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Abstract

Autophagy drives drug resistance and drug-induced cancer cell cytotoxicity. Targeting the

autophagy process could greatly improve chemotherapy outcomes. The discovery of spe-

cific inhibitors or activators has been hindered by challenges with reliably measuring autop-

hagy levels in a clinical setting. We investigated drug-induced autophagy in breast cancer

cell lines with differing ER/PR/Her2 receptor status by exposing them to known but divergent

autophagy inducers each with a unique molecular target, tamoxifen, trastuzumab, bortezo-

mib or rapamycin. Differential gene expression analysis from total RNA extracted during the

earliest sign of autophagy flux showed both cell- and drug-specific changes. We analyzed

the list of differentially expressed genes to find a common, cell- and drug-agnostic autop-

hagy signature. Twelve mRNAs were significantly modulated by all the drugs and 11 were

orthogonally verified with Q-RT-PCR (Klhl24, Hbp1, Crebrf, Ypel2, Fbxo32, Gdf15, Cdc25a,

Ddit4, Psat1, Cd22, Ypel3). The drug agnostic mRNA signature was similarly induced by a

mitochondrially targeted agent, MitoQ. In-silico analysis on the KM-plotter cancer database

showed that the levels of these mRNAs are detectable in human samples and associated

with breast cancer prognosis outcomes of Relapse-Free Survival in all patients (RSF), Over-

all Survival in all patients (OS), and Relapse-Free Survival in ER+ Patients (RSF ER+). High

levels of Klhl24, Hbp1, Crebrf, Ypel2, CD22 and Ypel3 were correlated with better out-

comes, whereas lower levels of Gdf15, Cdc25a, Ddit4 and Psat1 were associated with bet-

ter prognosis in breast cancer patients. This gene signature uncovers candidate autophagy

biomarkers that could be tested during preclinical and clinical studies to monitor the autop-

hagy process.
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Introduction

Autophagy is a highly regulated process of turnover and recycling of damaged cellular compo-

nents that contributes to maintain cellular homeostasis [1]. The role of autophagy in modulat-

ing survival- or death-inducing responses in cancer therapy is debated and both approaches to

promote or inhibit autophagy are under intense pre-clinical and clinical investigation [2, 3].

Historically, autophagy has been characterized as a regulator in cancer therapy resistance and

autophagy modulators, such as the lysosome inhibitors chloroquine and hydroxychloroquine,

are being studied as monotherapy or in combination with other therapies in several clinical tri-

als [2, 4]. Lysosome inhibitors are not specific autophagy inhibitors but are extremely useful

tools to characterize autophagy dynamics, such as quantifying the intensity of the autophagy

flux in-vitro and in some preclinical models [5]. Autophagy flux is an index of autophagic

activity that gives a dynamic picture on the intensity of the process induced specifically by vari-

ous stimuli rather than normal catabolic turnover of cellular components. So far, quantitative

measurements of the autophagy flux in-vivo have been reported in transgenic animals where

the accumulation of fluorescent reporters were used to assess the autophagy process [5]. Clini-

cal studies, however, are limited by lack of robust biomarkers that can be used to monitor and

quantify autophagy dynamics in-vivo.

We investigated drug-induced autophagy in breast cancer cell lines with differing ER/PR/

Her2 status by exposing them to tamoxifen (MCF-7), trastuzumab (SKBR-3), bortezomib and

rapamycin (MDA-MB-231) in presence and absence of chloroquine to capture early signs of

autophagy flux. Tamoxifen is a non-steroidal selective estrogen receptor (ER) modulator used

to treat patients with ER positive breast cancers. Trastuzumab is a recombinant monoclonal

antibody that binds to HER2 (human epidermal growth factor receptor 2) and used to treat

patients with HER2+ breast cancer. Bortezomib is a dipeptide boronic acid derivative and pro-

teasome inhibitor used in patients with multiple myeloma and studied in breast cancer clinical

trials. Similarly, rapamycin, is a macrolide compound obtained from Streptomyces hygroscopi-
cus that acts as an immunosuppressant. The selected drugs are well known inducers of autop-

hagy, have a resistance mechanism associated with autophagy and are currently used in the

clinic either for a specific sub-type of breast cancer or being studied in current clinical trials

[2–4]. Even though the above mentioned studies highlight a role for autophagy in modulating

various outcomes, each drug activates the autophagy process by its specific mechanism of

action. We hypothesized that identifying a common transcriptomic signature, agnostic of drug

and receptor status, might offer a clinically relevant autophagy signature that can be used inde-

pendently of the specific treatment and cell type. While the purpose of this study was not to

identify new genes involved in autophagy transcriptional regulation [6], our aim was to iden-

tify mRNAs that are actively modulated while the autophagy process is occurring in order to

support their potential role as pharmacodynamic markers of autophagy activity during treat-

ment. One could hypothesize that a clinically relevant autophagy signature is one that consis-

tently and specifically reflects gene expression changes during autophagy by multiple drug

types and is expressed in the patient target population. We verified this by testing the signature

in an independent cohort of samples isolated from relevant cells undergoing autophagy and by

performing in silico survival analysis using KM-Plotter. KM-Plotter is an online platform

(https://kmplot.com/analysis/) where data collected in publicly available repositories like GEO

(Gene expression omnibus) and TCGA (The Cancer Genome Atlas) allow meta-analysis-

based discovery and validation of survival biomarkers for several cancer types [7, 8].

Collectively, we present novel findings of an 11-gene signature that was independent of

receptor and drug-treatment status and correlated with breast cancer outcomes reported in

KM-Plotter and/ or has been previously associated with autophagy processes.
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Materials and methods

Cell culture

All cells were purchased from ATCC and regularly tested with Mycoplasma kit (ATCC 30-

1012K). MDA-MB-231 cells (ATCC HTB-26) were cultured as reported in [9] while MCF-7

(ATCC HTB-22) and SKBR-3 (ATCC HTB-30) were cultured as suggested in the ATCC cata-

logue. Cell were cultured for 2 days in 6 well dishes (protein extracts) or 12 well dishes (RNA

extracts) before being stimulated with the drugs for the length of time and dose indicated in

the figure legends. Rapamycin (R0395), bortezomib (5043140001), tamoxifen (1643306) and

chloroquine (C6628) were purchased from Sigma, trastuzumab (Genentech) was purchased

from McKesson Corporation. Mitoquinone (MitoQ) was kindly provided by Drs. Joy Joseph

and Balaraman Kalyanaraman at the Medical College of Wisconsin (Milwaukee, WI).

Immunoblotting

Proteins were extracted, and lysates were analyzed as previously described in [9]. The GAPDH

antibody IMG 5143A was purchased from Imgenex.

RNA analysis

After cell stimulation total RNA was extracted with Trizol and further purified with Qiagen

RNAeasy columns. Quality control and library preparation for RNA sequencing were per-

formed as described in [10]. Paired-end sequencing (100 × 2 cycles) of multiplexed mRNA

samples was carried out on an Illumina HiSeq 2500 sequencer. Fastq files obtained from the

sequencer were generated using bcl2fastq v2.17 (available on https://www.ncbi.nlm.nih.gov/

sra/ with PRJNA732385 as BioProject accession number) and aligned to the reference

human transcriptome [https://www.ncbi.nlm.nih.gov/genome/51 Homo sapiens (human)

Reference genome: Homo sapiens (assembly GRCh38.p13) for transcript data, file

GCF_000001405.37_GRCh38.p11_rna.fna ] using the read aligner Hexagon (v 1.5.1) [11],

implemented as a native built-in tool in the FDA HIVE genomics compute infrastructure [12].

Gene-level features were quantified by the Alignment Comparator tool of the FDA HIVE and

the output was saved as both the read count file and normalized RPKM file for each sample

alignment. The read count files were further processed with DESeq2 [13], version 1.14.1 in R

to perform the comparison of the sample groups with p-value < 0.05 (Benjamini-Hochberg

corrected for multiple comparison). Four comparisons between untreated samples and drug

treated samples were compared and 12 common differentially expressed genes (p� 0.05 and

-0.5� log2FC� +0.5. FC = fold change) were identified.

Gene-set Variation Analysis (GSVA)

The gene expression matrix of RNASeq hits for all samples was normalized using the count

normalization function of the DESeq2 package in R to account for the different read coverage

and RNA composition ensuring that a few highly differentially expressed genes do not skew

the normalization. Pathway activation was calculated by the tool GSVA [14] in R, using path-

way definitions from Molecular Signatures Database (MSigDB) Hallmark gene sets collection

developed by Broad Institute (http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp). GSVA

calculates relative enrichment of a gene set in each sample across the sample space, allowing

for sample-wise comparison of gene set enrichment across a dataset. A positive enrichment

value for a sample indicates overall higher expression of the genes in the pathway in the sam-

ple, compared to the other samples analyzed. The RNASeq hit count data for all treated and

untreated breast cancer cell lines, 7 combination, 3 replicas for each, 21 samples in total, were
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combined and normalized using DESeq2 package in R prior to submitting to GSVA. Heatmap

visualization and clustering of the resulting GSVA score matrix were generated using the heat-

map.2 package in R Studio. Clustering used the heatmap.2 default parameters, the complete

linkage method and Euclidian distance as a distance metric.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was performed on each of the four conditions separately

(rapamycin versus untreated, bortezomib versus untreated, tamoxifen versus untreated and

trastuzumab versus untreated) using the R package clusterProfiler [15] (version 3.14.3). For

each condition the list of genes was sorted based on the shrunk log2 fold generated by the

DESeq2 [13] (version 1.26.0) and provided as input for the GSEA [16, 17] using the Molecular

Signatures Database (MSigDB) Hallmark gene sets collection developed by Broad Institute

(http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp) through the msigdbr R package (ver-

sion 7.2.1) or KEGG pathway [18]. Only sets with the False Discovery Rate corrected p

value < 0.05 were considered. For the GSEA analysis 1000 permutations were performed and

only sets with more than 10 and less than 500 genes were considered. Enrichment of the cus-

tom gene set of the signature 11 genes was assessed by performing an additional GSEA analysis

after adding the set of signature genes to the MSigDB. Venn diagrams were generated using

the R package VennDiagram (version 1.6.20) to depict the intersection of underrepresented or

overrepresented (or both) hallmark sets between different treatments.

Quantitative real time PCR

(Q-RT-PCR): RNA sequencing data were verified on the same samples with real-time quanti-

tative polymerase chain reaction using Power SYBR Green Mix (Thermo Fisher Scientific) and

Qiagen QuantiTect Real Time optimized primer assays. RNA was reverse transcribed using

the High Capacity cDNA reverse transcription kit (Thermo Fisher Scientific). Q-RT-PCR was

performed on a QuantStudio 6 Flex (Thermo Fisher Scientific) using the conditions recom-

mended by the manufacturer. Data are plotted as fold change over basal level with relative

expression obtained with Delta Ct method normalized with GAPDH as housekeeping gene.

For Q-RT-PCR data statistical differences were tested with unpaired t test using GraphPad

Prism software. Statistical significance was identified when p� 0.05, and higher p values were

indicated as “NS” in the graphs.

In silico survival analysis

The association of each of the 12 candidate genes with the outcome in breast cancer datasets

was studied in the KM-Plotter (kmplotter.org) online platform [7, 8, 19]. In KM-Plotter, sur-

vival was estimated with the Kaplan-Meier method and the Logrank test is used as statistical

inference between the two risk groups and the Cox Proportional-Hazards Regression for Sur-

vival Data was used to estimate Hazard Ratios. The entire dataset was split in two groups by

the median of expression of the gene to be evaluated and a P< 0.05 was considered statistically

significant. The criteria for outcome were: RFS (relapse-free survival at 5 years), OS (overall

survival) and RFS for ER positive patients only. Datasets used for RFS on all cancer samples

available or on ER positive cancers only: E-MTAB-365, GSE11121, GSE12093, GSE12276,

GSE1456, GSE16391, GSE16446, GSE16716, GSE17705, GSE17907, GSE19615, GSE20271,

GSE2034, GSE20685, GSE20711, GSE21653, GSE2603, GSE26971, GSE2990, GSE31519,

GSE3494, GSE37946, GSE42568, GSE45255, GSE4611, GSE4922, GSE5327, GSE6532,

GSE7390, GSE9195. Datasets used for OS are: GSE1456, GSE16446, GSE16716, GSE20271,

GSE20685, GSE20711, GSE3494, GSE37946, GSE42568, GSE45255, GSE7390. In addition to

PLOS ONE Autophagy signature in breast cancer cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0262134 January 6, 2022 4 / 15

http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp
https://doi.org/10.1371/journal.pone.0262134


testing the association of each of the single candidate genes with the outcome in breast cancer

datasets, we also tested the association of the average of the 11 gene expression values with the

outcome using the same criteria for the outcome as the individual genes (RFS, OS and RFS for

ER positive patients only). Phlda gene was excluded from the panel as it did not pass the PCR

validation. For the analysis, we selected the “inverted values” for the genes that showed low

expression to correlate with better outcome (Gdf15, Ddit4, Cdc25, Psat1), and the “actual

(non-inverted) values” for the genes for which the high expression correlates with better out-

come (Klhl24, Fbxo32, Crebrf, HBP1, CD22, Ypel2, Ypel3).

Autophagy genes analysis (heatmap and volcano plot)

The list of 232 autophagy-related genes were obtained from the HADb Human Autophagy

Database (http://autophagy.lu/clustering/index.html). This autophagy gene list was used as a

filter for the normalized count matrix. The gene expression count matrix after filtering was

visualized using heatmap.2 package in R. The bioinfokit package in Python was used to visual-

ize the volcano plot for the autophagy gene list using the most conservative ‘blended’ values

from four differential expression results (the larges P-value out of four P-values, and the logFC

with the smallest absolute value). The thresholds were set as follows: P-value < 0.05; abs

(log2FC) > 0.2.

Results

Autophagy flux was triggered in breast cancer cell lines with different receptor status, MCF-7,

MDA-MB-231, and SKBR-3 by exposing them to tamoxifen, bortezomib, rapamycin, or tras-

tuzumab, respectively (Fig 1A).

Drug induced autophagy flux was measured by observing the difference in LC3II accumula-

tion in presence and absence of chloroquine by western blot. Cells were either left untreated or

stimulated with the above-described drugs in the presence or absence of chloroquine. Chloro-

quine, by blocking the lysosomal fusion, confirms the accumulation of the lipidated form of

the protein LC3, LC3 II, that increases proportionally to the activation of the autophagic flux

process [5]. In Fig 1B, western blot for MCF-7 protein extracts showed the activation of the

autophagy flux after 16 hours of tamoxifen treatment (1 and 10 μM). Densitometry of the LC3

II bands of the chloroquine treated cell extracts (lane 6 compared to lane 2) normalized to

GAPDH levels showed a two-fold increase after drug treatment at the higher dose. In panel C,

we report the intensity of the autophagy flux in MDA-MB-231 cells after treatment for 8 hours

with rapamycin 200 nM or bortezomib 1μM. LC3 II levels after drug treatments were respec-

tively 1.7x and 1.6x the intensity of the untreated band. Similarly, in panel D, 16 hours of tras-

tuzumab 10 μg/ml showed an increase of the autophagy flux of 1.7x with respect to the basal

level.

We collected total RNA under the cell culture conditions above when the cells were in the

early phase of the drug induced autophagy response. For each drug and cell line three repli-

cates for untreated or drug treated RNA samples (red marked samples in Fig 1B–1D) were iso-

lated and sequenced to first generate a drug-specific gene expression profile. A Venn diagram

with each of the differentially expressed genes from the four groups of drug treatments is

depicted in Fig 1E. Only twelve mRNAs were in common between the differentially expressed

genes (adjusted p� 0.05 and -0.5� log2 FC� +0.5, FC = fold change) during the autophagy

flux induced by all 4 drugs and are collectively referred to as the drug-independent cell-inde-

pendent autophagy signature mRNAs. The full sequencing data for each of the 12 common

signature mRNAs are described in Fig 2. Only mRNAs that were upregulated or downregu-

lated significantly by the drugs in all the cells were selected for further analyses.
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Transcriptional expression is depicted as fold changes over the basal levels for all the com-

mon mRNAs in MDA-MB-231, MCF-7 and SKBR-3 cells. All tested drugs upregulated levels

Fig 1. Drug induced autophagy flux and transcriptional profiling in breast cancer cell lines. A) Schematic with

receptor status, cell lines and drugs used for western blot and sequencing analysis. B) MCF-7 cells treated with

tamoxifen (tam) 1 and 10 μM in presence and absence of chloroquine (cqn) 10 μM for 16 hours. C) MDA-MB-231 cells

treated with rapamycin (rapa) 200 nM and bortezomib (btz) 1 μM in presence and absence of chloroquine 10 μM for 8

hours. D) SKBR-3 cells treated with trastuzumab (tzb) 10 and 1 μg/ml in presence and absence of chloroquine 10 μM for

16 hours. Samples marked with red represent the conditions chosen for the RNA extraction for sequencing experiments.

E) Venn diagram with common genes between the 4 groups of treatments. Each color represents the unique subset of

genes from the differential expression analysis between no treatment and drug treatment (pink = rapamycin 200 nM,

green = bortezomib 1 μM, orange = tamoxifen 10 μM, purple = trastuzumab 10 μg/ml).

https://doi.org/10.1371/journal.pone.0262134.g001
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of Klhl24, Fbxo32, Crebrf, Gdf15, Hbp1 and Ypel2. Bortezomib and tamoxifen upregulated

Ddit4 and Psat1 mRNA levels while rapamycin and trastuzumab downregulated the levels of

those mRNAs. For Cd25a and Cd22, bortezomib, tamoxifen and trastuzumab respectively

Fig 2. RNA sequencing data on the drug-independent cell-independent signature. Relative expression of the 12

mRNAs plotted as fold change over the non-treated for each drug and cell line. The mRNAs were selected from the

lists of differentially expressed genes between no treatment and drug treatment in each group with p� 0.05 and

-0.5� log2FC� +0.5. FC = fold change.

https://doi.org/10.1371/journal.pone.0262134.g002
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downregulated and upregulated the mRNA levels while rapamycin had the opposite effect on

both. Finally, Phlda2 mRNA levels that were downregulated by all drugs treatment were not

verified using Q-RT-PCR as with the other mRNAs identified by RNA sequencing (S1 and S2

Figs). Hence, we excluded Phlda2 from the overall signature reported.

Gene set variation analysis (GSVA) provides an estimate of pathway activity by transform-

ing an input gene-by-sample expression data matrix into a corresponding gene-set-by-sample

expression data matrix (i.e. a pathway expression score matrix). The clustering of the GSVA

pathway scores showed high reproducibility of the data as the triplicates clustered together. In

Fig 3 the heatmap diagram shows the gene set variation analysis between the samples obtained

from the sequencing experiment.

We performed gene set enrichment analysis (GSEA) using the hallmark gene sets. S3A

Fig showed that “E2F targets” and “G2M checkpoint” positively correlated with all treat-

ments while the gene set “TNFα signaling via NF-κB” negatively correlate with all treat-

ments. Furthermore, hallmark gene sets “MYC targets V2” and “MYC targets V1” positively

correlated with rapamycin, tamoxifen and trastuzumab but negatively correlate with borte-

zomib. Finally, “unfolded protein response” and “MTORC1 signaling” hallmark sets

showed positive correlation with rapamycin and trastuzumab and negative correlation with

tamoxifen and bortezomib. Using this information, we generated Venn diagrams where the

intersection depicted the underrepresented Hallmark sets between different treatments

(S3B Fig). Only one set, “TNFA signaling via NF-κB”, was found to be underrepresented in

cells of all four treatments when compared to control. A second Venn diagram describes the

intersection of the overrepresented hallmark sets between the different treatments (S3C

Fig). Only two sets “E2F targets” and “G2M checkpoint”, were found to be overrepresented

in cells of all four treatments when compared to control. Finally, seven gene sets were found

common among all treatments when considering Hallmark gene sets significantly corre-

lated to each treatment but irrespective of positive or negative correlation (S3D Fig and S1

Table). When gene set enrichment was performed using KEGG pathways (S4 Fig), the anal-

ysis showed that the four different treatments impacted different pathways with Tamoxifen

treatment altering the smallest number of pathways.

Next, we specifically queried if autophagy-related genes were transcriptionally modulated

during the autophagy flux induced by cancer therapy treatments (S5A Fig). We obtained the

list of literature-curated 232 autophagy-related genes from the HADb (Human Autophagy

Database http://autophagy.lu/clustering/index.html) and used it as a filter for the normalized

count matrix visualized as a heatmap. Shown in S5 Fig, several autophagy-related genes were

modulated by at least one drug treatments but not all of the drugs at the same time, so they do

not fit our drug-independent transcriptomic signature criteria. The volcano plot of the expres-

sion levels of the HADb gene list (S5B Fig) highlighted that only Klhl24 is differentially

expressed with a log2 fold chance between -0.5 and 0.5. The other 10 signature mRNAs have

not been previously associated with autophagy.

Mitoquinone is a mitochondrially-targeted agent and a known potent inducer of selective

autophagy in MDA-MB-231 cells [20]. In Fig 4A, we report the mRNA levels of the autophagy

signature mRNAs as a fold change over the corresponding non-treated sample after 5 μM

mitoquinone exposure for 18 hours.

All eleven mRNAs verified with Q-RT-PCR showed significant changes with mitoquinone

treatment while Phlda2 mRNA (the mRNA that did not pass the Q-RT-PCR confirmation)

did not change significantly. While all the mRNAs were upregulated during autophagy flux,

only Cdc25a was downregulated. Thus, the 11 mRNAs signature confirms mRNAs that are dif-

ferentially modulated during autophagy induction in a new cohort of samples using an orthog-

onal and unrelated autophagy inducer.
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To verify if the mRNAs of the drug-independent-cell independent autophagy signature are

expressed in vivo in breast cancer patients and how they correlate with clinical outcome measures,

we queried the KMplotter database (kmplotter.org) [7, 8, 19]. The levels of expression of 10 out of

the 11 mRNAs were significantly correlated with at least one reported patient outcome (Fig 4B).

In this table we summarize the level of expression of the signature mRNAs in patients (H for high

and L for low) and correlation with reported outcomes of Relapse-Free Survival in all patients

(RSF), Overall Survival in all patients (OS), and Relapse-Free Survival in ER+ Patients (RSF ER+).

Detailed data for every mRNA and each correlated outcome are depicted in S6–S8 Figs.

Not all signature mRNA levels were correlated with all three outcomes. In Fig 4B we

included the highest p value for each significant outcome association. If more than one

Fig 3. Drug induced gene set variation analysis and differential gene expression hierarchical clustering heatmap of gene set

variation analysis enrichment scores of hallmark pathways from RNASeq data. These data included n = 3 replicates that are

clustered under colored bar according to the treatment and cell line.

https://doi.org/10.1371/journal.pone.0262134.g003
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Fig 4. Testing the autophagy mRNA signature in an independent cohort of mRNAs in vitro and in a database of samples

from breast cancer patients. A) MDA-MB-231 cells were treated with 5 μM mitoquinone (Mito Q), a well characterized inducer

of autophagy, for 16 hours. Relative expression levels of the mRNAs from the autophagy signature were verified by Q-RT-PCR

and depicted in the graph as fold change upon untreated levels. B) The table lists: Pearson r value of correlation between RNA

Q-RT-PCR data and sequencing data; trend of the expression of the mRNA after the drug treatments where "means

upregulation, #means downregulation and "#means upregulated or downregulated depending on the drug/cell line; correlation

with better patient prognosis in different outcomes such as relapse-free survival (RFS), overall survival (OS), relapse-free survival

in ER+ patients only (RFS ER+) with high levels of mRNA expression (H) or low levels of mRNA expression (L); NS = non-

significant p� 0.05; Higher p value for the outcome correlations described in the previous column; Number of publications on

PubMed with the term search “autophagy and mRNA gene symbol” as of April 2021 and the presence of the mRNA in the

human autophagy database (HAD) or in the Kyoto Encyclopedia of Genes and Genomes (KEGG) as associated with an
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outcome is indicated in the parenthesis, the p value for each of those outcomes were lower or

equal to the indicated value. High levels of the mRNAs for Klhl24, Hbp1, Crebrf, Ypel2, CD22
and Ypel3 were correlated with better outcomes. In contrast, lower levels of the mRNAs for

Gdf15, Cdc25a, Ddit4 and Psat1 were associated with better prognosis in breast cancer patients.

In this broad analysis, Fbxo32 mRNA levels were not correlated with patient outcome.

When we analyzed all the expression levels of the 11 mRNAs as a group, we found even a

stronger association with RSF (p = 6.4x10-16), RFS ER+ (p = 0.00016) and OS (p = 1.2x10-6)

(Fig 4C).

Finally, we surveyed PubMed with the search terms [mRNA name] and [autophagy] to

identify if the genes in the signature list were previously associated with the autophagy process

(Fig 4B). As of April 2021, we found that Fbxo32 was present in 58 publications. Additionally,

we examined the human autophagy database (HADb http://autophagy.lu/) and found only

one of the signature mRNAs, Klhl24. Finally, the Kyoto Encyclopedia of Genes and Genomes

(KEGG https://www.genome.jp/kegg/pathway.html), reports Ddit4 in the autophagy pathway.

Thus, nine mRNAs have been previously associated with autophagy in the literature while

Ypel2 and Cd22 appear novel and worthy of further investigation.

We consider each of these transcriptomic findings to be novel, hypothesis-generating, and

warranting additional studies in the context of autophagy and breast cancer treatment.

Discussion

Autophagy is a fundamental mechanism that is conserved from yeast to mammals and has

been mostly characterized by genetic approaches and using non-human test models [1, 5].

A major limitation of available autophagy inhibitors used in human studies is their lack of

specificity combined with a lack of specific and quantitative biomarkers that could be lever-

aged for targeting autophagy in human diseases. For instance, a specific and quantitative

measurement of autophagy in-vivo is currently limited to the count of autophagosomes by

transmission electron microscopy (TEM) which is not a practical approach in a clinical set-

ting [5].

Since autophagy is a common survival response after cancer treatment, we speculated that

although acting through different mechanisms, the autophagy inducing drugs could have a

common transcriptional program that is occurring during an active autophagy flux. We exam-

ined mRNA as the most sensitive method for quantitation and rapid clinical applications.

Autophagy is both a post-transcriptional and a transcriptional mechanism and its master regu-

lators have been previously reviewed [1, 6]. Transcriptional signatures that highlight the

importance of autophagy genes, their genetic variants or their related non-coding RNAs have

been demonstrated to predict prognosis in breast cancer [21–24]. Our aim was to find specific

mRNAs that are transcriptionally upregulated or downregulated during the autophagy process

that provides a specific and quantitative measure of the process itself. We used several known

autophagy inducers and provide orthogonal measurement of the transcriptional profile by

RNA sequencing and Q-RT-PCR. While several drug specific pathways were activated (Fig

1E), only 12 common autophagy-related mRNAs were differentially expressed with 11 of them

and verified with Q-RT-PCR (S1 Fig). Based on PubMed, some (Ypel2 and Cd22) have not

been previously associated with autophagy and represent novel leads into autophagy signaling.

autophagy pathway. C) Cox Proportional Hazards Regression for the group of 11 mRNAs. High (red line) or low (black line)

levels of the average 11 gene expression values are correlated with patient’s outcomes with KM Plotter software. Patients’

outcomes studied are: RFS (relapse-free survival), OS (overall survival) and RFS for ER positive patients only. P values are in the

top left of each graph.

https://doi.org/10.1371/journal.pone.0262134.g004
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A search for [Klh24] and [autophagy] retrieved only 1 publication even though the association

between autophagy and Klhl24 is present in the human autophagy database (HADb). Indeed,

Klhl24 is a validated target of an established autophagy related microRNA (miR 124) [25], and

one of the mRNAs modulated by autophagy-inducing stimuli like rapamycin and serum star-

vation in cancer cells [26]. In our volcano plot depiction of the autophagy associated genes,

Klhl24 emerged as the only gene that changed significantly during the autophagy flux (S5B

Fig). Most of the genes previously associated with autophagy regulate this process at the pro-

tein level. During drug induced autophagy flux, the levels of autophagy associated genes

mRNA did not change significantly in all drug induced conditions. Thus, their mRNA levels

were not optimal to reliably measure changes in autophagy flux.

We summarized several observations on every mRNA of the signature in Fig 4B where we

describe if a correlation with better prognosis in patient outcomes is associated with higher or

lower values of expression of the mRNA. In the case of Klhl24, a better probability of relapse-

free survival in all breast cancer patients (RSF) and ER+ only patients (RSF ER+) was associated

with higher levels of the mRNA with a p� 6.5X10-7. Our data suggests that Klhl24 mRNA can

be used to monitor autophagy in patients undergoing breast cancer therapy. Studies that use

autophagy inhibitors or activators in combination with cancer therapies, with adequate sam-

pling and follow up with survival outcomes, could benefit from linking the autophagy levels

monitored through these mRNAs to the outcome. Indeed, very recently Klhl24 has been iden-

tified as part of an autophagy related signature in acute myeloid leukemia [27]. The only

mRNAs from our studies that was not linked to an outcome in breast cancer is Fbxo32 also

called Atrogin1. Interestingly, several publications that describe its role in autophagy primarily

related to its role in muscle atrophy. The other mRNA in the signature with abundant autop-

hagy-related publications is Ddit4 also called Redd1. In one study, the authors used KM-plotter

and other online tools to evaluate the association of Ddit4 with several types of malignancies

[7]. In this paper, Ddit4 is described as a prognostic biomarker in several malignancies includ-

ing breast cancer. Thus, we do not exclude that the mRNAs found in the signature, or their

protein counterparts, could have a wider role in cancer outcome and or autophagy regulation

but further studies are necessary to clearly distinguish and establish these claims. The mRNA

signature uncovers autophagy candidate biomarkers that can be easily measured during pre-

clinical and clinical studies to monitor the autophagy process and can be used to accelerate

development of specific autophagy modulators and more effective and targeted cancer

therapies.

Supporting information

S1 Fig. Q-RT-PCR verification on the drug-independent cell-independent signature. Rela-

tive expression of the 12 mRNAs plotted as fold change over the non-treated for each drug and

cell line. All the comparisons between untreated and drug treated within the same cells are sig-

nificant with p� 0.05 except when labeled with NS = non-significant (p> 0.05).

(TIF)

S2 Fig. Correlation analysis between Q-RT-PCR and RNA sequencing data on the autop-

hagy mRNA signature. Correlation graphs with fold change data from Q-RT-PCR on Y axis

and fold change data from the RNA sequencing data (NGS) on X axis. The numbers in the top

left corner represent the Pearson r value.

(TIF)

S3 Fig. Gene set enrichment analysis from the drug induced differentially expressed genes.

A) GSEA normalized enrichment score for each hallmark gene set in rapamycin, bortezomib,
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tamoxifen and trastuzumab treated cells. Positive normalized enrichment scores indicate gene

sets that are positively enriched in each treatment compared to control. Gene sets colored in

darker blue indicate higher statistical significance. Only sets with FDR < 0.05 are included in

the results. B) Venn diagram showing the overlap of significantly underrepresented hallmark

gene sets between rapamycin (pink), bortezomib (green), tamoxifen (orange) and trastuzumab

(purple) treated cells. C) Venn diagram showing the overlap of significantly overrepresented

hallmark gene sets between drug treatments. D) Venn diagram showing the overlap of signifi-

cantly correlated hallmark gene sets between drug treatments.

(TIF)

S4 Fig. KEGG gene set enrichment analysis from the drug induced differentially expressed

genes. GSEA normalized enrichment score for each KEGG pathway in rapamycin, bortezo-

mib, tamoxifen and trastuzumab treated cells. Positive normalized enrichment scores indicate

pathways that are positively enriched in each treatment compared to control. Gene sets colored

in darker blue indicate higher statistical significance. Only pathways with FDR < 0.05 are

included in the results.

(TIF)

S5 Fig. Autophagy associated genes transcriptional changes during autophagy flux. A)

Hierarchical clustering heatmap of gene expression values for the list of 232 autophagy-related

genes from the Human Autophagy Database in RNASeq data from untreated and treated

breast cancer cell lines. The arrow indicates Klhl24 mRNA. B) Volcano plot for 232 autophagy

genes from the Human Autophagy Database. Red and blue colored dots show genes that pass

the P-value threshold of<0.05 (horizontal line). The vertical lines are log2 fold change values

<-0.5 and>0.5 (red dot).

(TIF)

S6 Fig. Evaluation of autophagy signature on the relapse-free survival of breast cancer

patients. High (red line) or low (black line) levels of each gene are correlated with patient’s

outcome with KM Plotter software. P values are in the top right of each graph.

(TIF)

S7 Fig. Evaluation of autophagy signature on the overall survival of breast cancer patients.

High (red line) or low (black line) levels of each gene are correlated with patient‘s outcome

with KM Plotter software. P values are in the top right of each graph.

(TIF)

S8 Fig. Evaluation of autophagy signature on the relapse-free survival of ER+ breast cancer

patients. High (red line) or low (black line) levels of each gene are correlated with patient‘s

outcome with KM Plotter software. P values are in the top right of each graph.

(TIF)

S1 Raw image. Original uncropped images underlying all western blot membrane scans

used in Fig 1.

(TIF)

S1 Table. Logical matrix of significantly over-/under-represented or altered (over-repre-

sented in some conditions and under-represented in others) gene sets in cells treated with

rapamycin, bortezomib, tamoxifen and trastuzumab. Gene sets observed to be significantly

over-/under-represented or altered in all conditions are highlighted in yellow. Note that the set

of altered gene sets is a super-set of over-represented and under-represented gene sets.

(XLSX)
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