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Abstract

Deep learning in k-space has demonstrated great potential for image reconstruction from 

undersampled k-space data in fast magnetic resonance imaging (MRI). However, existing 

deep learning-based image reconstruction methods typically apply weight-sharing convolutional 

neural networks (CNNs) to k-space data without taking into consideration the k-space data’s 

spatial frequency properties, leading to ineffective learning of the image reconstruction models. 

Moreover, complementary information of spatially adjacent slices is often ignored in existing 

deep learning methods. To overcome such limitations, we have developed a deep learning 

algorithm, referred to as adaptive convolutional neural networks for k-space data interpolation 

(ACNN-k-Space), which adopts a residual Encoder-Decoder network architecture to interpolate 

the undersampled k-space data by integrating spatially contiguous slices as multi-channel input, 

along with k-space data from multiple coils if available. The network is enhanced by self-attention 

layers to adaptively focus on k-space data at different spatial frequencies and channels. We 

have evaluated our method on two public datasets and compared it with state-of-the-art existing 

methods. Ablation studies and experimental results demonstrate that our method effectively 

reconstructs images from undersampled k-space data and achieves significantly better image 

reconstruction performance than current state-of-the-art techniques. Source code of the method is 

available at https://gitlab.com/qgpmztmf/acnn-k-space.
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Introduction

Deep learning has shown great potential for image reconstruction from undersampled k-

space data in fast magnetic resonance imaging (MRI) (Knoll et al., 2020; Liang et al., 2020). 

A variety of deep learning methods have been developed to solve the image reconstruction 

problem, including model-driven (Abdullah et al., 2019; Aggarwal et al., 2019; Cheng et 

al., 2018; Hammernik et al., 2018; Huang et al., 2019; Qin et al., 2018; Schlemper et al., 

2018; Sriram et al., 2020) and data-driven methods (Akçakaya et al., 2019; Han et al., 2020; 

Jin et al., 2017; Kim et al., 2019; Lee et al., 2018; Quan et al., 2018; Wang et al., 2020; 

Wang et al., 2016; Zhu et al., 2018). Unlike model-driven methods whose performance 

is hinged on their model capacity, data-driven methods directly learn a mapping between 

undersampled k-space data and reconstructed images (Zhu et al., 2018), or an interpolation 

in image domain (Jin et al., 2017; Lee et al., 2018; Quan et al., 2018; Wang et al., 2016), 

k-space (Akçakaya et al., 2019; Han et al., 2020; Kim et al., 2019; Wang et al., 2020), or 

both the image domain and the k-space (Eo et al., 2018; Souza et al., 2019). Particularly, 

fully connected neural networks have been used to learn the Fourier transform itself (Zhu et 

al., 2018). However, it is difficult to use such a method to reconstruct large size images due 

to huge memory requirements of fully connected neural networks. In contrast, convolutional 

neural networks (CNNs) with weight sharing are memory efficient and therefore have 

been widely adopted to learn to interpolate from undersampled k-space data for image 
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reconstruction in conjunction with Fast Fourier transform (FFT) (Akçakaya et al., 2019; Han 

et al., 2020; Kim et al., 2019; Wang et al., 2020).

Since CNNs in k-space could be used to directly interpolate the missing k-space samples 

(Akçakaya et al., 2019; Han et al., 2020; Kim et al., 2019; Wang et al., 2020), it is 

reasonable to believe that they could perform better than their counterparts working in 

the image domain with the same network architecture. However, existing k-space deep 

learning methods directly adopt CNNs without taking into consideration characteristics of 

the k-space data. First, the samples at the central k-space region (low spatial frequencies) 

contain most of the information of image contrast, while the samples further away from 

the center (high spatial frequencies) contain information about the edges and boundaries 

of the image. Therefore, applying weight-sharing CNNs to the entire k-space data, as 

used in most existing k-space deep learning methods, ignores distinctive contributions of 

different spatial frequencies of the k-space data to the image reconstruction, potentially 

leading to ineffective learning of CNNs. Although a fixed weighting map can be adopted 

as a weighting layer to modulate the output of CNNs (Han et al., 2020), it would be 

more desirable to obtain a weighting map capable of adaptively adjusting the output of 

CNNs to better interpolate the missing k-space samples. Second, undersampled k-space 

data of spatially adjacent image slices may provide complementary information for image 

reconstruction. However, most existing deep learning methods typically learn interpolations 

for spatially adjacent image slices independently, ignoring their complementary information 

that could potentially improve image reconstruction. Third, in multi-coil MRI acquisition, 

k-space data from different coils are sensitive to different regions of the object but are often 

treated equally as multiple channels in existing k-space deep learning image reconstruction 

methods, which may degrade image reconstruction performance.

In order to overcome the aforementioned limitations, we have developed a novel k-space 

deep learning framework for image reconstruction from undersampled k-space data, 

referred to as adaptive convolutional neural networks for k-space data interpolation (ACNN-

k-Space). Particularly, a residual Encoder-Decoder network architecture is adopted to 

interpolate the undersampled k-space data with CNNs enhanced by a self-attention layer 

(Hu et al., 2018), referred to as frequency-attention layer, which adaptively assigns weights 

to features learned by CNNs for k-space samples at different spatial frequencies. Moreover, 

instead of learning interpolations for spatially adjacent image slices independently, our 

method learns an interpolation for each image slice by integrating slices within its spatial 

neighborhood as a multi-channel input, along with k-space data from multiple coils if 

available, to the residual network. Since the image slices may contribute to the image 

reconstruction differently and data from different coils are sensitive to different regions 

of the object, we adopt another self-attention layer, referred to as channel-attention layer 

(Roy et al., 2018), to adaptively assign weights to features learned by CNNs for different 

channels. Similar to two recent methods that adopt channel-wise attention to modulate 

learned features in either k-space or image domain (Huang et al., 2019; Lee et al., 2020), the 

channel-attention layers are also applied to all learned features in addition to the input 

image slices. Together, the residual Encoder-Decoder network with frequency-attention 

and channel-attention layers learns an interpolation for undersampled k-space data and 

reconstructs an image in conjunction with inverse FFT (IFFT) in an end-to-end fashion. 
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Moreover, the method is generally applicable to both k-space and image domain data. 

We have evaluated our method based on two publicly available datasets. Ablation studies 

and experimental results show that our method could effectively reconstruct images from 

undersampled k-space data and achieve better image reconstruction performance than 

existing state-of-the-art techniques.

Materials and methods

To generate missing k-space samples, we adopt a residual Encoder-Decoder network to 

reconstruct images from undersampled k-space data, as illustrated in Figure 1. The residual 

network learns an interpolation to reconstruct images in conjunction with IFFT from a 

multi-channel input that consists of undersampled k-space data from spatially adjacent slices 

and data from multiple coils if available. Its Encoder-Decoder component consists of CNNs, 

enhanced by frequency-attention and channel-attention layers. The network is optimized 

by minimizing a loss function L defined as the mean square error (MSE) between the 

reconstructed image and its corresponding image obtained from fully sampled k-space data:

L = ∑j = 1
n ‖Ij

R − Ij
FS‖2, (1)

where Ij
R is the reconstructed image and Ij

FS is the image obtained from fully sampled 

k-space data of the j-th coil, and n is the number of coils.

A. Encoder-Decoder network architecture

We adopt an Encoder-Decoder network to learn an interpolation to generate missing k-space 

samples for image reconstruction from undersampled k-space data. As illustrated in Figure 

1, the network backbone is a U-Net (Ronneberger et al., 2015), consisting of convolutional 

layers, followed by rectified linear unit (ReLU) (Agarap, 2018) and batch normalization 

(BN) (Ioffe and Szegedy, 2015), with parameters specified in Figure 1 (bottom).

For image reconstruction of each slice from its undersampled k-space data, the network’s 

input consists of complex valued k-space data of c = 2s + 1 slices within its spatial 

neighborhood, where s ≥ 0 is the consecutive slices stacked on top and bottom of the slice 

under consideration. Complex values of the k-space data are split into two channels of real 

value signals. For imaging data with multiple coils, k-space data of n coils are stacked as 

multi-channel data with each coil’s data as two channels of real value signals. Therefore, the 

number of channels of the input is 2(2s + 1 )n and the number of channels of the output is 2n 
to form complex valued k-space data. For a slice with fewer than s bottom or top slices, the 

data volume is padded with the first one adjacent to the current slice.

In order to take into consideration distinctive contributions of different spatial frequencies 

and different channels to the image reconstruction, we adopt self-attention layers to enhance 

the learning of CNNs.
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B. Attention layers

We adopt frequency-attention and channel-attention layers to enhance k-space deep learning. 

Both frequency-attention and channel-attention layers learn self-attention maps from their 

feature maps (Hu et al., 2018; Roy et al., 2018) to modulate features learned by CNNs 

and the modulated feature maps are aggregated by an element-wise Max-out operation, as 

illustrated in Figure 2.

B.1 Frequency-attention layers—The k-space samples are in the spatial frequency 

domain, and the samples at low frequencies characterize most of the signal intensity and 

contrast information of the image, while the samples at high frequencies characterize 

information about objects’ edges and boundaries. Existing k-space deep learning methods 

directly apply the weight-sharing CNNs to entire k-space data, ignoring distinct 

contributions of different frequencies of the k-space data to image reconstruction. To tackle 

this issue, we adopt a frequency-attention layer to modulate features learned by CNNs at 

different spatial frequencies. As illustrated in Figure 2 (bottom), given a k-space feature map 

X = {x{1,1}, x{1,2}, … , x{i,j}}, where x{i, j} ∈ ℝC × 1 × 1 corresponds to channel C and spatial 

location (i, j) with i ∈ [1, …, W] and j ∈ [1, …, H], W and H are width and height of a 

channel of k-space feature maps. The frequency-attention map Sf ∈ ℝW × H is learned with 

a convolutional operation ⊛:

Sf = σ(W conv ⊛ X), (2)

where W conv ∈ ℝC × 1 × 1 is convolutional weights to be learned and σ is the sigmoid 

function. Each Sf
{i, j} of the frequency-attention map represents the linearly combined 

representation of all channels for a spatial location (i, j). Then the input feature map X 
= {X1, … , Xi} is modulated by this frequency attention map Sf to generate frequency-

attention weighted features Yf = SfX.

B.2 Channel-attention layers—Since spatially adjacent slices may provide 

complementary information to one another and data from different coils contribute 

differently to the image reconstruction, we integrate multiple slices and data from multiple 

coils as a multi-channel input to the network. Instead of treating them equally, we adaptively 

learn weights for them using a channel-attention layer. Given k-space feature maps of 

multiple slices X = {X1, X2, … , Xm}, where m is the number of channels in X, we employ 

a simple gating mechanism with a sigmoid activation to learn a channel-attention map:

Sc = σ(W fc ⋅ [‖X1‖1, ‖X2‖1, …, ‖Xm‖1]), (3)

where W fc ∈ ℝi × i is parameters of a fully connect layer to be learned, σ is the sigmoid 

function, and ∥.∥1 is used to squeeze each Xi to yield a scalar value. Then the feature maps X 
= {X1, … , Xi} are modulated by this channel attention map Sc along the channel dimension 

to generate weighted features Yc = ScX.
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We use an element-wise Max-out operator to aggregate the weighted features obtained by 

the frequency-attention and the channel-attention layers:

Y = max(Y c, Y f), (4)

where Yc is the weighted features obtained by the channel-attention layers and Yf is the 

weighted features obtained by the frequency-attention layers. Both frequency-attention and 

channel-attention feature maps are learned with the entire network in an end-to-end learning 

fashion by minimizing the loss function.

C. Evaluation and ablation studies

C.1 Datasets—We evaluated our method on two publicly available datasets, including 

Stanford Fully Sampled 3D FSE Knee k-space Dataset (available at http://mridata.org/), 

and fastMRI Brain Dataset (Zbontar et al., 2018) (available at https://fastmri.org). Stanford 

dataset contains 20 cases of knee images, collected with 8 coils. Each image is a 3D volume 

with 256 slices. We randomly selected 15 cases as training data, one case as validation data, 

and the remaining four cases as test data. fastMRI dataset contains 4,478 cases, collected 

with 8, 12, 16, 20 or 24 coils. For the convenience of network training, we selected 570 

cases collected with 16 coils from the dataset. Each case is a 3D volume with 16 slices. All 

images from this dataset were zero-padded to have the same size of 640 × 320. We randomly 

selected 500 cases as training data, 10 as validation data, and the remaining 60 as test data.

The input k-space was undersampled using two different sampling strategies following (Han 

et al., 2020), as illustrated in Figure 3. A Gaussian pattern using x4 acceleration factor in 

addition to 10% auto-calibration signal line yields a Cartesian trajectory with a sampling 

rate of 23.27%. A radial sampling with 60 spokes (views) from full 256 spokes yields a 

Radial trajectory with a sampling rate of 23.44%. For the radial sampling, the non-uniform 

fast Fourier transform (NUFFT) (Beatty et al., 2005; Fessler and Sutton, 2003) was adopted 

to generate radial coordinate k-space data. Kaiser-Bessel gridding (Duda, 2011) was then 

used to perform the regridding to the Cartesian coordinate with a square shape of 256 × 256 

for both datasets. We also evaluated our method based on two additional under sampling 

strategies, including 1-D sampling and a spiral sampling (see supplementary data).

C.2 Quantitative evaluation metrics—We adopted Structural 

SIMilarity (SSIM) index, peak signal-to-noise ratio (PSNR), 

and normalized mean square error (NMSE) as evaluation 

metrics. Particularly, SSIM(v, v) = (2μvμv + c1)(2σvv + c2) ∕ [(μv
2 + μv

2 + c1)(σv
2 + σv

2 + c2)], 

NMSE(v, v) = ‖v − v‖2
2 ∕ ‖v‖2

2, and PSNR(v, v) = 10 log10 max(v)2 ∕ MSE(v, v), where v is 

the reconstructed image, v is the image reconstructed from fully-sampled k-space data, ‖ . ‖2
2

is a squared Euclidean norm, max(v) is the largest value of v, n is the number of entries of 

v, μv, and μv are the average value of pixel intensities in v and v respectively, σv and σv 

are their variances respectively, σvv is the their covariance, and c1 = k1L and c2 = k2L are 

two variables to stabilize the division with L = max(v), k1 = 0.01, and k2 = 0.03 (Han et 

al., 2020). The evaluation metrics were computed and averaged based on the center slices 

Du et al. Page 6

Med Image Anal. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://mridata.org/
https://fastmri.org/


of reconstructed images to exclude slices that lie outside the anatomy. Particularly, we chose 

the middle 200 slices of the test cases to evaluate the image reconstruction performance for 

Stanford dataset and all slices of the test cases for fastMRI dataset. The values of SSIM, 

PSNR, NMSE obtained by our method and those under comparison were also quantitatively 

compared using Wilcoxon signed-rank test.

C.3 Comparison with state-of-the-art methods—We compared our method with 

three different image-domain deep learning methods, including domain adaptation network 

(DA-Net) (Han et al., 2018), DeepcomplexMRI (Wang et al., 2020), spatial orthogonal 

attention generative adversarial network (SOGAN) (Zhou et al., 2020); two k-space deep 

learning methods, including RAKI (Akçakaya et al., 2019) and K-space deep learning 

(K-space-Net)(Han et al., 2020); and two hybrid deep learning methods in both the image-

domain and k-space, including KIKI-Net (Eo et al., 2018) and Hybrid-Net (Souza et al., 

2019). Particularly, DA-Net and K-space-Net were built upon the same U-net architecture 

as illustrated in Figure 1 (bottom). SOGAN, DeepcomplexMRI, KIKI-NET and Hybrid-Net 

were implemented with the number of model parameters similar to that of our method. 

RAKI was evaluated on uniformly undersampled data with a sampling rate close to 

25%, following its original paper’s setting (Akçakaya et al., 2019). All the methods were 

evaluated on data generated with approximately the same acceleration rate of four.

Since all these methods under comparison learn the interpolation from individual image 

slices, for fair comparison we built two deep learning models using our method with the 

number of input slices c set to one and three, respectively. As illustrated in Figure 1, our 

network consisted of six encoding blocks, five decoding blocks, and one output block. The 

encoding and decoding blocks had convolutional layers with a receptive field of 3 × 3, ReLU 

layers, and BN layers, followed by attention layers. They were connected by pooling and 

unpooling layers to generate high-quality k-space data for image reconstruction. Number of 

kernels of the convolutional layers are specified in Figure 1 (bottom).

In addition, we evaluated the proposed ACNN-k-Space method as a plugin component in 

KIKI-Net (Eo et al., 2018) and Hybrid-Net (Souza et al., 2019), which are hybrid deep 

learning methods for MR image reconstruction in both the image domain (referred to as 

I-Nets) and k-space (referred to as K-Nets). Particularly, KIKI-Net comprises 2 K-Nets and 

2 I-Nets in order of K-Net, I-Net, K-Net, and I-Net, each being CNNs with 5 layers, and 

the Hybrid-Net adds two more I-Nets to the KIKI-Net, one before and the other after the 

KIKI-Net. The K-Net in hybrid-Net has additional residual connection and data consistency 

layer compared with the K-Net in KIKI-Net.

To build a KIKI-Net and a Hybrid-Net with similar numbers of parameters as ACNN-k-

Space, we implemented a KIKI-Net consisting of alternating five K-Nets and five I-Nets 

and a Hybrid-Net consisting of four K-Nets and six I-Nets, all in the same order as in 

their original versions. Each of the K-Nets and the I-Nets had five layers of CNNs with a 

receptive field of 3 × 3 and 256 kernels. Two versions of the KIKI-Net and Hybrid-Net 

were built with or without attention layers in their K-Nets for comparison. A public 

implementation of RAKI (https://qithub.com/geopi1/DeepMRI) was adopted in the present 
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study. The total numbers of parameters of the other networks under comparison applied to 

Stanford and fastMRI datasets are summarized in Table 1.

C.4 Visualization of attention maps—In order to understand how the frequency-

attention layers modulate CNN features, we directly visualized the frequency-attention maps 

at different layers of the network. In order to understand how the different channels of 

the multiple-channel input contribute to image reconstruction, we computed response value 

for each channel as ∥grad(C)∥1, where grad(C) is the gradient of a channel of the multiple-

channel input once the network’s weights were obtained. Since the channel-attention maps 

at other layers of the network are learned from combinations of data of multiple coils from 

spatially adjacent slices, we could not map the response values of different channels to the 

input slices or coils.

C.5 Ablation studies—We carried out ablation studies to investigate the effectiveness 

of frequency-attention layers and channel-attention layers. These layers could learn attention 

weights in parallel or sequentially to module CNN features as illustrated in Figure 

4. To integrate features modulated by parallel attention layers, as illustrated in Figure 

4(a), we adopted an element-wise Max-out operator to fuse the modulated features. To 

modulate features sequentially, the channel-attention and frequency attention layers could 

be integrated differently as illustrated in in Figure 4(b) and Figure 4(c). Furthermore, the 

channel-attention and frequency-attention layers can also be applied in parallel to modulate 

their input simultaneously with an element-wise multiplication operator, as illustrated in 

Figure 4(d). In all these experiments, we set the number of input k-space slices to three. 

We finally evaluated how the image reconstruction performance changes with the number of 

input slices.

These studies were carried out on Stanford dataset with Cartesian undersampling and 

fastMRI dataset with radial undersampling, respectively. Due to the high computational cost, 

we did not evaluate other possible combinations of input data and reconstruction settings.

C.6 Implementation and computing cost—We implemented all deep learning 

methods using PyTorch. Adam optimizer was used to train the network. Batch size was 

set to 16, number of training epochs set to 350, initial learning rate = 10−4 which gradually 

dropped to 10−5, and weight regularization parameter λ = 10−4.

All experiments were carried out on a Linux workstation equipped with 4 Titan XP GPUs 

with 12G memory. On a NVIDIA TITAN XP GPU, it took 50 milliseconds and 301 

milliseconds for the deep learning models built by our method to reconstruct an image from 

undersampled Stanford k-space data (320×256×8) and fastMRI k-space data (640×320×16), 

respectively. It took ~50 hours to train a deep learning model on Stanford dataset and ~70 

hours on fastMRI dataset.
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Results

A. Image reconstruction performance

Image reconstruction performance comparisons are summarized in Tables 2 and 3 for 

Stanford and fastMRI datasets, respectively. These results demonstrate that our method 

consistently performed better than the deep learning methods under comparison with 

statistical significance (p<0.001), in particular with an input of multiple slices (three in 

the current implementation if not specified otherwise). Of note is that NMSE was reduced 

by 25% and 7% compared to image-domain and k-space based methods for the Stanford 

dataset, respectively, for Cartesian sampling. Further, NMSE was reduced by 10% and 7% 

compared to image-domain and k-space based methods for the fastMRI dataset, respectively, 

also for Cartesian sampling. The k-space deep learning methods also had better performance 

than their counterparts in the image domain (Han et al., 2018), consistent with previous 

findings (Han et al., 2020).

Figures 5 and 6 show representative results obtained for the different methods under 

comparison. Consistent with the quantitative results summarized in Tables 2 and 3, our 

method yielded visually better results than the alternative methods under comparison. 

In particular, the deep learning model in image domain yielded a slightly oversmoothed 

image. Further, the images reconstructed by our method had minimal difference with those 

reconstructed from the complete k-space data compared to the performance of the other deep 

learning methods either in the image domain or in k-space.

B. Visualization of attention maps

Figure 7 shows representative frequency-attention maps learned by our method with the 

number of input slices set to three for image reconstruction from undersampled k-space data 

using Cartesian sampling based on the Stanford dataset (top row) and radial sampling based 

on the fastMRI dataset (bottom row). Not surprisingly, the learned frequency-attention maps 

had varied weights at different spatial frequencies, indicating that k-space data at different 

frequencies contributed differently to the image reconstruction. It is worth noting that the 

last frequency-attention map largely complemented the downsampling sampling pattern to 

guarantee the network to generate a residual k-space interpolation map (lower attention to 

the sampled datapoints), which was added to the down-sampled k-space data through the 

residual connection (Figure 1) to reconstruct the image, leading to efficient and effective 

image reconstruction.

Figure 7 shows the response values of different channels grouped for individual slices for a 

representative test data of the Stanford dataset with the number of input slices set to 3, 5, 

7, 9, 11, and 13, and using undersampled Cartesian k-space data. As expected, the channels 

(coils) of the center slice had the largest response values, and the response values decreased 

with distance from the center slice, indicating that the data of the center slice contributed 

most to image reconstruction while the influence decreases with distance from center.

Figure 8 shows training loss functions for data undersampled with Cartesian sampling and 

the Radial sampling on Stanford and fastMRI datasets, respectively, indicating that ACNN-
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k-Space worked better on the training data with radial sampling than Cartesian sampling 

although they had the same acceleration factor.

C. Ablation studies

As summarized in Tables 4 and 5 on Stanford and fastMRI datasets, our ACNN-k-Space 

method with both frequency- and channel-attention layers yielded the best performance 

measures with statistical significance (p<0.001), while the k-space deep learning methods 

utilizing one attention layer still outperformed those without the self-attention layers.

As summarized in Tables 6 and 7 on Stanford and fastMRI datasets, the k-space deep 

learning method with F-C (frequency-attention layer followed by channel-attention layer) 

attention block and C-F (channel-attention layer followed by frequency-attention layer) 

attention block performed better than CF-X (channel-attention and frequency-attention 

layers applied in parallel to modulate their input simultaneously), while the parallel 

frequency-attention and channel-attention layers yielded the best performance.

As summarized in Tables 8 and 9, image reconstruction performance increased with the 

number of input slices, although some of the improvements were small. We expect that the 

method will reach its peak performance with a moderately large number of input slices. 

However, the computational cost will also increase with the number of input slices, while the 

incremental gain becomes increasingly smaller. Further, some datasets will be limited by the 

number of available slices. It is worth noting that for the fastMRI brain dataset, inputs with 

more than 3 slices largely overlap with each other in that the inputs were often padded with 

the bottom-most or the top-most slice.

D. ACNN-k-Space in hybrid deep learning methods for MR image reconstruction

As summarized in Tables 10 and 11, KIKI-Net and Hybrid-Net with attention layers in 

their K-Nets achieved significantly better image reconstruction performance with statistical 

significance (p<0.001) than their original version (Eo et al., 2018; Souza et al., 2019) 

on both Stanford and fastMRI brain datasets. Particularly, NMSE was reduced by 1% to 

4% by using the attention layers in KIKI-Net and Hybrid-Net. Reconstruction results of 

representative images obtained by KIKI-Net and Hybrid-Net with and without attention 

layers are shown in Figure 9.

Discussion

We have developed a novel deep learning method for image reconstruction from 

undersampled k-space data. Our method is built upon a residual Encoder-Decoder network 

of CNNs to learn interpolation in k-space. Also, rather than learning the interpolation 

independently for each slice, we integrate complementary information of spatially adjacent 

slices as multi-channel input to the residual network to improve image reconstruction. 

We adopt self-attention layers to effectively integrate complementary information of 

multiple slices and recognize distinctive contributions of k-space data at different spatial 

frequencies. Ablation studies and comparison with existing methods have demonstrated 

that our method could effectively reconstruct images from undersampled k-space data 
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and achieved significantly better image reconstruction performance than state-of-the-art 

alternative techniques.

Our method adaptively learns k-space data interpolation using self-attention layers 

consisting of frequency-attention and channel-attention layers. As illustrated in Figure 6, 

the frequency-attention maps had distinctive values at different spatial frequencies of the 

k-space data, indicating that the frequency-attention layers could modulate features learned 

by weight-sharing CNNs so that the deep learning models could model k-space data at 

low and high frequencies differently. As illustrated in Figure 7, the channel-attention 

layers facilitate effective integration of information from spatially adjacent image slices. 

It has been demonstrated that channel-attention is a powerful technique to improve image 

reconstruction by integrating channel-wise features adaptively rather than equally (Huang 

et al., 2019; Lee et al., 2020). Our results provide additional evidence that the channel-

attention layer applied to input image slices could also improve the image reconstruction 

performance. Quantitative evaluation results summarized in Tables 2 and 3 have further 

demonstrated that the attention layers could effectively improve the image reconstruction 

performance compared with deep learning models without the attention layers with only a 

5% increase in the number of model parameters.

The ablation experimental results have further demonstrated that the self-attention layers in 

conjunction with the residual Encoder-Decoder network architecture can improve k-space 

data interpolation. Particularly, results summarized in Tables 4 and 5 demonstrate that the 

self-attention layers, especially when both the channel-attention and the frequency-attention 

layers were used jointly, achieved significantly better image reconstruction performance 

than deep learning models without the attention layers or with only one type of attention 

layers. The results summarized Table 6 and Table 7 have demonstrated that the parallel 

architecture has achieved better performance than the alterative architectures. Finally, the 

results summarized in Table 8 and Table 9 have further demonstrated that integration of 

information from spatially adjacent image slices of the image slice under consideration can 

improve the image reconstruction performance.

As demonstrated by the results summarized in Tables 10 and 11 and visualized in 

Figure 9, the attention layers improved the image reconstruction performance of KIKI-

Net and Hybrid-Net (Eo et al., 2018; Souza et al., 2019) compared with their original 

version with statistical significance though the differences were relatively subtle, indicating 

that the attention layers might be useful as a plugin component in other k-space deep 

learning methods to improve the image reconstruction performance. Given that the image 

reconstruction performance can be improved when more image slices are used as input 

(Tables 2, 3, 8, and 9), we expect that KIKI-Net and Hybrid-Net could be further improved 

with multiple image slices as their input in conjunction with the attention layers.

Our method achieved slightly better performance for the undersampled data generated 

with radial and spiral undersampling trajectories than Cartesian and 1-D undersampling 

trajectories, as demonstrated by the results shown in Figure 8 and Table S1. We postulate 

that this is caused by the fact that radial and spiral undersampling trajectories generally 

contain more data points at low spatial frequency regions than Cartesian and 1-D 
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undersampling trajectories at the same undersampling rate. However, this issue merits a 

more rigorous investigation, which will be a focus of future studies. Interestingly, our 

method implemented with L1 loss and L2 loss yielded similar performance on the Stanford 

dataset, as summarized in Table S2. A recent study has demonstrated that perceptual loss 

function performed significantly better than L1 or L2 loss functions as determined by 

radiologists’ scores (Ghodrati et al., 2019). We will evaluate if adopting the perceptual loss 

function in our network will improve the image reconstruction performance.

Our network is built upon the standard residual Encoder-Decoder network architecture, 

which has also achieved promising performance in image segmentation (Li et al., 2021) and 

could be improved by adopting other network architectures, network blocks, and advanced 

learning strategies, such as Dense block (Huang et al., 2017), or instance normalization 

(Ulyanov et al., 2016), in conjunction with advanced loss function (Ledig et al., 2017). It is 

noteworthy that a variety of deep-learning MR reconstruction methods have been developed 

recently, such as cascaded networks (Huang et al., 2019; Qin et al., 2018), variational 

network (Sriram et al., 2020), RARE (Liu et al., 2019), and DeepcomplexMRI network 

(Wang et al., 2020). Our method could also be adopted in these methods as a basic deep 

learning component to improve their image reconstruction performance.

In conclusion, we have developed adaptive CNNs for k-space data interpolation which has 

achieved favorable performance compared with state-of-the-art deep learning methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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highlights

• Adaptive CNNs are used for accelerating magnetic resonance imaging

• Self-attention facilitates adaptive learning of k-space data

• Complementary information of spatially adjacent slices is integrated

• Common weight-sharing CNNs are ineffective for k-space data interpolation

• The method achieves significantly improved image reconstruction 

performance
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Figure 1. 
A residual Encoder-Decoder network of CNNs, enhanced by frequency-attention and 

channel-attention layers, for image reconstruction from undersampled k-space data. The 

residual network (top row) learns an interpolation to reconstruct images in conjunction with 

IFFT from a multi-channel input that consists of undersampled k-space data from spatially 

adjacent slices and data from multiple coils if available. Its Encoder-Decoder component 

(bottom row) consists of multiple layers of CNNs, enhanced by frequency-attention and 

channel-attention layers. Attention maps are the outputs of the frequency-attention and 

channel-attention layers to modulate features learned by CNNs before every pooling or 

unpooling layer.

Du et al. Page 16

Med Image Anal. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Self-attention layers learn a frequency-attention map (bottom) and a channel-attention map 

(top) respectively, and weighted feature maps are aggregated by an element-wise Max-out 

operation. Xi refers to the ith channel of the k-space feature maps, Yc refers to features 

weighted by the channel-attention map, Yf refers to features weighted by the frequency-

attention map, and Y refers to the aggregated features of Yc and Yf through a Max-out 

operation.
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Figure 3. 
Sampling masks. Left: Cartesian trajectory. Right: Radial trajectory.
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Figure 4. 
Applications of attention layers. (a) The channel-attention and frequency-attention layers 

are applied in parallel and the modulated features are fused with an element-wise Max-out 

operator. (b) The channel-attention layer is applied before the frequency-attention layer. 

(c) The frequency-attention layer is applied before the channel-attention layer. (d) The 

channel-attention and frequency-attention layers are applied in parallel to modulate their 

input simultaneously with an element-wise multiplication operator.
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Figure 5. 
Visualization of two representative cases of the Stanford knee dataset, including images 

reconstructed from the fully sampled data and from under-sampled data without CNN 

processing under Cartesian sampling (top) and radial sampling (bottom). The difference 

images were amplified 2 times. The number of coils of for the Stanford dataset was 8 and 

the acceleration factor was 4 with a sampling rate of 23.27%.
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Figure 6. 
Visualization of representative cases of the fastMRI brain dataset, including images 

reconstructed from the fully sampled data and from under-sampled data without CNN 

processing under Cartesian sampling (top) and radial sampling (bottom). The difference 

images were amplified 3 times for the fastMRI dataset. The number of coils for the fastMRI 

dataset was 16 and the acceleration factor was 4 with a sampling rate of 23.44%.
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Figure 7. 
Frequency-attention maps learned by the network for k-space data undersampled using 

Cartesian sampling (top) and radial sampling (bottom).
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Figure 8. 
Visualization of response values of different channels of a testing case of the Stanford 

dataset. The response values were normalized by their max value. The response values are 

presented as violin plots to show the probability density of the data at different values, in 

addition to the median of the data and a box indicating the interquartile range.
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Figure 9. 
Visualization of training and validation loss functions for data undersampled with Cartesian 

and radial sampling. The loss functional values were normalized by the image size (width × 

length).
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Figure 10. 
Visualization of representative cases of Stanford dataset, including images reconstructed 

from KIKI-Net and Hybrid-Net with and without attention layers under Cartesian sampling 

(top) and radial sampling (bottom). The difference images were amplified by 4. The number 

of coils was 8 and the acceleration factor was 4.
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Table 1.

Numbers of Parameters of different methods.

Methods Number of input slices Stanford Dataset (Ncoil = 8) fastMRI Dataset (Ncoil = 16)

DA-Net 1 31.70M 31.72M

K-space-Net 1 31.70M 31.72M

DeepcomplexMRI 1 30.20M 30.22M

SOGAN 1 28.54M 28.56M

ACNN-k-Space 1 33.24M 33.27M

ACNN-k-Space 3 33.24M 33.29M

KIKI-Net with attention 1 37.80M 37.81M

Hybrid-Net with attention 1 37.80M 37.81M
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Table 2.

Comparison of the methods based on the Stanford dataset (mean±std).

Methods

Number
of

input
slices

NMSE (× 10−3) ↓ PSNR ↑ SSIM (× 10−2) ↑

Cartesian Radial Cartesian Radial Cartesian Radial

DA-Net 1 14.77±0.01 11.45±0.01 34.25±1.82 35.45±1.80 89.95±0.03 91.97±0.03

DeepcomplexMRI 1 13.20±0.01 11.33±0.01 34.82±1.52 35.52±1.44 90.95±0.02 92.57±0.02

SOGAN 1 12.93±0.01 11.32±0.01 34.75±1.36 35.48±1.29 90.96±0.03 92.47±0.03

RAKI 1 12.42±0.01 34.75±1.76 92.06±0.02

k-space-Net 1 11.98±0.01 11.26±0.01 35.27±1.89 35.56±1.82 92.05±0.02 92.65±0.03

ACNN-k-Space 1 11.55±0.01 11.22±0.01 35.45±1.81 35.57±1.78 92.15±0.03 92.65±0.03

ACNN-k-Space 3 11.11±0.01 10.90±0.01 35.55±1.86 35.63±1.82 92.25±0.03 92.73±0.03
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Table 3.

Comparison of the methods based on the fastMRI brain dataset (mean±std).

Methods Number of
input slices

NMSE (× 10−3) ↓ PSNR ↑ SSIM (× 10−2) ↑

Cartesian Radial Cartesian Radial Cartesian Radial

DA-Net 1 20.43±0.02 16.16±0.02 38.25±3.23 39.74±3.19 94.11±0.05 94.46±0.05

DeepcomplexMRI 1 20.58±0.02 16.15±0.02 38.26±2.67 39.75±2.88 94.03±0.04 94.48±0.05

SOGAN 1 19.98±0.02 15.99±0.02 38.40±2.34 38.83±2.67 94.28±0.04 94.54±0.05

RAKI 1 19.50±0.02 38.65±2.77 94.57±0.04

k-space-Net 1 19.67±0.02 15.71±0.02 38.60±2.97 39.85±3.26 94.58±0.05 94.61±0.05

ACNN-k-Space 1 18.80±0.02 15.29±0.02 38.95±3.20 40.11±3.27 94.62±0.05 94.86±0.05

ACNN-k-Space 3 18.30±0.02 14.93±0.02 39.16±3.03 40.39±3.30 95.02±0.05 95.21±0.05
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Table 4.

Performance of the networks with different components on the Stanford dataset with Cartesian sampling.

Methods
NMSE (× 10−3) ↓ PSNR ↑ SSIM (× 10−2) ↑

Mean±std p-value Mean±std p-value Mean±std p-value

Without self-attention 11.95±0.01 7.4e-63 35.19±1.81 1.1e-59 92.04±0.02 2.0e-40

Channel-attention alone 11.52±0.01 9.7e-50 35.39±1.83 8.4e-48 92.15±0.03 8.1e-38

Frequency-attention alone 11.43±0.01 7.8e-37 35.43±1.87 5.3e-3 92.17±0.03 1.1e-17

ACNN-k-Space 11.11±0.01 - 35.55±1.86 - 92.25±0.03 -
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Table 5.

Performance of networks with different components on the fastMRI dataset with radial sampling.

Methods
NMSE (× 10−3) ↓ PSNR ↑ SSIM (↓ 10−2) ↑

mean±std p-value mean±std p-value mean±std p-value

Without self-attention 15.47±0.02 1.90e-6 40.00±3.15 3.14e-9 94.83±0.05 2.67e-11

Channel-attention alone 15.25±0.03 5.61e-5 40.13±3.05 9.14e-7 94.94±0.05 4.19e-10

Frequency-attention alone 15.11±0.02 5.44e-6 40.23±3.02 3.37e-6 95.03±0.06 3.29e-12

ACNN-k-Space 14.93±0.02 - 40.39±3.25 - 95.21±0.05 -
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Table 6.

Performance of different attention blocks on the Stanford dataset under Cartesian sampling (the architectures 

are ranked based on NMSE).

Methods
NMSE (× 10−3) ↓ PSNR ↑ SSIM (↓ 10−2) ↑

Mean±std Mean±std Mean±std

CF-X (Figure 4d) 11.39±0.01 35.44±1.81 92.18±0.03

C-F (Figure 4b) 11.33±0.01 35.47±1.81 92.21±0.03

F-C (Figure 4c) 11.26±0.01 35.51±1.85 92.24±0.03

Paralleled architecture (Figure 4a) 11.11±0.01 35.55±1.86 92.25±0.03
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Table 7.

Performance of different attention blocks on the fastMRI dataset under radial sampling (the architectures are 

ranked based on NMSE).

Methods
NMSE (× 10−3) ↓ PSNR ↑ SSIM (× 10−2) ↑

Mean±std Mean±std Mean±std

CF-X (Figure 4d) 15.13±0.02 40.21±3.01 95.10±0.04

C-F (Figure 4b) 15.02±0.02 40.29±3.10 95.13±0.05

F-C (Figure 4c) 14.98±0.02 40.35±3.25 95.18±0.05

Parallel architecture (Figure 4a) 14.93±0.02 40.39±3.30 95.21±0.05
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Table 8.

Performance of our method with different numbers of the input slices based on the Stanford dataset.

Number of
input slices

NMSE (× 10−3) ↓ PSNR ↑ SSIM (× 10−2) ↑
Train times Test time

(each case)Mean±std p-value Mean±std p-value Mean±std p-value

11.55±0.01 - 35.45±1.81 - 92.15±0.03 - ~44 hours ~49 ms

11.11±0.01 7.4e-63 35.55±1.86 2.1e-53 92.25±0.03 6.3e-30 ~50 hours ~50 ms

10.94±0.00 1.3e-64 35.57±1.84 5.1e-61 92.30±0.03 2.2e-42 ~57 hours ~58 ms

10.76±0.00 2.0e-66 35.61±1.84 1.1e-61 92.35±0.03 8.8e-45 ~65 hours ~62 ms

10.65±0.00 1.1e-65 35.64±1.84 1.2e-61 92.40±0.03 2.4e-45 ~74 hours ~65 ms

11 10.64±0.00 2.9e-66 35.64±1.84 1.1e-61 92.45±0.03 9.7e-46 ~84 hours ~70 ms
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Table 9.

Performance of our method with different numbers of the input slices based on the fastMRI dataset.

Number of
input
slices

NMSE (× 10−3) ↓ PSNR ↑ SSIM (× 10−2) ↑
Train time Test time

(each case)Mean±std p-value Mean±std p-value Mean±std p-value

15.29±0.02 - 40.11±3.27 - 94.86±0.05 - ~62 hours ~58 ms

14.93±0.02 2.6e-2 40.39±3.30 5.1e-2 95.21±0.05 5.6e-3 ~70 hours ~60 ms

14.72±0.02 4.6e-6 40.49±2.88 3.3e-7 95.42±0.05 1.9e-8 ~79 hours ~64 ms

14.60±0.02 1.5e-9 40.55±2.92 6.0e-9 95.48±0.05 8.3e-12 ~89 hours ~69 ms

14.55±0.02 8.3e-7 40.58±2.90 9.3e-8 95.50±0.05 6.3e-10 ~101 hours ~73 ms

11 14.51±0.02 3.7e-9 40.62±3.02 7.8e-8 96.51±0.05 5.3e-11 ~113hours ~78 ms
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Table 10.

Performance of hybrid deep learning methods with and without the attention layers in their k-space deep 

learning components on the Stanford dataset.

Methods

NMSE (× 103) ↓ PSNR ↑ SSIM (× 10∈2) ↑

Cartesian Radial Cartesian Radial Cartesian Radial

mean±std p-
value mean±std p-

value mean±std p-
value mean±std p-

value mean±std p-
value mean±std p-

value

KIKI-
Net 10.96±0.01 2.1e-23 10.44±0.01 9.6e-22 35.71±1.75 5.5e-32 35.91±1.72 2.5e-39 91.98±0.02 9.7e-24 92.78±0.02 4.1e-24

w/
attention 10.84±0.01 - 10.08±0.01 - 35.76±1.74 - 36.07±1.76 - 92.00±0.02 - 92.80±0.02 -

Hybrid-
Net 10.77±0.01 9.5e-22 10.39±0.01 7.4e-17 35.79±1.63 4.3e-32 35.95±1.67 1.7e-34 91.98±0.02 3.5e-21 92.81±0.02 1.6e-19

w/
attention 10.40±0.01 - 10.01±0.01 - 35.95±1.59 - 36.11±1.70 - 92.13±0.02 - 92.84±0.02 -

Med Image Anal. Author manuscript; available in PMC 2022 August 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Du et al. Page 36

Table 11.

Performance of hybrid deep learning methods with and without the attention layers in their k-space deep 

learning components on the fastMRI dataset.

Methods

NMSE (× 10−3) ↓ PSNR ↑ SSIM (× 10−2) ↑

Cartesian Radial Cartesian Radial Cartesian Radial

mean±std p-
value mean±std p-

value mean±std p-
value mean±std p-

value mean±std p-
value mean±std p-

value

KIKI-
Net 18.02±0.02 7.5e-25 14.70± 

0.02 3.8e-24 39.27±3.03 7.2e-36 40.51±3.30 6.8e-32 95.12±0.05 1.6e-22 95.29±0.05 4.4e-19

w/
attention 17.84±0.01 - 14.38±0.01 - 39.36±2.53 - 40.65±3.06 - 95.18±0.05 - 95.35±0.04 -

Hybrid-
Net 17.89±0.01 6.3e-22 14.66±0.01 1.8e-19 39.32±2.63 4.9e-27 40.59±3.04 9.2e-27 95.15±0.05 1.4e-22 95.32±0.05 2.8e-16

w/
attention 17.64±0.01 14.38±0.01 - 39.40±2.74 - 40.69±2.86 - 95.20±0.04 - 95.39±0.04 -
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