

While our approach uncovers many novel putative enhancers, it also has its limita-

tions. The focus of this work lies on the characterization of cell-state-specific effects for

known quantitative trait loci and the mapping of genetic effects from few available indi-

viduals or even a single sample. In particular, we do not test for interactions between

cell states and the presence of genetic variants, which prevents our model from discov-

ering potential causal loci associated with cell-state-specific allelic imbalance. While in

principle, it is possible to combine allelic analyses with genotype data to identify causal
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variants [9, 11–13], this requires larger numbers of unique genotypes. Furthermore,

even for population-scale studies using single-cell sequencing, the primary interest is

the characterization of known loci and not discovery of novel effects. These consider-

ations are motivated by differences in power to detect eQTL in bulk versus single-cell

data [36] and the sample sizes that can currently be profiled using single-cell readouts.

The required multi-individual single-cell sequencing studies are only beginning to

emerge and scDALI could be extended to leverage such variation.

Understanding to what degree allele-specific effects replicate at different molecular

layers remains another important direction of future research. In this study, we have

demonstrated that scDALI can be flexibly applied to both single-cell RNA-seq and

ATAC-seq data. However, new multi-omics methods can obtain both DNA accessibil-

ity and RNA measurements from the same single cell [37]. The integration of these dif-

ferent dimensions of allelic imbalance across both modalities will be an important area

for future work that may help to relate the functional impact of genetic variation in en-

hancers to their target gene’s expression.

Methods
scDALI model

scDALI extends the frequently used Beta-Binomial observation model for allele-specific

read counts in bulk-sequencing data [9, 12, 13, 20], by accounting for cell-state-specific

effects. For a given genomic region of interest and cells i = 1, …, n let ai be the number

of reads mapping to the the maternal haplotype and di be the total number of reads.

Furthermore, let K denote a n × n cell-state kernel matrix, capturing cell-to-cell covari-

ances across the cell state space. Throughout our analyses, we use K = EET where E is a

low-dimensional representation based on total read counts. For example, E can be ob-

tained by reducing the dimensionality of the total counts matrix using principal compo-

nent analysis (PCA) or a variational autoencoder model (see below) or by constructing

a (one-hot-encoded) cell clustering. scDALI captures cell-state-specific allelic variation

on a logit scale using a latent n-dimensional Gaussian variable:

u∼N 1 � αþ Xβ; σ2K
� � ð1Þ

Here, the scalar α denotes global or homogeneous allelic imbalance, affecting all cells

equally and independent of the cell state, while σ2 modulates the strength of cell-state-

specific or heterogeneous effects. To couple u to the mean of a Beta-Binomial observa-

tion model for allelic read counts, scDALI then uses a logit link function g(x) = log (x/

(1 − x)):

μi ¼ g−1 uið Þ ð2Þ

ai j μi; di∼BetaBinom θ−1μi; θ
−1 1−μið Þ� � ð3Þ

The parameter θ captures residual, extra-binomial variance (overdispersion) due to

unmodeled technical and biological sources of variation. Note that by using a linear

kernel function K = EET, we effectively cast our model as a generalized linear mixed

model [38] (GLMM). However, the model can in principle be extended to the non-

linear case using common kernel functions from the Gaussian process literature [39] or

using non-linear transformations of individual cell-state dimensions.
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To systematically assess homogeneous or heterogeneous allelic imbalance, scDALI

implements three score tests:

� scDALI-Het H0
Het : σ2 = 0 vs. H1

Het : σ2 > 0 (heterogeneous imbalance)

� scDALI-Hom H0
Hom : α = 0 vs. H1

Hom : α ≠ 0 (homogeneous imbalance)

� scDALI-Joint H0
Joint : α = 0, σ2 = 0 vs. H1

Joint : α ≠ 0 or σ2 > 0 (general imbalance)

By leveraging a score-based framework, scDALI avoids fitting the full GLMM model

under the alternative hypotheses when evaluating the test statistics, which is computa-

tionally expensive for large data sets. The associated null models can be fitted efficiently

using the Fisher scoring/Newton-Raphson. For a full derivation of the scDALI score

tests, see Additional file 2: Supplementary Methods.

Allelic rate interpolation and downstream analysis

Once a set of genomic regions with significant heterogeneous allelic imbalance has

been identified, scDALI can be used to estimate the landscape of allelic imbalance

across the cell state space for the purpose of visualization and downstream analysis. For

computational reasons, we approximate the scDALI model described above, replacing

the Beta-Binomial observation model (3) with a Gaussian likelihood model for empir-

ical rates ri = ai/di. Both model parameters (equation (1)) and posterior approximations

for allelic rates can be fitted efficiently using sparse variational inference [40, 41].

While the estimate for α provides a measure of pervasive, homogeneous allelic imbal-

ance, we can use the posterior mean of the latent variable u as an estimate for cell-

specific allelic rates. In particular, we define a measure of effect size or statistical dis-

persion for heterogeneous effects, Qdiff10, as the difference between the 90% and 10%

quantiles of the estimated posterior mean for u.

Guidelines for the cell state definition

An appropriate cell-state definition depends on the data as well as the research ques-

tion. If differences in allelic rates between discrete cell types are of primary interest,

using a one-hot encoding of the cell type clusters will maximize detection power for

these effects. However, such a representation will ignore continuous, e.g., intra-cell type

variation and results will depend on whether or not the cell clustering represents a bio-

logically meaningful discretization. In some cases, a continuous representation is a nat-

ural choice, e.g., when studying differentiation or developmental time courses. As a

general-purpose approach, we propose to use a lower-dimensional embedding of the

total counts matrix for the detection of both continuous and discrete effects. Similar to

the standard analysis of single-cell sequencing data, the choice of a particular dimen-

sionality reduction method should be informed by a variety of factors (dataset size,

need for interpretability, specific characteristics of the data modality, etc.).

Guidelines for the control of confounding effects

In many cases, both alleles are thought to be affected similarly by technical confounders

and batch effects, and consequently, these effects will cancel out when quantifying al-

lelic rates. However, all factors that may affect rates rather than allelic counts need to
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be accounted for, e.g., possible individual-specific reference mapping biases in a

population-scale analysis (see section Analysis of allelic imbalance in population-scale

iPSC data). Nevertheless, we advise to adjust for common technical confounders (batch

effects, size factors) when constructing the cell-state representation, which is typically

based on total read counts.

Cell state variational autoencoder

To infer a lower-dimensional embedding from chromatin accessibility profiles of tem-

porally resolved scATAC-seq data, we implement a variational autoencoder model [27]

(VAE). Variations of VAE models have been widely applied to model single-cell tran-

scriptome measurements [28, 42, 43] and more recently been extended to model chro-

matin accessibility data [44]. Our model is most closely related to scVI [28], a VAE

capable of integrating scRNA-seq data across different individuals or batches while ac-

counting for library-size variation. However, our model differs from scVI in two notable

aspects. First, we use a likelihood model tailored to the near-binary nature of single-cell

ATAC-seq data. Second, we integrate sampling times for developmental datasets to es-

timate a continuous pseudo-temporal ordering from few available time points. The

model can be decomposed into three sub-modules (Additional file 1: Fig. S1a): the de-

coder network, representing the generative process for observed accessibility profiles,

the temporal classifier, and the encoder network for inferring the posterior distribution

over latent variables.

Let xi ∈ {0, 1}
m be the binarized accessibility vector for m peaks in cell i and ci be the

batch / individual identity. The probabilistic generative model underlying the decoder

module is as follows:

zi∼N 0; Ið Þ

li j ci∼LogNormal μl cið Þ; σ l2 cið Þ� �

ρi ¼ f ρ zi; cið Þ

xij j ρij; li∼Bernoulli 1− 1−ρij
� �li

� �

Here, z are the latent, low-dimensional cell state representations, and li is a cell-

specific size-factor variable capturing variation in sequencing depth [28]. The prior pa-

rameters μi(ci) and σl
2(ci) are chosen to be maximum-likelihood estimates based on the

total number of reads per cell in each cross. Cell states along with observed batch ids

are mapped to m-dimensional peak activities ρi ∈ [0, 1]
m, ∑jρij, representing the relative

“openness” of each peak in cell i. The mapping is realized by a neural network fρ with

trainable parameters. By providing both fρ and the encoder network (see section below)

with ci, the model is encouraged to disentangle batch-specific effects and cell state rep-

resentations [28, 45] (Additional file 1: Fig. S1c). The full distribution over observed ac-

cessibility profiles is obtained by applying the scaling factor to the peak activities. If li

were the true (discrete) number of reads per cell, 1−ð1−ρijÞli would correspond to the

probability of observing at least one read in peak j. However, to simplify the inference

process, we place a continuous log-normal prior on li.
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For the Drosophila melanogaster data considered in this paper, coarse temporal infor-

mation in the form of embryo collection windows is available (Additional file 1: Fig.

S1d). We integrate these time stamps with the observed ATAC-seq data to inform the

latent-space inference, correct time measurement errors, and learn a continuous order-

ing of cells from few available labels. Assume the time label yi for cell i takes on one of

t ordered values. If t is small, it is difficult to accurately estimate the temporal scale at

which cell state changes take place. Instead, we model the relative order of cells as a

function of the cell state zi, using an ordinal likelihood model. Formally, we assume yi ∈

{1, 2,…, t} and define [46]

p yi j zið Þ ¼ Φ wyi− f y zið Þ
� �

−Φ wyi−1− f y zið Þ
� �

where Φ denotes the cumulative distribution function of the standard normal distri-

bution, w0 = −∞, wt =∞ and w1, …, wT − 1 are trainable parameters such that wi <wi + 1.

The function fy maps cell states to pseudo-temporal values along the real axis and is

chosen to be a simple linear model. Intuitively, p(yi | zi) corresponds to the probability

of sampling a value from the interval ðwyi−1;wyiÞ under a normal distribution with mean

fy(zi) and unit variance. By allowing for Gaussian noise around the latent time fy(zi), we

can account for measurement errors in the labeling process. Note that the wi form a

contiguous segmentation of the real line which enforces ordinal constraints. Guided by

both observed time stamps and cell state proximities, the model infers a high-

resolution pseudo-temporal trajectory fy, allowing us to order cells according to their

developmental progression.

We optimize all parameters jointly using amortized variational inference [27], incen-

tivizing the model to learn a cell state representation that is informed by and supports

the observed time labels (Fig. 2b, Additional file 1: Fig. S1e). For a full description of

the mathematical details of the variational approximation and practical implementation

details, we refer the reader to the Additional file 2: Supplementary Methods.

Generation and sequencing of Drosophila melanogaster F1 embryos

We generated Drosophila melanogaster F1 hybrids by crossing females from a common

maternal virginizer line with males from four different inbred lines from the Drosophila

melanogaster genetic reference panel [20, 47] (DGRP). Embryos were collected in 2 h

windows (2–4 h, 6–8 h, and 10–12 h after egg laying) as previously described [20].

Hyperactive Tn5 transposase was purified by the EMBL Protein Expression and Puri-

fication facility as previously described [48] and stored at − 20 °C in storage buffer (25

mM Tris pH 7.5, 800mM NaCl, 0.1 mM EDTA, 1mM DTT, 50% glycerol) until use.

Uniquely indexed oligonucleotides from Cusanovich et al. [26] were annealed to com-

mon pMENTs oligos 95 °C 5min, cooling to 65 °C (0.1 °C/s), 65 °C 5min, cooling to

4 °C (0.1 °C/s)) to generate indexed transposons that were then loaded onto purified

Tn5 by incubation at 23 °C with constant shaking at 350 rpm for 30min. The loaded

Tn5 transposomes were diluted 1:10 (final 0.02 mg/ml) in nuclease-free water and used

immediately for tagmentation.

Embryo dissociation and nuclear isolation were performed as described previously

[26]. Nuclei were flash frozen in liquid nitrogen and stored at − 80 °C until use. Gener-

ation of sci-ATAC-seq libraries was performed largely as previously described [26],
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with minor modifications. The tagmentation reaction was performed by adding 2 μL of

each of the 96 custom and uniquely indexed Tn5 transposomes and by incubating at

55 °C for 1 h. After reverse-crosslinking, 5 μL of forward and reverse indexed primers

(from Cusanovich et al. [26]), 7.5 μL KAPA HiFi DNA Polymerase ReadyMix (Roche)

and 0.25 μL Bst3.0 (NEB) were added to each well. Tagmented DNA was then PCR

amplified with the following cycling conditions: 72 °C 5min, 98 °C 30 s; 98 °C 10 s,

63 °C 30 s, 19–22 cycles; 72 °C 1min, hold at 10 °C. The optimal number of cycles for

each library was determined beforehand by monitoring amplification on a qPCR ma-

chine for a set of test wells. Libraries were sequenced on an Illumina NextSeq 500 se-

quencer High Capacity 150 PE kit as previously described [26].

Processing of raw sci-ATAC sequencing data

Raw sequencing data was processed based on the pipeline (https://github.com/

shendurelab/fly-atac/) developed by Cusanovich et al. [26]. BCL files were converted to

fastq files using bcl2fastq v.2.16 (Illumina). To correct for sequencing or PCR amplifica-

tion errors, read barcodes were matched against all possible barcodes. In case of an ap-

proximate match (Levenshtein distance < 3 and distance to next best match > 2), the

corresponding barcodes were fixed to their presumptive match; all other barcodes were

classified as ambiguous or unknown. Barcode correction was followed by adapter trim-

ming [49] and read alignment to the dm6 reference genome using bowtie [50] (with op-

tions -X 2000 -3 1). After the removal of PCR duplicates, we classified barcodes

corresponding to genuine cells from the background by fitting a two-component Gaussian

mixture model to the log-transformed read counts per barcode. A cutoff for cell barcodes

was determined by requiring that the posterior probability of belonging to the higher

read-depth mixing component was greater than 0.95 (Additional file 1: Fig. S6b, c).

Chromatin accessibility was quantified in a set of 53,133 peaks of accessibility previ-

ously identified from a time-matched sci-ATAC-seq dataset [26] and lifted to the dm6

reference genome (https://github.com/FlyBase/bulkfile-scripts). We compared the Pear-

son correlation between pseudo-bulk aggregates for each collection window both

within our dataset as well as between our data and the published reference (Additional

file 1: Fig. S7). Next, we restricted our analysis to autosomes in order to remove sex-

specific biases [26]. For each cross and collection window, we determined the 10% and

99% quantiles of the cell-count distribution and only kept cells whose counts were

within those limits, resulting in 35,485 cells in total. Finally, we selected the 25,000 top

most accessible peaks for further analysis. We trained the cell state variational autoen-

coder on the whole dataset for 30 epochs. Additionally, we generated alternative repre-

sentations for data from cross F1-DGRP-712 using LSI [26] (leading components 2 to

20; the first component was excluded due to correlation with total counts per cell) and

cisTopic [31] (50 topics). These embeddings were only used to assess the robustness of

the scDALI workflow to different cell state representations (Additional file 1: Fig. S10).

We used the Scanpy implementation of the Leiden algorithm [29, 30] with a reso-

lution of 1.2 and identified 28 cell clusters in the joint VAE latent space. For each clus-

ter, we computed differentially accessible peaks using logistic regression by predicting

cluster labels from the relative peak activity profiles obtained from the VAE model [30,

51]. We then performed an enrichment analysis for known tissue specific enhancer
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elements (CAD4 database [26] and genes (tissue-specific expression of the nearest gene

based on in situ hybridization data from the Berkeley Drosophila Genome Project

(http://insitu.fruitfly.org/cgi-bin/ex/insitu.pl) and FlyBase gene expression annotations

(http://flybase.org/) using a Fisher’s exact test. Based on these enrichments, each cluster

was assigned to one of seven major lineages (Fig. 2b). Four clusters with a total of 1432

cells could not be annotated unambiguously and were removed from further analysis

(Fig. 1b), resulting in a final set of 35,485 cells (Additional file 1: Fig. S1d).

Processing of allele-specific sci-ATAC counts

We used existing genotyping information [20] for the parental strains to create cross-

specific VCF files, filtering for genetic variants that were heterozygous in the F1 gener-

ation. To eliminate reference mapping biases, we applied the WASP pipeline [13]

(https://github.com/bmvdgeijn/WASP/tree/master/mapping) and created filtered BAM

files, removing between 7 and 8% of mapped reads (Additional file 1: Fig. S8a) from the

original alignment. For each of the 35,485 cells, we then quantified allele-specific acces-

sibility by adapting the original WASP code for count generation to single-cell sequen-

cing (https://github.com/tohein/scai_utils). As features, we chose 1 kb windows

centered on each of the 53,133 peaks to mitigate the inherent sparsity of the data.

Reads aligned within these windows were assigned to either allele, requiring that each

read overlapped at least one heterozygous single-nucleotide variant. If a read over-

lapped multiple variants, one was chosen at random to determine the allele of origin.

As it can be challenging to accurately estimate the allelic base rate for sex chromo-

somes (that is, the overall proportion of female embryos), we excluded these from our

analysis. Finally, windows in each cross were filtered by requiring that the mean allelic

total count (that is, the sum of reads that could be assigned to either allele) across cells

was no smaller than 0.1 (Additional file 1: Fig. S8d). This resulted in between 8040 and

12,861 peaks per cross and a combined set of 39,530 peaks to be tested for allelic im-

balance (Additional file 1: Fig. S8e).

scDALI analysis of Drosophila melanogaster sci-ATAC data

We applied scDALI to all of the 39,530 peaks to test for heterogeneous (scDALI-Het),

homogeneous (scDALI-Hom) and either kind of allelic imbalance (scDALI-Joint). Both

scDALI-Het and scDALI-Joint used the 8-dimensional VAE latent space embedding as

a cell state representation and a linear kernel function. P-values from each test were

Benjamini-Hochberg adjusted to control the false discovery rate [52] (FDR). For each of

the 415 sites with evidence for cell state-specific allelic imbalance (scDALI-Het P < 0.1

FDR), we estimated allelic rates using scDALI. Depending on the number of covered

cells for each peak, all models were trained with a maximum of 1000 inducing points.

To compute transcription factor activity scores, deviations in accessibility were calcu-

lated with chromVAR v1.10.0 [32] for a set of 65 curated Drosophila motifs from [4].

The Z-score corrected deviations were used to calculate the Pearson correlation with

the estimated allelic rates.

To identify variable lineages for each of the 415 peaks with heterogeneous imbalance,

we used scDALI-Het with lineage-specific cell state kernels. Specifically, for each

lineage we used a block diagonal kernel matrix, where entry i, j was set to 1 if both cells
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i and j were associated with that lineage and 0 otherwise. This allowed us to test for

differences in the mean allelic rate for a particular lineage compared to the mean of all

other cells. The combined P-values for all lineages were adjusted for multiple testing

using the Benjamini-Hochberg correction [52].

Lastly, we employed scDALI-Het to test for changes in allelic imbalance across devel-

opment in the muscle lineage using the temporal ordering inferred by the VAE model.

To capture non-linear effects, we applied a polynomial basis transform. Specifically, we

constructed a matrix ETime with entries (ETime)ij = ti
j − 1, j ∈ {1, 2, 3}, where ti ∈ [0, 1] de-

notes the estimated time for cell i in the muscle lineage. We then applied scDALI as-

suming a linear cell-state kernel K = ETimeETime
T. P-values were adjusted using the

Benjamini-Hochberg correction [52].

Evaluation of scDALI on simulated data

We simulated allele-specific counts from the scDALI model (Eq. (1–3)) using observed

allelic total counts and inferred cell state representations (VAE embedding and Leiden

clusters derived from the VAE embedding) from real sci-ATAC-seq data of developing

Drosophila melanogaster embryos (cross F1-DGRP-712). All simulations kernels were

linear, that is KVAE = EVAEEVAE
T and KCluster = EClusterECluster

T where EVAE and ECluster
denote the 8-dimensional VAE embedding and one-hot encoding of 24 Leiden clusters,

respectively.

We assessed the degree of extra-binomial variation present in the data, by fitting a

basic Beta-Binomial model to the observed allele-specific counts (10,220 cells and

12,861 peaks) using no additional cell state information (Additional file 1: Fig. S1a).

Based on the histogram of estimated values, we ran all simulations at two different

levels of overdispersion θ ∈ {2, 5}.

We first assessed the calibration of scDALI when testing for heterogeneous effects

(scDALI-Het). As scDALI is intended to leverage multi-dimensional cell-state represen-

tations, we analyzed the effect of testing an increasing number of cell-state dimensions

for different numbers of cells. We considered two baseline candidates: a one-way

ANOVA test, comparing allelic rates between cell clusters as well as a linear model in-

corporating cell-state covariates as fixed effects (likelihood-ratio test, OLS-LRT). Both

alternatives were fitted to empirical allelic rates. All three tests used the observed Lei-

den clustering as a cell-state representation. We simulated data from a model assuming

no heterogeneous imbalance, varying the number of clusters (cell-state dimensions)

while keeping the number of simulated cells constant. We considered four different

sample sizes: 250, 500, 1000, and 5000 cells per peak with non-zero allelic measure-

ments. All experiments were performed for 1000 peaks. We computed the average in-

flation factor log10(median P)/log10(0.5) (Additional file 1: Fig. S1d) across 25 different

random initializations, finding the OLS-LRT to produce inflated p-values for a large

number of cell-state dimensions relative to the sample size. This is consistent with re-

sults on multiple-degrees-of-freedom tests reported previously [21]. We therefore ex-

cluded the OLS-LRT from further simulation experiments.

We verified the uniform distribution of p-values for all three scDALI models and the

one-way ANOVA when simulating data from their respective null models (1000 peaks

and 5000 cells randomly sampled from the full data), considering different levels of
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pervasive (cell state independent) effects (α ∼N(0, ν2), where ν2 ∈ {0, 0.01, 0.05, 0.1};

Additional file 1: Fig. S1b, c). Here, all models used the 8-dimensional VAE embedding

as a cell-state representation. Additionally, we show that a modified version of scDALI-

Het using a Binomial (rather than Beta-Binomial) likelihood model will lead to false

positive results at relevant levels of overdispersion.

We compared power to detect homogeneous vs. heterogeneous effects for scDALI-

Het, scDALI-Hom and scDALI-Joint (Fig. 1c, Additional file 1: Fig. S3a). Let ρ ∈ {0, 0.2,

0.4, 0.6, 0.8, 1} denote the relative extent of heterogeneous imbalance and ν2 ∈ { 0.01,

0.05, 0.1} the total variance explained by allele-specific effects (both heterogeneous and

homogeneous). We simulated data from the scDALI model (Eq. (1–3)), where α ∼N(0,

ρ · ν2) and σ2 = (1 − ρ) · ν2, using observed total counts and cell-state representations for

5000 cells and 1000 ATAC peaks randomly chosen from the observed data. All three

models as well as the simulation procedure were run using the 8-dimensional VAE em-

bedding as a cell-state representation. Statistical power was calculated as the fraction of

simulated regions discovered at an α-level of 0.05 and averaged across 25 random

seeds.

Lastly, we assessed power to detect discrete vs. continuous heterogeneous effects,

using a weighted combination of the VAE and Leiden cluster kernels

K ¼ ηKCluster þ 1−ηð ÞKVAE

In this scenario we assumed no additional homogeneous effects (α = 0) and consid-

ered a range of weights η and kernel scaling parameters. (η ∈ {0, 0.2, 0.4, 0.6, 0.8, 1} and

σ2 ∈ {0.1, 0.05, 0.1}, Fig. 1d, Additional file 1: Fig. S3b). Compared were scDALI-Het

using the VAE representation vs. a one-way ANOVA model based on the discrete Lei-

den clusters. As above, we simulated data for 5000 cells and 1000 peaks and averaged

power estimates across 25 random initializations.

Analysis of allelic imbalance in population-scale iPSC data

Total gene expression counts for all genes and allele-specific quantifications for 4470

previously identified SNP-gene pairs (4422 eQTL lead variants) were obtained as de-

scribed in the primary publication [5]. Briefly, reads were initially mapped to reference

and alternative alleles for each heterozygous SNP in every cell and subsequently

assigned relative to the genotype of each chromosome using known phasing informa-

tion. Allele-specific read counts were aggregated at the gene level, by summing up the

counts for each SNPs contained in exonic regions. Finally, for each eQTL (gene-SNP

pair), gene-level allele-specific counts were interpreted relative to the eQTL variant to

obtain a consistent definition of ASE across cells from different donors that were het-

erozygous for that variant. SNP-gene pairs were filtered by requiring at least 50 cells

with nonzero allele-specific counts, leading to 3966 pairs to be tested using scDALI.

We performed principal component analysis (PCA) of total gene expression counts

from 34,254 cells and used the leading k principal components (PCs) and a linear ker-

nel function to define cell state kernels. We chose k = 1 to focus on time-specific allelic

imbalance (see also Additional file 1: Fig. S1) while k = 10 was used to model more gen-

eral cell-state effects.

To assess the effect of donor-specific effects on heterogeneous allele-specific expres-

sion, we permuted the leading 10 PC coordinates among cells from the same donor.
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We then compared two implementations of scDALI-Het that either did or did not ac-

count for the donor background using a one-hot-encoded representation of the donor

identities for each cell as an additional covariate matrix. Additionally, we compared the

difference in the number of discoveries for each model when using cell-state kernels

based on 1, 2, 3, 4, 5, 10, 15, and 20 (unpermuted) PCs.
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