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Abstract

The hippocampus is essential for the formation and retrieval of memories and is a crucial neural
structure sub-serving complex cognition. Adult hippocampal neurogenesis, the birth, migration
and integration of new neurons, is thought to contribute to hippocampal circuit plasticity to
augment function. We evaluated hippocampal volume in relation to brain volume in 375 mammal
species and examined 71 mammal species for the presence of adult hippocampal neurogenesis
using immunohistochemistry for doublecortin, an endogenous marker of immature neurons that
can be used as a proxy marker for the presence of adult neurogenesis. We identified that the
hippocampus in cetaceans (whales, dolphins and porpoises) is both absolutely and relatively
small for their overall brain size, and found that the mammalian hippocampus scaled as an
exponential function in relation to brain volume. In contrast, the amygdala was found to scale
as a linear function of brain volume, but again, the relative size of the amygdala in cetaceans
was small. The cetacean hippocampus lacks staining for doublecortin in the dentate gyrus and
thus shows no clear signs of adult hippocampal neurogenesis. This lack of evidence of adult
hippocampal neurogenesis, along with the small hippocampus, questions current assumptions
regarding cognitive abilities associated with hippocampal function in the cetaceans. These
anatomical features of the cetacean hippocampus may be related to the lack of postnatal sleep,
causing a postnatal cessation of hippocampal neurogenesis.
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Introduction

The hippocampus and associated cortices are neural structures thought to be fundamentally
involved in the learning and retention of facts, events and space in time (Alme et al. 2010;
Buzsaki and Moser 2013). In mammals, the hippocampus is reciprocally connected, through
the entorhinal cortex, to virtually all areas of the neocortex. Once neural information reaches
the entorhinal cortex, it is, for the most part, processed through the hippocampal circuitry
and the neural information processed by the hippocampus then flows back to the neocortex,
where it can be used in cognitive processes or consolidated as memories (Andersen et al.
2007). As the hippocampus is extensively interconnected with the neocortex, an altered
anatomy of the hippocampus may lead to changes in neural processing with the neocortex,
and hence alter, or even impair, cognitive functions (Sweatt 2004).

Within the hippocampal circuitry, the dentate gyrus has been proposed to function as a
pattern separator, a neural process that allows the distinct representation of overlapping or
similar inputs within this circuitry (Treves et al. 2008; Sahay et al. 2011). In addition to
this specialized function, the dentate gyrus is one of only two areas in the mammalian
brain where adult neurogenesis occurs, that is, the birth, migration, maturation and
integration of new neurons into the existing circuitry throughout much of the life span
(Kempermann 2012). Neurogenesis in the mammalian dentate gyrus is thought to enhance
cognitive adaptability, as changes in active movement, novelty and complexity within an
environment appear to up- or down-regulate the rate of adult neurogenesis (Kempermann
2012). Behavioural studies in laboratory rodents have demonstrated that ablation of adult
neurogenesis in the dentate gyrus leads to the impairment of the ability of an organism to
undertake pattern separation (Sahay et al. 2011; Clelland et al. 2009; Tronel et al. 2010).

In addition, increasing the rate of adult hippocampal neurogenesis is sufficient to improve
pattern separation (Sahay et al. 2011). These studies indicate that the newly generated

and integrated granule cells in the dentate gyrus are critical for the process of pattern
separation and hence learning and memory formation. This concept has been expanded
into the memory resolution hypothesis, which indicates that the newly born, broadly tuned,
young neurons interact with the specifically tuned mature neurons to increase the fidelity
of spatial and contextual discrimination (Aimone et al. 2011). Thus, the structure of the
hippocampal formation, along with the presence of adult hippocampal neurogenesis in the
dentate gyrus, underscores the concept that the hippocampus is one of the key regions of the
brain involved in complex cognitive processing (Andersen et al. 2007) that leads to complex
behavioural outcomes.

Cetaceans (whales, dolphins and porpoises) are widely believed to express behaviours reliant
upon complex cognitive activity (Marino et al. 2008). Certain smaller cetaceans, of the
suborder Odontoceti, are known to have brains that, relative to body mass, are the second
largest to humans (Manger 2006). This observation, coupled with specific interpretations

of cetacean behaviour (Manger 2013), provides the bases for the concept that cetaceans

are cognitively complex (Marino et al. 2008). Thus, cetacean brains are thought to be able

to generate behaviours that are beyond the cognitive capabilities present in the brains of
most other mammals; however, it is clear that the cetacean brain has a morphology that

is distinctly different from that of all other mammals (Glezer et al. 1988; Manger 2006;
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Manger et al. 2004, 2012) and thus the concept that cetaceans are cognitively complex has
been questioned (Manger 2006, 2013) and vigorously defended (Marino et al. 2008). One
specific aspect of the morphology of the cetacean brain that led to the questioning of the
level of cognitive complexity ascribed to cetaceans was the apparently small size and loosely
organized appearance of the hippocampus—a well-known feature of cetacean neuroanatomy
(Filimonoff 1965; Pilleri and Gihr 1970; Jacobs et al. 1971, 1979; Morgane et al. 1980;
Schwerdtfeger et al. 1984; Manger 2006). With the discovery of specific endogenous
markers to visualize immature neurons and thus adult hippocampal neurogenesis (using
antibodies directed against doublecortin, DCX; Kempermann 2012), we decided to look for
evidence of adult hippocampal neurogenesis and evaluate the absolute and relative size of
the cetacean hippocampus in comparison to a broad range of other mammalian species.
Hippocampal size and the presence or absence of adult hippocampal neurogenesis in the
cetaceans would provide substantive information to the debate surrounding the purported
cognitive complexity of species belonging to this mammalian order (Manger 2006, 2013;
Marino et al. 2008).

Materials and methods

Volumetric analysis of the hippocampus and amygdala Data for total brain (1= 375),
hippocampal (/7= 375) and amygdala (n = 373) volumes were taken from the literature
(Pirlot and Nelson 1978; Stephan et al. 1981; Baron et al. 1996; Reep et al. 2007;

Montie et al. 2008) or calculated from MRI scans of the brain of species used in the

current study (Manger et al. 2010; Patzke et al. 2013a) (Table 1). Several linear and
non-linear regression models were fit to the log-transformed data (of all species apart

from the cetaceans, elephants, hippopotami and manatee, which were excluded from the
regression calculations to specifically test whether the data from these species fit, or did

not fit, the models) and then ranked using goodness of fit criteria (/2; AICC, sum of
squares) with the statistical software CurveExpert Professional version 1.6.5 (Hyams 2010).
Phylogenetic independent contrasts were also calculated from the data to examine scaling
relationships between hippocampal volume and brain volume while controlling for the
effects of phylogenetic relatedness (Felsenstein 1985). Standardized independent contrasts
were calculated using the PDAP:PDTREE module (Garland and lves 2000) of Mesquite
software version 1.12 (Maddison and Maddison 2005) from data based on the mammalian
super-tree (Bininda-Emonds et al. 2007, 2008). Branch lengths were transformed according
to the method of Pagel (1992), which assigns all branch lengths to 1 with the constraint
that tips are contemporaneous. Alternative methods of branch length transformation did not
significantly alter the results and independent contrasts were uncorrelated with their standard
deviations, indicating that branch lengths met statistical assumptions (Garland et al. 1992).
While independent contrast analysis is commonly used when exploring cross-taxonomic
relationships, this technique is known to perform poorly when the underlying relationship
between characters is non-linear. In accordance with suggestions pertaining to non-linearity
(Garland et al. 1992; Quader et al. 2004), we log transformed our data and performed
independent contrast analysis to evaluate the scaling of hippocampal volume with brain
volume if a linear model were valid.
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Immunohistochemistry

The brains of all animals used for immunohistochemistry were, following euthanasia,
perfusion fixed with 4 % paraformaldehyde in 0.1 M phosphate buffer and then stored

in an antifreeze solution until processed for immunohistochemistry (Manger et al.

2009). To investigate the presence of adult hippocampal neurogenesis, we used standard
immunohistochemical procedures with an antibody directed against doublecortin (goat-anti
DCX C-18 primary antibody, Santa Cruz Biotechnology) (Patzke et al. 2013a, b; Chawana et
al. 2013). Using DCX immunohistochemistry, we examined the hippocampus and adjacent
piriform cortex of 71 mammalian species (Table 2) from 13 mammalian orders covering

a range of brain sizes (from less than 1 g through to 5 kg). This study was provided

with ethical clearance by the University of the Witwatersrand Animal Ethics Committee,
which uses guidelines similar to those of the NIH regarding the use of animals in scientific
research. The animals used in the current study were all collected under appropriate
governmental permissions.

From each animal used in the current study, blocks of hippocampal tissue were dissected

in a plane orthogonal to the ventricular surface of the hippocampus at approximately the
middle portion of the hippocampus. Each tissue block was cryosectioned into 50-um-thick
sections on a freezing microtome. Consecutive sections were stained for Nissl substance and
reacted immunohistochemically for DCX, with a minimum of 12 sections per stain from
hippocampi from two individuals of each species. The sections used for Nissl staining were
mounted on 0.5 % gelatine-coated slides, dried overnight, cleared in a 1:1 mixture of 100 %
ethanol and 100 % chloroform and stained with 1 % cresyl violet.

The sections used for free-floating immunohistochemical staining were treated for 30 min
in an endogenous peroxidise inhibitor (49.2 % methanol:49.2 % 0.1 M PB:1.6 % of 30

% hydrogen peroxide) followed by three 10 min rinses in 0.1 M PB. To block unspecific
binding sites, the sections were then pre-incubated for 2 h, at room temperature, in blocking
buffer (3 % normal rabbit serum, 2 % bovine serum albumin, BSA and 0.25 % Triton X-100
in 0.1 M PB). Thereafter, sections were incubated in the primary antibody solution, made up
of the appropriate dilution of the primary antibody in blocking buffer for 48 h at 4 °C under
gentle agitation. In the current study we used immunolabelling of DCX, an endogenous
marker of immature neurons, to ascertain the presence or absence of adult hippocampal
neurogenesis. While the presence of DCX in neurons outside of the hippocampus may not
relate to adult neurogenesis in these regions, such as the piriform cortex (Klempin et al.
2011), it has been established that DCX immunolabelling of granule cells of the dentate
gyrus is a good proxy for the presence of adult hippocampal neurogenesis (Rao and Shetty
2004; Couillard-Despres et al. 2005). The presence of DCX also reflects cumulative adult
hippocampal neurogenesis over a period of 2 weeks to 6 months, although this period is
species specific (Rao and Shetty 2004; Kohler et al. 2011). In this sense, lack of DCX
staining should be a reliable indicator of the absence of adult hippocampal neurogenesis.
DCX immunolabelling is therefore particularly useful when studying a wide variety of
field-caught mammalian species, as no specific intervention is required to reveal adult
hippocampal neurogenesis.
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To visualize DCX, we used the goat-anti DCX C-18 primary antibody from Santa Cruz
(catalogue number sc-8066) at a dilution of 1:300. This antibody is an affinity-purified goat
polyclonal antibody raised against a peptide mapping at the C-terminus of doublecortin

of human origin. The amino acid sequences of the C-terminus of the doublecortin protein
are highly conserved across mammalian species based on the Protein database provided

by the National Center for Biotechnology Information. The primary antibody incubation
was followed by three 10 min rinses in 0.1 M PB and the sections were then incubated

in a secondary antibody solution (1:1,000 dilution of biotinylated anti-goat 1gG, BA 5000,
Vector Labs) for 2 h at room temperature. This was followed by three 10 min rinses in

0.1 M PB, after which the sections were incubated for 1 h in an avidin-biotin solution
(1:125; Vector Labs), followed by three 10 min rinses in 0.1 M PB. The sections were

then placed in a solution containing 0.05 % 3,3’-diaminobenzidine (DAB) in 0.1 M

PB for 5 min, followed by the addition of 3.3 pl of 30 % hydrogen peroxide per 1

ml of DAB solution. Chromatic precipitation was visually monitored under a low-power
stereomicroscope. Staining continued until such time as the background stain was at a level
that would allow for accurate architectonic matching to the Nissl sections without obscuring
the immunoreactive structures. Development was arrested by placing sections in 0.1 M PB
for 10 min, followed by two more rinses in this solution. Sections were then mounted

on 0.5 % gelatine-coated glass slides, dried overnight, dehydrated in a graded series of
alcohols, cleared in xylene and covers-lipped with Depex. To ensure non-specific staining of
the immunohistochemical protocol, we ran tests on sections where we omitted the primary
antibody, and sections where we omitted the secondary antibody. In both cases, no staining
was observed. In 11 species (African elephant, four-toed sengi, Hammer-headed fruit bat,
ring-tailed lemur, Beecroft’s flying squirrel, Arabian spiny mouse, greater kudu, river
hippopotamus, West Indian manatee, harbour porpoise and minke whale), an absorption
control in sections encompassing the dentate gyrus and piriform cortex was also run using
the blocking peptide sc-8066 P (Santa Cruz) as recommended by the supplier. In all cases,
no staining was evident. Digital photomicrographs were captured using a Zeiss Axioskop
and Axiovision software. No pixelation adjustments or manipulation of the captured images
were undertaken, except for the adjustment of contrast, brightness and levels using Adobe
Photoshop 7.

Hippocampal volume increases as an exponential function across mammalian species

Previous studies investigating the relationship of how the hippocampus scales relative to
brain size in adult mammals have used standard linear regression models (Finlay and
Darlington 1995; Reep et al. 2007). In the current study, we analysed a larger database

(375 species belonging to 17 orders; Table 1) and found that the relationship between brain
and hippocampal volume in mature mammals was best described by an exponential function
that approximated a growth curve (an exponential decay increasing form model) (Fig. 1).
The exponential function depicted (Fig. 1) is based on values for chiropterans, insectivores,
primates, artiodactyls, carnivores and other species for which data were available apart from
the cetaceans, elephants, hippopotami and manatee (Table 1). On the basis of these tests, an
exponential curve [yy= ax (b- exp(-c x x)); where a=9.26; b=10.72 and ¢=0.097] was
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fit across the groups as this model performed the best of all models tested(/2 = 0.97;DOF =
359; AICC =-894.55; sum of squares = 30.25; nruns = 182, P=50.71 %). Using Akaike’s
information criteria, the exponential model was shown to have a 100 % likelihood of being
a better fit than the linear model (Delta = 122.50; = 2.5 x 10727). From this exponential
function, we calculated 95 % confidence and prediction intervals, which demonstrated that
the vast majority of the mammalian species fell within these statistically derived boundaries
of the relationship of hippocampus to brain volume. Onto the plot, we superimposed data
on hippocampal volume from African elephant, river hippopotamus, West Indian manatee
and four species of cetaceans (Fig. 1; Table 1). The hippocampal volumes for the African
elephant, hippopotamus and manatee all lie within the 95 % prediction intervals and close to
or within the 95 % confidence intervals.

In Fig. 3a, we provide a graphical representation of the two best-performing regression
models, i.e. the non-linear exponential model and the least squares linear model. The
exponential model ranked best in terms of goodness of fit criteria displaying the following
regression statistics (/2 = 0.97; AICC =—894.55; sum of squares = 30.25; DOF = 359) in
comparison to that of the weaker-performing linear model (/2 = 0.98; AICC =-772.05; sum
of squares = 42.66; DOF = 360). An Ftest comparing the sum of squares of the exponential
model with that of the linear model indicated a 1.18 9 10726 % (£ = 147.39) probability
that the exponential model was a better fit to the data than the linear model. Furthermore,
both visual and statistical comparison of the accompanying residuals confirmed that a linear
model was not suitable for describing these data (Fig. 4). The residuals as based on the
linear model are not randomly scattered about zero as is confirmed by a runs test, while both
visual and statistical comparison of the non-linear model confirms its appropriateness for
this data (nruns = 182, P=50.71 %).

While independent contrast analysis is commonly used when exploring cross-taxonomic
relationships, this technique is known to perform poorly when the underlying relationship
between characters is non-linear. In accordance with suggestions pertaining to non-linearity
(Garland et al. 1992; Quader et al. 2004), we log transformed our data and performed
independent contrast analysis to evaluate the scaling of hippocampal volume with brain
volume if a linear model were valid. In Fig. 5, we present a plot of the phylogenetic

correct least square regression and associated confidence intervals and prediction intervals,
mapped onto the original tip data space (Garland and Ives 2000). The resultant coefficient of
determination for this model is /2 = 0.85/0.83 with a slope of 0.77/0.75. This plot indicates
that even after phylogenetic correction, the cetaceans lie well below the confidence and
prediction intervals of the mammalian line and are characterized by a markedly different
scaling of the hippocampus relative to brain volume compared to all other mammals. In
addition, the non-line-arity of the mammalian data is also evident in these plots.

Thus, in contrast to all other mammalian species examined to date, the data for the four
species of cetaceans examined (harbour porpoise, bottlenose dolphin, Atlantic white-sided
dolphin and minke whale) fall well below the 95 % prediction intervals (Figs. 1, 2, 3, 4, 5).
Our data indicate that the cetaceans have hippocampal volumes that range between 8 and

20 % of the volume that would be predicted based on their brain size. Across all mammals
analysed, the cetaceans were the only species that were different with regard to hippocampal
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size, and even their closest relative, the semi-aquatic river hippopotamus and the West Indian
manatee, a species within the only other obligatorily aquatic order of mammals, did not
show a trend towards a reduction of hippocampal volume.

Amygdala volume increases as a linear function across mammalian species

Previous studies investigating the relationship of how the amygdala scales relative to overall
brain size in adult mammals used standard linear regression models (Finlay and Darlington
1995; Reep et al. 2007). In the current study, we analysed a larger database (373 species
belonging to 17 orders) and found that the relationship between brain and amygdala
volume in mature mammals was best described by a linear function (Fig. 2) as previously
demonstrated (Finlay and Darlington 1995; Reep et al. 2007). On the basis of the tests
undertaken, a linear function was fit across the groups as this model performed the best of
all models tested (2 = 0.98; DOF = 360; AICC = —1,120.68; nruns = 190, P= 79.63 %).
From this linear function, we calculated 95 % confidence and prediction intervals, which
demonstrated that the vast majority of the mammalian species fell within these statistically
derived boundaries of the relationship of amygdala to brain volume. Onto the plot, we
superimposed data on amygdala volume from African elephant, river hippopotamus, West
Indian manatee and three species of cetaceans (Fig. 2). The amygdala volumes for the
African elephant, hippopotamus and manatee all lie within the 95 % prediction intervals and
close to or within the 95 % confidence intervals, but those of the three cetacean species fell
below the 95 % prediction intervals.

In Fig. 3b, we provide a graphical representation of the two best-performing regression
models, i.e. the least squares linear model and the non-linear exponential model. The linear
model ranked best in terms of goodness of fit criteria displaying the following regression
statistics (72 = 0.98; AICC = —1,106.35; sum of squares = 16.94; DOF = 360) in comparison
to that of the slightly weaker performing exponential model (/2 = 0.98; AICC = -1,106.28:
sum of squares = 16.85; DOF = 359). Using Akaike’s information criteria, the linear model
was shown to have a 51 % likelihood of being a better fit than the exponential model
(Delta = 0.07; P=0.49). An Ftest comparing the sum of squares of the exponential model
with that of the linear model indicated a 16.44 % (F= 1.94) probability that the linear
model was a better fit to the data. Furthermore, both visual and statistical comparison of
the accompanying residuals confirmed that a linear model was more suitable for describing
these data (Fig. 4).

Thus, in contrast to all other mammalian species examined, the data for the three species

of cetaceans examined (harbour porpoise, bottlenose dolphin and minke whale) fall well
below the 95 % prediction intervals (Figs. 2, 5). Our data indicate that the cetaceans have
amygdala volumes that range between 37 and 42 % that would be predicted based on their
brain size. Across all mammals analysed, the cetaceans were the only species that were
different with regard to amygdala size, and even their closest relative, the semi-aquatic river
hippopotamus, did not show a trend towards reduction in amygdala size; however, the West
Indian manatee, a species within the only other obligatorily aquatic order of mammals, did
show a trend towards a reduction of amygdala volume. For both cetaceans and the manatee,
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these reductions in relative amygdala volumes are likely related to the reduction/absence of
the olfactory system in these species.

Adult hippocampal neurogenesis is apparent in all mammals except cetaceans

Our investigation of adult hippocampal neurogenesis across 71 species of mammals using
immunohistochemistry to visualize DCX (Kempermann 2012) revealed robust staining

of immature neurons across all species examined, except for the two cetacean species

(Figs. 6, 7, 8). In addition, a survey of the literature (Table 2) indicates that all 93
mammalian species (from 16 different mammalian orders) studied to date, except the two
cetaceans studied herein, possess robust adult hippocampal neurogenesis. Internal controls
for antibody staining revealed positive staining of immature neurons in the piriform cortex
of the minke whale and in the remnants of piriform cortex in the harbour porpoise (we

use the term remnants as the odontocete cetaceans lack an olfactory bulb, and thus the size
of the piriform/olfactory cortex is greatly reduced) (Fig. 8). The piriform cortex is known

to contain neurons immunoreactive to DCX in mammals (Klempin et al. 2011). Thus,

we can conclude that there are no specific problems with the cetacean tissue used or the
immunohistochemical methodology. Moreover, we obtained robust staining in the only other
obligatorily aquatic marine mammal investigated, the West Indian manatee, and in several
species of semi-aquatic mammals, including the river hippopotamus (Fig. 7), seals from both
phocid and otariid lineages (Fig. 7), Asian small-clawed otters and giant otter shrews (Patzke
et al. 2013b). Given the success of DCX immunohistochemistry acting as a proxy marker for
adult hippocampal neurogenesis across such a diverse array of species, we feel confident in
reporting its apparent absence in the cetaceans.

In addition to the apparent lack of adult hippocampal neurogenesis and the small relative
and absolute size of the cetacean hippocampus, the architecture of the cetacean hippocampus
contrasts with that seen in all other mammals examined. In most mammals, the granule
layer of the dentate gyrus is observed to be a tightly packed layer of cells within a
distinctly organized three-layered cortical region (Fig. 7); however, in the minke whale,

a mysticete cetacean, while evident, the packing of the neurons in the granule cell layer of
the dentate gyrus is not as dense as that seen in other mammals. In the harbour porpoise,
an odontocete cetacean, the granule cell layer is so loosely organized as to be difficult to
discern in normal histological preparations (Fig. 8). Thus, in contrast to all other mammals,
the cetaceans have three distinct aspects of hippocampal anatomy that indicate they are
neuroanatomically different to all other mammals—a small hippocampus, an apparent lack
of adult hippocampal neurogenesis and a loosely organized dentate gyrus.

Discussion

The present study raises several points of interest relating to the evolution and function

of the hippocampus in mammals, adult hippocampal neurogenesis, and the brains and
behaviour of cetaceans. Our results demonstrate that, unlike other regions of the brain such
as the amygdala, the hippocampus does not scale in a linear fashion. Rather, the scaling of
the hippocampus in relation to the brain is exponential, approximating a growth curve. Is it
possible that this different scaling relates to the presence of adult hippocampal neurogenesis
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in most mammalian species? Our survey of adult neurogenesis across many mammalian
species (Table 2) indicates that adult hippocampal neurogenesis is a trait common to

the vast majority of mammals, with the only species appearing to lack this neural trait
being the cetaceans. Our observations of the cetacean hippocampus demonstrate that it
is both absolutely and relatively small, has a loosely organized architecture, and seems
to lacks adult hippocampal neurogenesis, indicating that any cognitive processes that are
hippocampal/neurogenesis dependent are likely to be wanting in the cetaceans.

Hippocampal scaling and adult hippocampal neurogenesis

The current study, using a larger database than previous studies (Finlay and Darlington
1995; Reep et al. 2007), including large-brained mammals such as elephants, indicates that
the manner in which the volume of the hippocampus scales with the volume of the brain

is best described as an exponential function, rather than as a linear function. To date, this

is the only demonstration that a component of the brain scales in a non-linear manner

with overall brain volume and indeed our own calculations of the scaling of another limbic
structure, the amygdala that lies in close apposition to the hippocampus, provide support
for this distinction of the hippocampus. Interestingly, the only species that do not adhere to
this non-linear scaling of the hippocampus are the cetaceans, which have small hippocampi
and seem to lack adult hippocampal neurogenesis. Thus, it would appear that as adult
hippocampal neurogenesis is a feature common to most mammals, this persistent growth
phenomenon may have some bearing on the manner in which the hippocampus scales with
the brain across mammalian species; however, to postulate a direct link between the two
and what a potential mechanism might be is difficult at this stage. The hippocampal volume
scaling relationship is likely to be affected not only by the addition of new neurons in the
dentate gyrus, but also by their constituent parts (dendrites and mossy fibres), differing rates
of neurogenesis across the life span, rates of apoptosis, brain size of each species and the
associated neuronal density, and epigenetic and phylogenetic factors. Thus, at this stage we
cannot propose any direct link between neurogenesis and hippocampal scaling, although our
results indicate that this would be a potentially interesting avenue for future study.

As adult hippocampal neurogenesis appears to be a common mammalian trait (apart from
cetaceans), this has important implications for the understanding of this neural phenomenon.
While many factors influence the rate of proliferation and survival of newly born neurons in
the adult hippocampus (e.g. Kempermann 2012), the fact that the vast majority of mammals
are likely to have this trait indicates that adult hippocampal neurogenesis probably subserves
an invariant function across mammalian species. Our broad survey of species examined
questions concepts related to the environment and adult hippocampal neurogenesis, as the
species investigated inhabit most of the environments in which mammals are found, from
rainforests to deserts and terrestrial to aquatic. As mentioned earlier, newly formed neurons
in the hippocampus appear to play a role in pattern separation, thus enhancing the circuits
involved in learning and memory and has led to the memory resolution hypothesis for adult
hippocampal neurogenesis (Sahay et al. 2011; Aimone et al. 2011). All mammalian species
are likely to benefit from this circuitry enhancement, or increased memory resolution, no
matter what environment they inhabit.
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Why are cetaceans different from all other mammals?

Our findings raise the question of how cetaceans came to have small hippocampi that seem
to lack adult neurogenesis and are loosely organized. In terms of general neuroanatomical
structure (Manger 2006; Manger et al. 2004, 2012) and sleep physiology (Lyamin et al.
2008), cetaceans are different from all other mammals and the current study adds further
support to this interpretation of cetacean neurobiology. Adult cetaceans lack, or have
minimal, REM sleep (Lyamin et al. 2008) and appear to lack a clear sleep state for the

first month of life, likely having less than 30 s of sleep during the first postnatal month
(Lyamin et al. 2005), both aspects appearing to be features of their evolutionary adaptation
to the thermally challenging aquatic environment. Studies of the effect of sleep deprivation
on adult hippocampal neurogenesis in laboratory mammals (Meerlo et al. 2009) have
shown that prolonged REM deprivation decreases cell proliferation rates and that prolonged
deprivation of both NREM and REM sleep inhibits cell maturation and integration. This can
occur independently of the release of adrenal stress hormones (Meerlo et al. 2009), as seen
in mother cetaceans prior to and after birth (Lyamin et al. 2005). The lack of postnatal sleep
and the continued lack of REM sleep throughout life may lead to a cessation of hippocampal
neurogenesis immediately after birth in cetaceans, despite this not appearing to be a stress-
related reduction in hippocampal neurogenesis. This cessation, sustained by a lack of REM
sleep in older cetaceans, may prevent any postnatal enlargement of the hippocampus as
seen in other mammals (Bayer 1980; Thompson 2012), leading to the observed small size
of this structure in adult cetaceans. Moreover, if hippocampal development were arrested
immediately postnatally in cetaceans as proposed, the loosely organized cetacean dentate
gyrus is likely to be one result of this premature cessation of hippocampal development. It
has been postulated that the risk of hypothermia in neonatal cetaceans underlies the lack of
postnatal sleep (Lyamin et al. 2005, 2008), thus the current observations lend support to the
thermogenesis hypothesis of cetacean brain evolution (Manger 2006).

What do these findings mean regarding cetacean cognitive capacities?

That cetaceans have small, loosely organized hippocampi that apparently lack adult
hippocampal neurogenesis poses a serious problem for the hypothesis that these animals
are, in comparison to most other mammals except great apes, highly cognitively complex
(Marino et al. 2008). Here, we provide three examples of cognitive studies in which

the hippocampus plays a central role that are instructive in understanding the results of
behavioural experiments on cetaceans. In an object permanence task (invisible displacement/
transposition task), cetaceans have been shown to possibly only reach Piaget stage 4 (visible
displacement), whereas other mammals and birds tested readily reach stage 5 and apes
achieve stage 6 (Mitchell and Hoban 2010; Jaakkola et al. 2010). Object permanence tasks
are strongly hippocampus dependent, as they rely on spatial memory. Thus, the failure of
cetaceans to clearly achieve higher than stage 4 on these tasks is in agreement with the

lack of hippocampal development and adult neurogenesis demonstrated here. Additionally,
as Piaget stage 6 of object permanence is thought to be a necessary requirement for
mirror-self recognition (Mitchell and Hoban 2010), the lack of achievement of this level

of object permanence by cetaceans questions the results of a previous study suggesting

that dolphins have this cognitive ability (Reiss and Marino 2001). As a second example,

the much lauded language comprehension studies of dolphins (Herman et al. 1984) can be
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appropriately contextualized. It should be noted that for a dolphin to begin to participate in
the trials that probe semantic understanding requires at least 4 years of training (Herman

et al. 1984). In a comparable experimental situation, sea lions were shown to reach similar
levels of performance to dolphins on these tasks in 2 years or less (Schusterman and
Kreiger 1984). In the current study, we have observed that pinnipeds have normal-sized
hippocampi that possess adult hippocampal neurogenesis. Thus, success in these types of
cognitive experiments that requires the formation and recall of hippocampus-dependent
explicit memories and cognitive flexibility was clearly achieved more rapidly in sea lions
than dolphins. As a third example, it has been shown that bottlenose dolphins fail to
complete a spatial maze task associated with an “if and only if, then” construct on their own
volition, whereas several other mammalian and vertebrate species tested readily achieved
this combined maze and rule task (Nikolskaya 2005). To complete this task successfully, the
animals were required to form memories of places and events, which, given the structure of
the cetacean hippocampus, appears to be a cognitive task beyond their neural means.

It may be argued that the functions associated with the hippocampus with regard to
complex cognition, learning, memory and spatial orientation have been subsumed into the
circuitry in other parts of the cetacean brain, thus facilitating the expression of normally
hippocampus dependent cognitive functions. This situation has been observed in rats, where
the prefrontal cortex of rats with lesions of the dorsal hippocampus assumes hippocampal
functions (Zelikowsky et al. 2013). Despite this, given the known neuroanatomy of the
cetacean brain, where the prefrontal cortex appears almost absent (Manger 2006) and the
entorhinal and subicular regions of the hippocampal formation appear to be proportionally
smaller in the cetaceans mirroring the decrease in hippocampal size (Jacobs et al. 1971,
1979), it is difficult to speculate where this alternative circuitry might lie, how this may
facilitate hippocampus-dependent functions or even if it would be as effective as the typical
mammalian hippocampal circuitry in undertaking hippocampus-related tasks. Given the
fact that it is far more difficult to misinterpret neuroanatomical structure than behavioural
studies, the current and previous findings (Manger 2006; Manger et al. 2012) regarding
cetacean brain structure appear to necessitate a reappraisal of our notions regarding the
cognitive capabilities and behavioural studies of cetaceans (Manger 2013) and the evolution
of relatively and absolutely large brain size in this mammalian order (Manger 2006).
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Graphical representation of the relationship between brain volume and hippocampal volume
(a) and brain volume minus hippocampal volume and hippocampal volume (b) across 367
mammalian species. Note, in contrast to previous studies (Finlay and Darlington 1995;
Reep et al. 2007), a function that approximates an exponential curve describes the data
most efficiently and potentially reflects the presence of adult hippocampal neurogenesis

in most mammalian species. Note that the hippocampal volumes of the West Indian
manatee ( 7richechus manatus), river hippopotamus (Hippopotamus amphibius) and African
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elephant (Loxodonta africand), which were not used in the determination of the descriptive
function, fall within either the 95 % confidence intervals (dark grey shading) or the 95 %
prediction intervals (/ight grey shading) determined from the data. In all cases, the cetaceans
examined, harbour porpoise (Phocoena phocoend), bottlenose dolphin ( 7ursiops truncatus),
Atlantic white-sided dolphin (Lagenorhynchus acutus) and minke whale (Balaenoptera
acutorostratus), have hippocampal volumes substantially smaller than what would be
predicted based on brain volume. A/CC Akaike’s information criteria, Bvbrain volume, Bv
- Hv brain volume minus hippocampal volume, DOF degrees of freedom, Hv hippocampal
volume
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Graphical representation of the relationship between brain volume and amygdala volume

(a) and brain volume minus amygdala volume and amygdala volume (b) across 364

mammalian species. Note that similar to previous studies (Finlay and Darlington 1995;

Reep et al. 2007), a linear function describes the data most efficiently. Note that the

amygdala volumes of the West Indian manatee ( 7richechus manatus), river hippopotamus
(Hippopotamus amphibius) and African elephant (Loxodonta africana), which were not used
in the determination of the linear function, fall within either the 95 % confidence intervals
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(dark grey shading) or the 95 % prediction intervals (light grey shading) determined from
the data. In all cases the cetaceans examined, harbour porpoise (Phocoena phocoena),
bottlenose dolphin ( 7ursiops truncatus) and minke whale (Balaenoptera acutorostratus),
have amygdala volumes substantially smaller than what would be predicted based on

brain volume, reflecting the loss, or near loss, of the olfactory system in cetaceans. A/CC
Akaike’s information criteria, Avamygdala volume, Bv brain volume, Bv - Avbrain volume
minus amygdala volume, DOF degrees of freedom
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Ln [Hippocampal volume (mm3)]
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Fig. 3.
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Linear
r2 = 0.98, AICC = -772.05, DOF = 360
Sum of Squares = 42.66

Exponential
. r2 = 0.97, AICC = -894.55, DOF = 359
Sum of Squares = 30.25

T 1 1 1 1

0 2 4 6 8 10
Ln [Brain volume - hippocampal volume (mms3)]

Linear
r2 = 0.98, AICC = -1106.35, DOF = 360
Sum of Squares = 16.94

Exponential
r2 = 0.98, AICC =-1106.28, DOF = 359
Sum of Squares = 16.85

T T T T

0 2 4 6 8 10
Ln [Brain volume - amygdala volume (mm3)]

Graphical representation of the relationship between brain volume minus hippocampal
volume and hippocampal volume (a) and brain volume minus amygdala volume and
amygdala volume (b) across mammalian species showing the contrast between the
exponential function (pink shading) and the linear function (b/ue shading) describing these
relationships. Note that the exponential function provides a more appropriate fit of the data
for the hippocampus (a), while the linear function provides a more appropriate fit of the data
for the amygdala (b). A/CC Akaike’s information criteria, DOF degrees of freedom
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Non-linear model residuals

-1

nruns = 182, P = 50.71% (pattern not unlikely)

-4 2 0 2 4 6

0.8

Ln [Brain volume - hippocampal volume]

Non-linear model residuals

0.4+

nruns = 192, P = 85.31% (pattern not unlikely)

-4 -2 0 2 4 6

Ln [Brain volume - amygdala volume]

Plots of the residuals obtained using both linear and non-linear regression functions to
describe the relationship between brain minus hippocampal volume and hippocampal
volume (upper two plots) and between brain minus amygdala volume and amygdala volume
(lower two plots). The residuals as based on the linear model for the hippocampus are not
randomly scattered about zero as confirmed by a runs test, while both visual and statistical
comparison of the nonlinear model for the hippocampus confirms its appropriateness for
this data. While both linear and exponential models describe the amygdala volume well, the
less scatter observed in the linear model indicates the appropriateness of this model for the

amygdala data
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Fig. 5.

Grgaphical representation of the phylogenetically correct least-square regression and
associated confidence and prediction intervals for the brain volume compared to
hippocampal volume (a) and brain volume minus hippocampal volume compared to
hippocampal volume (b). The resultant coefficient of determination for these models is
2 = 0.85/0.83 with slopes of 0.77/0.75. These plots indicate that even after phylogenetic
correction, the cetaceans lie well below the confidence and prediction intervals of the
mammalian regression, underscoring the small size of the cetacean hippocampus. In
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addition, the non-linearity of the mammalian hippocampal data is also evident in these plots
despite correction for phylogenetic relationships
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Fig. 6.

Higgher-power photomicrographs of portions of the dentate gyrus immunohistochemically
stained for doublecortin in a range of mammalian species. Upper two rows show
artiodactyls, third row shows Afrotherians, fourth row shows rodents, and the bottom row
shows Microchiropterans and Megachiropterans. Note the presence of immature neurons in
all these species. Scale barin the bottom right image 100 pm and applies to all
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4 African lion

1% Z

5
b
y
A

— West Indian manatee Harp seal

Fig. 7.
Low-power photomicrographs of the hippocampus in certain key species investigated

in the current study. a African lion (Panthera /leo), Nissl stain; b African lion,
immunohistochemical staining for doublecortin; ¢ Northern fur seal (Callorhinus ursinus),
Nissl stain; d river hippopotamus (Hippopotamus amphibius), Nissl stain; e West Indian
manatee ( 7richechus manatus), Nissl stain; f harp seal (Pagophilus groenlandicus), Nissl
stain. Scale barin each low-power image 1 mm. /nsetsin b-e are higher-power
photomicrographs of immunohistochemical staining for doublecortin in each species. Scale
barin insete 50 um, and applies to af/ insets. CA cornu ammonis, DG dentate gyrus
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Minke whale

Fig. 8.
Low-power photomicrographs of the hippocampus in the harbour porpoise (Phocoena

phocoena, a, b) and minke whale (Balaenoptera acutorostrata, c, d) stained for Nissl
substance (a, ¢) or immunohistochemical staining for doublecortin (b, d). Note the loose
organization of the dentate gyrus in both cetacean species (a, ¢) as well as the total lack

of immunohistochemical staining for doublecortin in both species (b, d). Scale barinb 1
mm and applies to a and b, scale barin d 1 mm and applies to ¢ and d. /nsetsin b and d

are higher-power photomicrographs of immunohistochemical staining for doublecortin in the
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remnant of piriform cortex in the harbour porpoise (b) and the piriform cortex of the minke
whale (d). The staining of neurons in the piriform cortex of both cetacean species acts as
an internal control for the methods used and confirms the lack of adult neurogenesis in the
cetacean dentate gyrus. Scale barin insetd 50 ym, and applies to both insets. CA cornu
ammonis, DG dentate gyrus, P/R piriform cortex
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