Skip to main content
. Author manuscript; available in PMC: 2023 Jan 1.
Published in final edited form as: Stat Sin. 2022;32:293–321. doi: 10.5705/ss.202019.0361

Algorithm 2.

Adjusted simultaneous inference with FDR control and power enhancement.

  • Step 1: Initialization:
    • Step 1.1: Compute the test statistics and auxiliary statistics {(Ti,, Ai); i = 1,…, q}.
    • Step 1.2: Compute thep-values: pi = 2{1 − Φ(|Ti|)}, i,…,.q.
    • Step 1.3: Input the pre-specified constants K, C1, C2 and N.
    • Step 1.4: Compute the grid set:
      J={(C1N1)log q/N,C1log q,,(C2N1)log q/N,C2log q}.
  • Step 2: For each JK={λ1,,λK1} in J and λo = −∞, λK = ∞:
    • Step 2.1: Construct Gk={i:1iq,λk1<Aiλk},1kK.
    • Step 2.2: For each Gk, compute the cardinality, qk=|Gk|.
    • Step 2:3: For each Gk, estimate the proportion, π^k, of alternatives in Gk.
    • Step 2.4: Compute the adjusting weights Wi, i = 1,…, q, according to (5).
    • Step 2.5: Adjust the p-values: piw=min{pi/wi,1},i=1,,q.
    • Step 2.6: Apply the BH procedure, and record the total number of rejections.
  • Step 3: Obtain the adjusted rejection region:
    • Step 3.1: Choose JK that yields the largest number of rejections.
    • Step 3.2: Compute the corresponding adjusted p-values: piw,1iq.
    • Step 3.3: Reorder all the adjusted p- values: p(1)wp(q)w.
    • Step 3.4: Output the rejection region {i:i<τ^}, where τ^=max{i:p(i)wαi/q}.