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Abstract

Malignant lymphomas are a family of heterogenous disorders caused by clonal proliferation 

of lymphocytes. 18F-FDG-PET has proven to provide essential information for accurate 

quantification of disease burden, treatment response evaluation, and prognostication. However, 

manual delineation of hypermetabolic lesions is often a time-consuming and impractical task. 

Applications of artificial intelligence (AI) may provide solutions to overcome this challenge. 

Beyond segmentation and detection of lesions, AI could enhance tumor characterization and 

heterogeneity quantification, as well as treatment response prediction and recurrence risk 

stratification. In this scoping review, we have systematically mapped and discussed the current 

applications of AI (such as detection, classification, segmentation as well as the prediction and 

prognostication) in lymphoma PET.
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Introduction

Lymphomas are a diverse group of hematologic malignancies, which can be broadly 

categorized into Hodgkin (HL) and non-Hodgkin diseases (NHL) and have a wide range 

of clinical presentations.1 2-deoxy-2-[Fluorine-18]fluoro-D-glucose (18F-FDG) positron 

emission tomography/computed tomography (PET/CT) is extensively used for staging and 

response assessment in HL and NHL.2, 3, 4, 5 The accurate and precise quantification of 

tumor burden in lymphoma is critical for prognosis and treatment response evaluation 

and prediction. 18F-FDG PET scans provide valuable information about the metabolism of 

lesions. This functional information combined with structural (CT or MRI) data can be 

used to assess the global disease burden in Alzheimer’s disease,6 Crohn’s disease,7 knee 

inflammation8 as well as lymphoma.9 Therefore, 18F-FDG PET/CT is extremely valuable in 

the noninvasive assessment of disease burden.10

To determine global disease burden, segmentation of all tumor lesions is a vital step that 

allows the measurement of metabolically active tumor volumes (MTV), mean activity of the 

lesion (SUVmean), lesion partial volume corrected metabolic volume product (PVC-MVP: 

calculated as the product of lesion MTV and lesion PVC-SUVmean), total metabolic tumor 

volume (TMTV: calculated as the sum of MTV of all lesions), total lesion glycolysis 

(TLG),11 whole-body metabolic burden (WBMB: calculated as the sum of lesion PVC-MVP 
of all lesions),10,12 metabolic heterogeneity (MH)13,14 and lesion dissemination (Dmax).15,16 

There are, however, various methods for the segmentation of tumor lesions (e.g. manual, 

thresholding-based, region-based, or boundary-based)17,18 each with high inter-observer 
variability depending on the operator and segmentation method.19,20 Furthermore, even 

for an expert, manual segmentation takes time (30–45 minutes per patient depending on 

tumor burden) as summary measurements of each lesion must be aggregated.19 Lymphoma 

lesion segmentation is a challenging task due to the large variability in number, size, 

distribution, uptake, the shape of lesions, and different degrees of glucose metabolism (Fig. 

1)21, 22, 23 Normal biodistribution of 18F-FDG creates physiologic intense activity either 

due to high metabolic rate (such as brain) or high concentration of excreted radiotracer 

(such as renal collecting ducts and bladder). This normal pattern significantly deteriorates 

the performance of the crude intensity-based detection and segmentation methods.24,25 

Automated segmentation and feature extraction approaches may be an exciting avenue to 

limit measurement discrepancies and cut image analysis to a fraction of the current required 

time.19

In general, the most critical aspects that should be evaluated during lymphoma PET 

are as follows: (1) quantification of disease burden,26,27 (2) evaluation of therapy 

response,28 and (3) extraction of additional image information used for prognosis and 

diagnosis of lymphoma.29,30 Artificial Intelligence (AI) has ample potential to achieve 
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the aforementioned goals by first performing automatic quantification, which entails (1) 

automatically identifying the location of the abnormality,31 (2) automatically segmenting 

the lesion,32,33 (3) summarizing each lesion to other dimensions (SUVmean, SUV max).10,34 

Finally, AI can enable registration at multiple points in time,35,36 scaling from one space 

to another. This allows evaluation of lymphoma before and after diagnosis or therapy.37,38 

Given such significant promise that AI has in other fields of medical imaging and sporadic 

relevant evidence specific to lymphoma PET, it is important to scope and map current 

applications of AI in lymphoma PET imaging. However, at the time of this publication, there 

has not been a review of various applications of AI as it pertains to lymphoma.

Thus, in this article, we first aim to scope the breadth of evidence and systematically map 

literature on the topic of AI applications in lymphoma PET to identify key concepts and 

disseminate research evidence on various AI models. We then depict the potential clinical 

utility of AI in PET imaging and anticipate future directions that can be expected for AI 

applications in lymphoma.

A list of abbreviations used in this article are shown in Box 1.

Methods

This scoping review was conducted following the preferred reporting items for systematic 

reviews and meta-analysis extension for scoping reviews (PRISMA-ScR) guidelines.39

Search Strategies

Bibliographic searches were performed in PubMed, EMBASE, Cochrane Library, and 

Google Scholar for articles published before September 1st, 2021. In PubMed/Medline, 

Medical Subject Headings (MESH) in all fields were searched for “Artificial Intelligence” 

(or Deep Learning or Machine Learning or Support Vector Machine (SVM) or 

Convolutional Neural Network (CNN) or Artificial Neural Network (ANN)) and “Positron 

Emission Tomography” (PET or PET-CT or PET-MR) and “lymphoma.” The remainder of 

the studies were identified through manual searches of bibliographies and citations until no 

further relevant studies were found. One investigator (N.H) independently screened titles and 

abstracts and selected relevant citations for full-text review.

Eligibility and Exclusion Criteria

Studies that reported the diagnostic measurement of an AI/ML/DL algorithm to investigate 

any type of lymphoma using PET were sought. Articles were excluded if the study was not 

written in English. All the nonpeer-reviewed material such as nonpeer-reviewed conference 

articles and archives as well as studies irrelevant to applications of AI in lymphoma PET 

imaging were excluded. Studies that comprised a development or assessment of an AI 

algorithm on PET imaging in human populations diagnosed with lymphoma or any subtypes 

were eligible. The search included all primary articles since the beginning of 2009.
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Data Extraction and Analysis

Key study characteristics (such as tasks/models, methods, results) for selected papers 

are summarized. According to the specification of the task—segmentation, classification, 

prognostication—the articles were categorized (Table 1). The details of methods and the AI 

architecture proposed were recorded. Study characteristics extracted were the purpose of the 

article, authors, year of publication, AI model design, proposed AI application, and ground 

truth (GT). Also extracted were information regarding sample size, training sample, testing, 

and validation samples as well as figures of merit (FoM) such as specificity, sensitivity, 

dice similarity coefficient (DSC), and Hausdorff distance (HD) (Table 2) depending on the 

proposed application of the algorithm (see Table 1).

Results

Search Results

We retrieved 1122 documents from initial searches; 1089 met the eligibility criteria for 

the title and abstract review and 75 met the final criteria for full-text review as shown 

in Fig. 2. After the screening process, 20 articles were included; these covered both the 

AI development and clinical assessment fields (see Fig. 2). All 20 papers examined AI 

applications in lymphoma PET imaging. These studies either developed an original model or 

evaluated a previously proposed AI model to perform detection, classification, segmentation, 

characterization, prediction/prognosis, or a combination of these tasks on PET/CT or 

PET images. The definition of the aforementioned tasks is provided in “Terminology for 

Elucidating Algorithm Aim” under the Results section.

Overview: Key Literature Characteristics

In this section, we will systematically examine how each study performed these tasks 

assigned to AI. We first identify the reported AI task (detection, segmentation, classification, 

radiophenomics), then determine the model’s input and output for that specific task. For 

instance, regarding the detection task, we identify the AI’s input, which is frequently in the 

form of pixels, and the output would be detecting areas suspicious for cancer (high FDG 

uptake). Table 1 summarized the results of each study as it pertains to the proposed model 

(such as CNN, ANN, and so forth), task (classification, detection, segmentation, prediction, 

prognosis, and so forth), FoM provided specific to each task (see Table 2), and the GT 

definition for evaluating the results. Based on the current literature, the 2 main applications 

for radiomics in lymphoma: distinguishing lymphomas as separate form other tumors, and 

prediction or prognostication of lymphomas.40

Appropriate GT and label for an imaging AI application are highly related to AI objectivity. 

PET images are often visually analyzed, and this may often lead to high inter-and 

intraoperator variability. Thus, it is a challenge to define optimal GT for datasets to be used 

for AI training, and a suboptimal GT will hamper the predictive accuracy of the model.41,42 

For these reasons, here, we present a definition of GT specific to the AI objective as 

provided by each of the studies (see Table 1).
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Terminology for Elucidating Algorithm Aim

Detection—Detection as a task refers to locating an area within an image that contains an 

object of interest with a stated level of certainty. This task often involves a combination of 

localization and some level of classification, finding a nodule in the lung is an example of a 

detection task. As referred to in Table 1, the input to an AI algorithm that performs detection 

should be a type of image (pixel/voxel), and the output should also be a location containing 

the object of desire.24 For example, Bi and colleagues use 3D WB, coronal 18F-FDG 

PET with CT slices (2 channels) as an input to detect individual regions of High Normal 

Activity (HiNA) (also referred to as sites of FDG excretion and physiologic FDG uptake 

(sFEPU) by Bi and colleagues) using their multi-scale superpixel encoding CNN model.24 

In addition, Sibille and colleagues proposed a model that automatically detects HiNA and 

lesions suspicious of lung cancer and lymphoma lesions50 (Fig. 3). Similarly, Wiseman and 

colleagues proposed a 3D DeepMedic model that implicitly learned information about the 

HiNA regions during model training achieving 85% detection TPR on average.49 Due to 

the increased heterogeneity of HiNA regions below the diaphragm (for example in bladder, 

kidney, and ureter) this model performed better above the diaphragm than the below.49

In this scoping review, we found 7 studies for lymphoma lesion detection in PET/CT 

imaging (see Table 1 - Yuan and colleagues (2021),46 Zhou and colleagues (2021)38 

Weisman and colleagues (2021),61 Sibille and colleagues (2020),50 Hu and colleagues 

(2019),56 Yu and colleagues (2018),57 Bi and colleagues (2017)24).

Segmentation—Delineation of the boundary of an object of interest given its location is 

referred to as segmentation.62 Accurate segmentation of lymphoma is an important task as it 

permits the extraction of both lesion-level (such as SUVmax and SUVmean) and whole-body 

quantitative metrics (such as TMTV) which provide important predictive and prognostic 

information.63,64 The image input data for the segmentation task can be as large as a 3D WB 

PET image or as small as a group of pixels.

The segmentation task which is the combination of localization and pixel/voxel level 

classification often has two inputs (1) the image that contains an object of interest (input 

1) (2) the location of that object of interest with a certain level of certainty (input 2). Input 

2 can either be a probability map of coarse region of the lesions, or single-pixel locations 

representative of the lesion locations which can be derived from a localization or a detection 

task. The output of segmentation is an image that encodes the membership of each voxel to 

the object of interest (this output can be referred to as a segmentation map).

The second input for the tumor segmentor can be entered manually (eg, Sadik (2019)52) 

or automatically (eg, Yuan and colleagues)46 into the system. In case of automatic input, 

the detection probability map results can be fed into the algorithm. This can be called a 

cascaded approach whereby all of the steps are performed separately and sequentially by one 

or several neural networks (Fig. 4). These techniques often divide the segmentation process 

into detection, and segmentation phases and provide specific evaluation metrics for each step 

along the way.
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In this scoping review, six studies performed the segmentation task (see Table 1- Pinochet 

and colleagues (2021)43 Yuan and colleagues (2021)46 Sadik (2019)52 Hu and colleagues 

(2019)56 Yu and colleagues (2018)57 Grossiord and colleagues (2017).58)

End-to-end segmentation—When the segmentation task is done in one step, we use 

the term end-to-end segmentation in which case the only input is the image data. These 

approaches optimize for efficiency and performance in terms of memory consumption and 

in case of limited access to well-annotated training data.65 An example, Weisman and 

colleagues proposed an end-to-end segmentation model that receives WB 18F-FDG PET and 

CT image through 2 channels and without an additional detection step, the CNN is able to 

provide a map of masked segmented lymphoma lesions with DSC of 0.86 (Fig. 5).48

In this review, there were 4 studies that performed the end-to-end lesion segmentation task 

(see Table 1 - Blanc-Durand and colleagues (2020),47 Weisman and colleagues (2020),48 Li 

and colleagues (2019),51 and Desbordes and colleagues (2016)59).

Classification—Through reviewing the literature, we recognized 2 distinct usages of 

the word classification. To avoid ambiguity, we have to clarify these terms here: in a 

mathematical and statistical context, categorization of members of a set to various classes 

is defined as “classification.” This is a broad meaning of this term, and we refer to this 

as “statistical classification.” However, in computer vision, classification has a narrower 

meaning. It refers to the categorization of an image. We refer to this meaning as “image 

classification.” For example, we refer to the process of using radiomic feature inputs 

to assign patients to different diagnostic or prognostic groups by the term “statistical 

classification” (Refer to Section “Prediction and Prognosis” under Results section). For 

example, Annunziata and colleagues22 used image features such as Deauville Score, 

qPET, MTV0 from end-of-treatment 18F-FDG PET, and CT to classify the prognosis of 

patients into “relapse” or “progression” classes. In contrast, the process of categorizing 

an image input (such as the axial slice of the PET) to normal versus abnormal is “image 

classification.” For example, Lippi and colleagues used a machine-learning algorithm that 

classified the lesions within the image into 4 malignant lymphoma subtypes: DLBCL, HL, 

follicular and mantle cell lymphomas.54 Radiomics signatures such as PET and CT textural 

features have shown very good performance to classify the disease sites from physiologic 

uptake sites and inflammatory nonlymphomatous sites. For instance, to classify an 18F-FDG 

avid lesion (benign vs malignant), Lartizien and colleagues developed an SVM and Random 

Forest (RF) model based on 12 different radiomic features extracted from PET and CT scans 

achieving Area Under the Curve (AUC) of 0.9160.

In this scoping review, there were 5 studies that performed image classification (see Table 

1.—Pinochet and colleagues (2021),43 Sadik and colleagues (2021),44 Guo and colleagues 

(2021),45 Lippi and colleagues (2019),54 Grossiord and colleagues (2017),58 and Lartizien 

and colleagues (2014).60

Prediction and prognosis—Recurrence is common in patients with HL and NHL, 

emphasizing the importance of risk stratification, prognostication, and relapse prediction 

based on PET studies. In the context of this paper, the task of prediction and prognosis 
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of lymphoma based on PET imaging is performed by statistical classification. The inputs 

in statistical classification are radiomic features (eg, SUV, TMTV, TLG, entropy among 

others). These inputs are used to inform the output in the form of a prognostic or predictive 

classification.65

Baseline TMTV can be used for risk stratification and be a prognostic factor in a range of 

lymphomas (DLBCL, primary mediastinal B-cell lymphoma (PMBCL) and HL).11,66 This 

is exemplified by Vercellino and colleagues, whereby the authors analyzed the prognostic 

capability of TMTV in patients aged 60 to 80 with DLBCL and found that a high baseline 

TMTV indicates poorer PFS and OS.66

In addition to the usage of a singular radiomic feature to predict and prognose lymphoma, 

some studies may combine various radiomic features to perform the same task. Mayerhoefer 

and colleagues used both the maximal standardized uptake value (SUVmax) and entropy to 

predict survival in mantle cell lymphoma (MCL).22,43,55 Entropy is a measure of glucose 

metabolism heterogeneity within the TMTV.55 Demonstrating the concept of combination 

of radiomic features to predict and prognose, Mayerhoefer and colleagues, used entropy 

(heterogeneity of glucose metabolism) as well as TMTV and SUVmax for the prediction and 

prognosis of PFS in mantle cell lymphoma patients with 0.72 AUC.55

In this scoping review, we found 3 studies that performed the statistical classification of 

lymphoma (see Table 1. Pinochet and colleagues, Annunziata and colleagues, Mayerhoefer 

and colleagues22,43,55)

Discussion

The major objective of this study is to review recent papers in the field of artificial 

intelligence-based PET medical imaging in lymphoma. According to our findings, the most 

prevalent uses of artificial intelligence in lymphoma PET imaging are presently focused on 

tumor burden evaluation (detection, segmentation, and advanced quantification of lesions). 

In our discussion, we focus on two key themes derived from our research findings. First, 

we review the implications for the clinical transition of AI-based applications in lymphoma 

patient care. Next, we cover some critical concepts that clinicians should consider when 

evaluating and validating AI algorithms. In addition, we offer our thoughts on the field’s 

future directions.

Clinical Implementation of Artificial Intelligence in the Management of Lymphoma

Currently, a prominent objective in lymphoma PET image quantification is the evaluation 

of disease burden by TLG and TMTV, which requires the detection and segmentation of all 

lesions.67,68 In this workflow, a major bottleneck toward improved prognostic pipelines and 

treatment planning is the segmentation.51,69 This is in part due to the time-consuming task of 

manual segmentation and a high degree of intra- and interobserver variability.70,71

AI approaches can help by: (1) Automated detection and segmentation (fully-automated) 

and32,58,72(2) user detection/selection of the lesion followed by AI-based segmentation 

(semi-automated). A clear advantage of a fully automated AI model is that it can further 
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enhance the workflow without requiring the nuclear radiologist to identify each lesion 

separately. Given the extent of lymphomatous involvement, individual identification of 

each lesion could be time-consuming, and unlikely feasible in the routine workflow given 

clinical demands and traditionally available resources. A few studies carried out a fully 

automatic disease burden assessment of lymphoma on PET images (see Table 1- Pinochet 

and colleagues,43 Bi and colleagues,24 Li and colleagues,51 Blanc-Durand and colleagues47). 

For example, Grossiord and colleagues used RF classifier and morphologic hierarchy 

to first extract PET and CT image features to classify lesions into 3 categories: organ, 

tumor, and nonrelevant. Then, they automatically segment lesions into the tumor category.58 

Although fully automated models can remove a layer of physician lesion identification 

from the workflow, semiautomated models may provide other benefits in terms of accuracy 

or precision. Human involvement in semiautomatic methods manifests in 2 ways: (1) 

Presegmentation human-based lesion detection and identification + automatic segmentation 

of the identified lesion (2) Automatic detection and segmentation of lesions with high 

false-positive rate and reliance on human agents to select the real lesions and discard 

the false-positives. As an example of the human selection of real lesions and deletion of 

false-positives, Yu and colleagues57 manually identified lesions of true lymphoma after all 

possible detected lesions were automatically segmented.57

The biodistribution of 18F-FDG creates regions with HiNA (for example in kidneys, bladder, 

brain, and heart) which can cause inaccurate AI-based identification and segmentation of 

lymphoma lesions. However, to improve the performance of a model one may attempt to 

exclude HiNA regions from the scene before the process of lesion detection. This may 

be conducted manually or automatically as a pre or postprocessing step.51,73 By removing 

the HiNA regions from the training data, the performance of automated AI techniques for 

lesion detection and segmentation can be improved. For example, Yu and colleagues used a 

semiautomatic approach to identify and remove HiNA regions followed by an AI algorithm 

to automatically detect lymphoma lesions in patients.57 For the purpose of improving 

workflow and integration into clinical practice, an end-to-end lymphoma detection AI 

algorithm can be trained to combine the task of HiNA region identification and detection of 

lymphoma regions.

We previously discussed methods of lymphoma segmentation on 18F-FDG PET/CT studies. 

Along with simplifying the clinician’s workflow, automatic segmentation of lymphoma 

lesions can enable end-to-end prognostication and radiomic analysis of the studies to gain 

valuable insight into therapy augmentation, remission planning, and recurrence prediction. 

There are 2 avenues for downstream prediction and prognosis of lymphoma: (1) an end-

to-end prognostication/prediction task (whereby the image input is processed to output a 

prognostication/risk stratification category directly, with no reporting of the intermediate 

steps; for example Sadik and colleagues),44 or (2) a radiomic analysis based prognostication, 

which is carried out as a secondary step after explicit segmentation. For example, Guo and 

colleagues11 employ deep radiomics by using a neural network to derive deep features. 

Deep features, in contrast to handcrafted features of classical radiomics, are not predefined; 

a CNN learns features of interest depending on the task at hand and the input images. 

Automatically segmented lesions can also be entered into a classic radiomics pipeline to 

derive handcrafted features such as SUV, volume, or entropy. These features are predefined 
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by formulas and can be statistically analyzed to derive prognoses or a risk stratification 

schema. A range of studies showcasing classification, prognostication, and prediction based 

on 18F-FDG-PET radiomic features is presented in Table 3.

Important Considerations for Evaluating and Validating Artificial Intelligence in Lymphoma 
Positron Emission Tomography

The transition of AI-based technologies to patient care requires important considerations 

that are both general for any AI algorithm and specific to lymphoma. In addition to 

the accuracy of the lesion detection and segmentation, it is very important to report the 

amount of time clinicians should dedicate to verify and correct model outcomes. Lumped 

sensitivity and specificity for lesion detection are not reflective of clinical significance as 

some lesions are much more important than others and “critical misses” are not tolerable. 

In both detection and segmentation tasks, missed lesions occur particularly for the interim 

scans with shrunk tumors or patients with smaller lesions. TMTV, as the only figure of merit 

for the assessment of detection/segmentation, may undermine the smaller missed lesions. 

To address this shortcoming, additional performance evaluation measures such as the Dmax 

and MH should be used to define a task-specific composite FoM. Weisman and colleagues 

characterized the results of their end-to-end segmentation using SUVmax, MTV, TLG, SA/

MTV, Dmax to depict a well-rounded assessment of the CNN performance.48

As demonstrated in Table 1, the studies use a range of different methods to determine their 

GT based on which the AI algorithm is tested. Therefore, a degree of uncertainty is expected 

due to this nonuniformity.92 A standardized approach for GT determination must be sought 

as it can be less user-dependent and capable of constructing generalizable algorithms.49

Future Directions

After a review of current trends in AI applications in the PET imaging of lymphoma, we aim 

to place a special focus on describing likely future directions in this field. The discussion 

related to the future directions is primarily aimed at depicting the potential clinical utility of 

AI in the management of lymphoma with 18F-FDG-PET imaging.

From spatial domain to spatiotemporal realm—Current AI-based methods rarely 

use prior images in their models. This is counterintuitive for clinicians who consider prior 

images as one of the most important sources of information.93, 94, 95 In clinical practice, 

temporal changes in a lesion may provide much more useful information than imaging 

features of a lesion in one study. As an example, conventional PET radiomics methods 

usually use a single-time-point for analysis, which does not take into account the interim 

change of the lesions throughout the treatment process.96 However, “Delta-radiomics”95 

appraise the change in radiomic features during or after treatment to enhance information 

extraction.95,97 Several studies have shown that CT-based Delta-radiomics can be used 

for the prediction of lung cancer, gastric cancer, and also the detection of side effects to 

radiation therapy.94,98, 99, 100 Therefore, this method will be better suited to evaluate tumor 

response of treatment.56 Creation of the Delta image permits identifying any posttreatment 

tumor transformations.94,101 The difference between the baseline and interim parameters 

may be measured (ΔSUV, ΔMTV, ΔTLG, and ΔADC) for this purpose.102 Delta radiomics 
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as a quantitative assessment can be used for the evaluation of the changes over time and 

for the prediction of treatment response earlier in the treatment course.101 Time-interval 

changes in the features such as SUVmax, TMTV, MH, and Dmax and the other features 

can be considered as the complementary important features that have not been considered 

before, especially for analysis of lymphoma data.

Using AI capabilities to generate and visualize Delta images will provide insight into 

the intralesional tumor heterogeneity, such as when a piece of a bulky tumor shrinks/

improves while the other portion of the lesion grows. This capacity will be revolutionary 

for the detection and evaluation of tumor heterogeneity and heterogeneous response of 

tumor colonies to therapies. Future studies should also determine how to appropriately 

visualize the Delta image for better interpretability. Furthermore, the quantification of Delta 

images and identification of nonresponders at an earlier stage is a key direction AI-based 

algorithms can move toward.103 This utility allows the optimization of treatment or biopsy 

of the non-responding lesion (or portion of a lesion) for new mutations. By identifying 

the nonresponder region of the tumor clinicians will also be able to use external beam 

radiation or percutaneous ablation sooner during lymphoma treatment. Recommendations 

for posttreatment lymphoma recurrence surveillance using AI-based PET imaging can be 

included in guidelines. Particularly in those with cancer remission, the Delta image could 

allow important insights on early and accurate detection of potential recurrence.

From data silos to large shared databases—Accessible, high-quality, and diverse 

imaging datasets are essential for accelerating the development of AI algorithms in 

lymphoma and successful transition of these technologies into routine clinical practice.104 

These repositories can bypass many barriers for researchers and diversify the patient 

population and their lymphoma subtypes, therefore, improving the generalizability of 

the algorithms. Especially when these datasets include multi-centric GT data and were 

generated by expert with varying levels of experience to recreate the heterogeneities that 

exist in real clinical practice rather than a controlled setting for biomedical research.

Currently, there is no centralized publicly available medical imaging data repository for 

lymphoma. There have, however, been minor initiatives to establish open access data 

sets. The Cancer Imaging Archive (TCIA) contains almost 31 million de-identified cancer 

medical images that are accessible to the public105 which includes CT and 18F-FDG 

PET studies of 155 DLBCL patients.106 Additionally, the National Institutes of Health 

(NIH) has made available over 10,500 labeled CT imaging studies of 4400 different 

patients (DeepLesion dataset) with lung nodules, liver tumors, enlarged lymph nodes, and 

other critical findings throughout the body.107 With the rapid growth of AI algorithms in 

lymphoma PET imaging, there is an increasing demand for institutional collaboration to 

enable the gathering and curation of both large data sets and labeled images necessary for 

the establishment of centralized yet diverse open access data repositories.

Summary

Almost 35 years after the first utilization of 18F-FDG PET in lymphoma,108,109 this 

modality has proven its value in a wide spectrum of management from diagnosis and 
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staging to treatment response assessment and prognostication. Alongside the significant 

improvement in treatment measures, from biological agents110 to CAR-T cell therapy,111 

there have been substantial efforts to improve the quantitative aspect of 18F-FDG PET 

to produce robust, reliable, and feasible metabolic imaging biomarkers. Establishment of 

PERCIST was a monumental event,112 2 years after universal acceptance of PET imaging 

for lymphoma response assessment by International Working Group (IWG).113 18F-FDG 

PET was extremely successful in the elimination of “complete remission unconfirmed” 

(CRu) category in treatment response assessment. CRu was assigned to patients with a 

residual mass detected by CT after treatment that was unlikely to be malignant. Lugano 

classification,1 a consensus document of the 11th International Conference on Malignant 

Lymphoma, reemphasized the role of 18F-FDG-PET. Advancement of biological agents 

underscored the importance of the “tumor flare” phenomenon (pseudo-progression) and 

resulted in the refinement of Lugano classification by the introduction of immune-related 

criteria (IRC)114 emphasizing the importance of clinical context in the process of image 

interpretation and quantification.

Treatment failure is the major problem in the management of patients with lymphoma and 
18F-FDG-PET has been providing valuable information to predict this event115,116 and guide 

the treatment (response-adapted therapy).117,118 Furthermore, the importance of biologic 

heterogeneity in treatment failure119 motivated the molecular imaging community to detect 

and quantify this heterogeneity using Radiomics.119

In spite of all these achievements, the clinical adaptation of quantitative PET-based imaging 

biomarkers has been limited so far. Workflow integration barriers are one of the major 

contributing factors. Deep learning has the potential to make this process more efficient and 

more precise at the same time and this will open the door for all the subsequent utilization 

of PET-based imaging biomarkers. But the utility of AI is not limited to lesion detection and 

segmentation. Almost 20 years after wide utilization of 18F-FDG-PET in lymphoma, we are 

experiencing a major transformation powered by AI affecting the entire imaging lifecycle: 

from scheduling and operational tasks [Beegle and colleagues’ article “Artificial Intelligence 

and Positron Emission Tomography Imaging Workflow: Technologists’ Perspective,” in 

this issue], to image acquisition optimization [Muhammad Nasir Ullah and Craig S. 

Levin’s article, “Application of Artificial Intelligence (AI) in Positron Tomography (PET) 

instrumentation,” in this issue], enhancement of image reconstruction120 and harmonization 

of the images121 toward high-throughput imaging biomarkers122 and multi-omics data 

integration for prediction and prognosis [Yousefirizi and colleagues’ article, “Artificial 

Intelligence-Based Detection, Classification and Prediction/Prognosis in PET Imaging: 

Towards Radiophenomics,” in this issue].123
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Key points

• One of the most serious issues in the management of lymphoma patients is 

treatment failure.

• Accurate quantification of tumor burden using 18F-FDG-PET is an important 

method for therapy response assessment and prediction.

• Artificial Intelligence (AI)-based PET approaches could make this process 

more efficient, precise, and pave the way for future PET-based imaging 

biomarker applications.

• In addition to streamlining the workflow, AI can enable segmentation 

and radiomic analysis to acquire prognostic information regarding therapy 

augmentation, remission planning, and recurrence prediction.
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Box 1

Abbreviations

AI Artificial Intelligence ML Metabolic Heterogeneity

CNN Convolutional Neural Network MTV Metabolic Tumor Volume

DL Deep Learning NHL Non-Hodgkin Lymphoma

DLBCL Diffuse Large B-cell Lymphoma NM Nuclear Medicine

FP False Positive OS Overall Survival

FN False Negative PFS Progression-Free Survival

18F-FDG 18F-fluorodeoxyglucose RF Random Forest

HL Hodgkin Lymphoma SVM Support Vector Machine

HiNA High Normal Activity TLG Total Lesion Glycolysis

ML Machine Learning TMTV Total Metabolic Tumor Volume
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Clinics care points

• In order to efficiently extract valuable information about tumor biology from 
18F-FDG-PET, we need to move beyond SUV measurement. The first step in 

this path is detection and delineation of hypermetabolic lesions.

• AI based methods have the potential to provide clinicians with a high 

throughput platform to perform these steps efficiently and accurately.

• Clinicians should be aware of pearls and pitfalls of AI algorithms. Deep 

learning is very efficient when utilized in the correct setting and could be 

prone to bias and aberrant performance if used out of scope of training and 

testing. It is ultimately the responsibility of physicians and the healthcare 

system to verify the trustworthiness and reliability of AI as Medical Devices 

(AIMDs).

• Despite their significant advances, PET-based AI applications have had 

limited clinical implementation. Immaturity of PACS architecture is among 

the important reasons. AI orchestrators will play an important role in future of 

imaging workflow.
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Fig. 1. 
Examples of different sizes and distributions of tumor in 5 patients with diffuse large B-cell 

lymphoma25.

(From Barrington SF, Meignan M. Time to Prepare for Risk Adaptation in Lymphoma by 

Standardizing Measurement of Metabolic Tumor Burden. J Nucl Med. 2019;60(8):1096–

1102: under Open Access Creative Commons License https://creativecommons.org/

licenses/by/4.0/)

1. Download : Download high-res image (173KB)

2. Download : Download full-size image
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Fig. 2. 
Demonstrates the summary of the literature search strategies and the results at each stage.

1. Download : Download high-res image (331KB)

2. Download : Download full-size image
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Fig. 3. 
Maximum intensity projection 18F-FDG PET/CT images were processed in 2 patients 

using the constructed CNN. The test data consists of patients with both lung cancer and 

lymphoma; the detected lesions are color coded accordingly. IASLC is the abbreviation for 

the International Association for the Study of Lung Cancer.

(From Sibille L, Seifert R, Avramovic N, et al. 18F-FDG PET/CT Uptake Classification in 

Lymphoma and Lung Cancer by Using Deep Convolutional Neural Networks. Radiology. 

2020;294(2):445–452; with permission.)

1. Download : Download high-res image (584KB)

2. Download : Download full-size image
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Fig. 4. 
Schematic of a proposed cascaded model for PET tumor segmentation; Module 1, classifies 

the axial slices to suspicious and non-suspicious ones; Module 2, detects the lymphoma 

lesions in axial slices that are a candidate by Module 1. In Module 3, the 3D PET image and 

detection results are given to the tumor segmentation algorithm to segment the lesions inside 

the bounding boxes provided by Module 2.

1. Download : Download high-res image (278KB)

2. Download : Download full-size image
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Fig. 5. 
CT and coronal PET multicenter images are input to 3 segment layers, there are then 8 

convolution layers and two fully connected layers that subsequently generate a probability 

map for lymphoma lesions as shown in purple.

(From Weisman AJ, Kim J, Lee I, et al. Automated quantification of baseline imaging PET 

metrics on FDG PET/CT images of pediatric Hodgkin lymphoma patients. EJNMMI Phys. 

2020;7(1):76: under Open Access Creative Commons License http://creativecommons.org/

licenses/by/4.0/.)

1. Download : Download high-res image (533KB)

2. Download : Download full-size image
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Table 1.

Summary of characteristics of selected literature

Author (Year) Tasks Performed Task Specific Input/Out FoM Details (Model-
Related)

Details (Ground Truth, 
Sample Size)

CNN Models

Pinochet et 
al,43 2021

Classification 
(Radiophenomics)

Input: 2D; WB; axial/
sagittal/coronal 18F-FDG 
PET slice
Output: slice-level 3-
category classification 
(Benign, Malignant, 
Equivocal lymph nodes)

AUC = 0.62 Evaluate PET Assisted 
Reporting System 
(PARS-PET) by 
Siemens on DLBCL 
patients
CNN model: PET 
Assisted Reporting 
System (PARS)

GT: 2 NM physicians 
segmented DLBCL 
lesions
Testing: 119 patients 
(research cohort) + 430 
patients (routine cohort)

Segmentation Input 1: 2D; WB; axial/
sagittal/coronal 18F-FDG 
PET slices
Input 2: detection map 
provided by PARS 
prototype software
Output: 2D; segmented 
lesions with borders 
masked on PET slice

DSC = 0.65 
(research cohort)
DSC = 0.48 
(routine cohort)
TMTV ICC = 
0.68 (research 
cohort)
TMTV ICC = 
0.61 (routine 
cohort)

Statistical 
Classification 
(Prediction/
Prognosis)

Input: TMTV value 
from WB PET 
Image (Method: TMTV 
thresholding)
Output: Prognostication 
(PFS, OS)

OS Hazard ratio 
= 2.4
PFS Hazard ratio 
= 2.1

Sadik et al,44 

2021
Classification 
(Radiophenomics)

Input: 2D; WB; sagittal/
coronal/axial; 18F-FDG 
PET slice and CT slice (2 
channel input)
Output: Pt-level 4-class 
classification [high vs 
low diffuse bone marrow 
uptake] × [presence vs 
absence of focal lesion])

PA = 0.85
Kappa = 0.41

Highlight foci of 
skeletal and bone 
marrow uptake in 
Hodgkin’s Lymphoma 
patients
CNN model: based on 
RECOMIA prototype

GT: 10 independent 
experienced NM 
clinicians classified 
lesions
Training: 156 patients
Testing: 49 patients

Guo et al,45 

2021
Characterization 
(deepRadiomics)

Input: Manually 
segmented lesions (3D; 
axial; 1 channel: Rank 
3 Tensor [combined 18F-
FDG PET and CT])
Output: 16 × 8 feature 
maps, total of 128 
features

AUC = 0.88 (for 
PSI)
PSI-based PFS 
prediction:
Spec = 0.80, Sens 
= 0.83, Accuracy 
= 0.85

Extraction of feature 
maps surrogates for 
prognosis prediction in 
nasal ENKTL.
Proposes PSI be a 
predictor of PFS; PSI 
is the ratio of the PPV 
to NPV
Model: Weakly 
supervised deep 
learning (WSDL) 
based on 
Residual Network-18 
(ResNet-18) and PNU 
classifier.

GT: 1 NM physician (15 
y experience) segmented 
nasal ENKTL lesions
Training sample: 64 
patients
Testing: 20 patients

Statistical 
Classification 
(Radiophenomics)

Input: Prediction 
similarity index (PSI) 
derived from image 
features
Output: Relapsed vs 
nonrelapsed classes for 
ENKTL

Yuan et al,46 

2021
Detection Input: 2D; axial; neck/

chest/abdomen; 18F-FDG 
PET slice and CT slices 
(2 channel input)
Output: 2D; axial; 
detection map with 
lesions in rectangular 
boxes

Sens (chest) = 
83.2%,
Spec (chest) = 
99.75%,
Accuracy = 
99.5%

Hybrid Learning for 
feature fusion of 
DLBCL Segmentation
Hybrid CNN models 
can create feature 
fusion maps and 
quantify the spatial 
contributions of each 
modality.
PET and CT image 
feature-based hybrid 
learning CNN model 
architecture

GT: 1 physician manually 
segmented DLBCL 
lesions
Training and Validation: 
Cross-validation using a 
dataset with total of 1242 
PET-CT slice pairs from 
45 PET-CT samples
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Author (Year) Tasks Performed Task Specific Input/Out FoM Details (Model-
Related)

Details (Ground Truth, 
Sample Size)

Segmentation Input 1: 2D; axial; neck/
chest/abdomen; 18F-FDG 
PET slice and CT slices 
(2 channel input)
Input 2: Detection map 
results
Output: lesions border 
segmentation map

DSC = 0.73,
MHD = 4.38 mm

Zhou et al,38 

2021
Detection Input: 2D; axial/coronal; 

WB 18F-FDG PET/CT 
(1 channel) or 18F-FDG 
PET alone
Output: Map of detected 
mantle cell lymphoma

Sens = 0.88
FP/patient = 15
For outside-
institute patients 
Sens = 0.84 FP/
patient = 14

Xception-based U-Net 
Localized lesions on 
PET/CT and labeled 
each pixel as MCL or 
not MCL.
High FPs/patient needs 
to be corrected through 
physicians’ inspection

GT: 3 NM physicians 
each with more than 10 
y of experience identified 
and contoured MCL 
lesions
Training: 110 patients
Validation: 5-fold cross-
validation
Testing: 32 outside-
institute patients

End-to-end 
Segmentation

Input: 3D; coronal; WB; 
18F-FDG PET and 3D 
CT 2 separate channels
Output: Mask of 
segmented lesions with 
calculated TMTV on 
18F-FDG PET/CT

JSC = 0.60,
DSC = 0.73
Predicted TMTV 
R = 0.88, 0.82 in 
first cohort, 
second cohort, 
respectively

Fully automatic 
segmentation of 
DLBCL lesions for 
total MTV prediction – 
3D 18FDG-PET/CT

GT: masks were 
manually obtained 
with 41% SUVmax 

adaptive thresholding. 
TMTV protocol from 
LIFEx used for 
VOI semiautomatically 
segmented. 2 experienced 
physicians reviewed 
clustering results and 
remove physiologic 
uptakes
Training: 639 patients
Validation: 5-fold cross-
validation
Testing: 94 patients

Weisman et 
al,48 2020

End-to-end 
Segmentation

Input: 3D; coronal; WB; 
18F-FDG PET and CT 
image (2 channels)
(Hidden input 2: 
integrated detection of 
lymph node map by 
DeepMedic)
Output: Map of masked 
segmented lesions

DSC = 0.86 Measures PET 
imaging features in 
pediatric lymphoma 
PET/CT scans in 
a fully-automated 
fashion.
Model: an ensemble of 
3 DeepMedics

GT: 1 NM physician 
with 11 yrs of 
experience segmented and 
determined malignancy 
status at lymph nodes
Training/validation: 80 
patients
Testing: 20 patients

Characterization 
(Radiomics)

Input: 3D; coronal; WB; 
PET-CT slices with 
segmented lesions
Output: SUVmax, MTV, 
TLG, SA/MTV, measure 
of disease spread 
(Dmaxpatient)

R = 0.95

Weisman et 
al49 (with 
Kieler) 2020

Detection Input: 2D; coronal; WB; 
18F-FDG PET slice (from 
PET/CT)
Output: Lymph nodes 
probability map 
contoured

TPR = 0.85
4 FP/patient

Automated detection 
of diseased lymph 
node Burden in 
lymphoma patients – 
PET/CT
Model: an ensemble of 
3 DeepMedics

GT: 1 NM physician 
with 11 yrs of 
experience segmented and 
determined malignancy 
status at lymph nodes
Training: 58 patients
Testing: 90 patients

Sibille et al,50 

2020
Detection 
(localization + 4-
category 
classification 
suspicious vs 
nonsuspicious for 
lung cancer or 
lymphoma)

Input: 2D; coronal; WB; 
18F-FDG PET slice fused 
with CT, MIP, anatomic 
atlas
Output: Map of detected 
lesions classified 
under [suspicious or 
nonsuspicious] × [lung 
cancer or lymphoma]

For Localization: 
Sens = 0.81, Spec 
= 0.97, accuracy 
= 0.96 (for body 
parts), 0.87 (for 
region), 0.81 (for 
subregion)
For 
Classification: FP 
= 1.47 (96 of 65), 

18F-FDG Uptake 
Classification in 
Lymphoma and Lung 
Cancer – using CT, 
PET, MIP, and atlas 
information

GT: 2 NM physicians 
annotated and segmented 
foci with increased 18F-
FDG uptake specified the 
anatomic location and 
classified.
Training: 380 patients
Validation:126 patients
Testing: 123 patients
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Author (Year) Tasks Performed Task Specific Input/Out FoM Details (Model-
Related)

Details (Ground Truth, 
Sample Size)

FN = 1.76 (of 
65), AUC = 0.98

Li et al,51 

2019
End-to-end 
Segmentation

Input 1: 2D; axial; WB; 
18F-FDG PET and CT 
slices (6 channels)
(Hidden input: single 
pixel probability map of 
lesions)
Output: segmentation 
map of lymphoma

DSC = 0.73,
Precision = 0.70,
Recall = 0.81

End-to-end lymphoma 
segmentation – WB 
PET/CT
Model details: 
DenseX-Net

GT: 3 clinicians 
delineated images, then 
verified and revised by 1 
nuclear medicine expert
Validation: 5-fold cross-
validation
Testing: 80 patients

Sadik,52 2019 Segmentation Input 1: 2D axial/sagittal, 
coronal CT (3 channels)
Input 2: manually 
detected liver and aorta
Output: Segmentation of 
liver and aorta

DSC = 0.95 Automated calculation 
of liver and aortic 18F-
FDG uptake levels to 
serve as a reference 
for therapy response 
classification in HL 
and NHL
CT segmentation maps 
were resampled to 
fit the 18F-FDG-PET 
image in order to 
calculate SUVmedian
Model details: 
CNN adopted from 
Goodfellow et al,53 

2016

GT: 2 radiologists 
segmented images
Training: 80 patients
Validation: 6 patients

Bi et al,24 

2017
Detection Input: 3D; WB; coronal; 

18F-FDG PET with CT 
slices (2 channels)
Output: 3D; WB; 
coronal; map of sFEPU 
regions (ie, Left, and 
right kidneys, bladder, 
brain, heart)

DSC: 0.92 Automatic detection 
of superpixel regions 
of FDG uptake of 
lymphoma regions
Model details: MSE + 
CFSC

GT: 1 experienced 
operator manually 
identified ROI using 
PERCIST thresholding 
and the diagnostic report 
of PET-CT scan
Training: 1.5 million 
nonmedical images, 
validated: 50,000 
nonmedical images
Testing: 11 patients

Classic Machine Learning Models

Annunziata et 
al,22 2021

Statistical 
Classification 
(Prediction/
Prognosis)

Input: Deauville 
Score, qPET, MTV0, 
slope (slope of 
a linear function 
of MTV) features 
from 3D; axial/coronal 
end-of-treatment than 
beginning-of-treatment 
18F-FDG PET and CT 
slices
Output: Patient-level 2-
class prediction (relapse 
vs progression)

PPV = 0.55, NPV 
= 0.83 (for DS 4–
5)
PPV = 0.89, NPV 
= 0.82 (for 
positive qPET)
R = 0.63 (for 
ANN)

Assess the prognostic 
capacity of post-
treatment 18F-FDG-
PET/CT in DLBCL 
patients
Model details: multi-
regression model, 
ANN

GT: 2 NM physicians 
independently evaluated 
using a dedicated fusion 
and display software
Training: 26 patients
Testing: 11 patients
K-fold cross-validation

Lippi et al,54 

2020
Classification 
(Radiophenomic)

Input: 3D; WB; coronal 
18F-FDG PET slices
Output: Patient-level 4-
class classification of 
malignant lymphoma 
(DLBCL, HL, follicular 
and mantle cell 
lymphoma)

Sens = 0.97,
PPV = 0.94

Texture analysis 
and classification of 
malignant lymphoma
Model details: SVM + 
RF

GT: 1 NM physician 
with 5 y of experience 
extracted VOIs using a 
40%-threshold of SUVmax

Evaluation: leave-one-out 
procedure, whereby each 
patient was used, in turn, 
as the test set, and all the 
other patients constituted 
the training set.

Mayerhoefer 
et al,55 2019

Statistical 
Classification 
(Prediction/
Prognosis)

Input: TMTVs, SUVmean, 
TLG, entropy, and 15 
other textural radiomic 
features
Output: Patient-level 3-
category metabolic risk 

AUC = 0.72 Radiomic features 
for prediction of 
outcome in mantle cell 
lymphoma
International 
prognostic indices for 

GT: TMTV protocol 
used to semiautomatically 
construct with 41% 
SUVmax threshold
Training: 75 patients
Testing: 32 patients
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Author (Year) Tasks Performed Task Specific Input/Out FoM Details (Model-
Related)

Details (Ground Truth, 
Sample Size)

(low, intermediate, high) 
of progression

MCL = MIPI and 
MIPI-b
Model details: 
Multilayer perceptron 
feed-forward ANN

Hu et al,56 

2019
Detection Input: 3D; WB; coronal/

axial/sagittal 18F-FDG 
PET slices and CT slices 
(2 Channels)
Output: 3D probability 
map of the segmented 
lesion (normal organ and 
tumors)

Sens = 0.80,
DSC = 0.59

Physical spatial 
characteristics of the 
lesions along with 
prior knowledge were 
used to optimize the 
technique.
Density-based spatial 
clustering of 
applications with noise 
(DBSCAN)

GT: Segmentation ground 
truth obtained by 41% 
SUV max thresholding, 
no information on the 
physicians
Testing: 48 patients

Segmentation Input1: 3D; WB; 
coronal/axial/sagittal 18F-
FDG PET slices and CT 
slices (2 Channels)
Input2: Detection results
Output: 3D, coronal/
axial/sagittal slice with 
segmented normal organ 
and tumor lesions.

Dref (DSC) = 
0.74,
Dglobal = 0.50,
Volumesup = .39

Yu et al,57 

2018
Detection Input: 2D; WB; coronal/

axial/sagittal 18F-FDG 
PET slices and CT slices 
(2 Channels)
Output: probability map 
of detected lymphoma 
lesions

Sens = 1.0 Semiautomatic 
lymphoma detection 
and segmentation

GT: 1 physician 
contoured images
Training/validation: 11 
patients

Segmentation Input1: PET/CT images 
with physiologic 
hypermetabolic organs 
removed.
Input2: Detection results
Output: Border mask 
segmentation visualized 
on software on axial, 
sagittal, and coronal

DSC = 0.84 Model details: FC-
CRF

Grossiord et 
al,58 2017

Classification 
(Radiophenomics)

Input: 2D; coronal; 18F-
FDG PET and CT slices 
(2 channel)
Output: slice-level 3-
class classification 
(Organ, tumor, 
nonrelevant)

Sens = 0.65,
Spec = 0.92,
Accuracy = 0.86

Automated 3D 
lymphoma lesion 
segmentation - 
PET/CT
Model details: 
PET/CT feature 
extraction, random 
forest classification, 
mixed spatial-spectral 
space of component-
trees

GT: 1 expert manually 
expert segmentation at 
41% SUVmax

Training/validation : 43 
patients
Leave-one patient-out 
cross-validation for 
classification task

Segmentation Input 1: 2D; WB; coronal 
18F-FDG PET and CT 
slices (2 channel)
Input 2: single cluster 
representative of each 
lesion
Output: 2D, WB, coronal 
segmentation map

DSC = 0.75

Desbordes et 
al,59 2016

End-to-end 
Segmentation

Input: 2D; WB; coronal/
axial/sagittal PET slices 
and CT slices (2 
Channels)
(Hidden input: single 
pixel representative 
each lesion (based 
on automatic seed 
definition))
Output: 2D, WB, lesion 
segmentation map

DSC = 0.80 Cellular automata 
define tumor seed 
within ROI to obtain 
final segmentation by 
iterative growth.
Model details: auto-
initialization cellular 
automata

GT: 1 NM physician 
manually selected and 
segmented the ROI
Testing: 12 patients

Lartizien et 
al,60 2014

Classification 
(Radiophenomics)

Input: 3D; 
supraclavicular; axial 

AUC = 0.91 SVM classifier applied 
on 12 most 

Evaluation set: 156 
lymphomatous and 32 
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Author (Year) Tasks Performed Task Specific Input/Out FoM Details (Model-
Related)

Details (Ground Truth, 
Sample Size)

18F-FDG PET slices and 
CT slice images
Output: 2-class 
classification (benign vs 
cancer)

discriminant 1st and 
2nd order textural 
features derived from 
the registered PET and 
contrast CT images

suspicious
25 (11 males and 14 
females) baselines with 
B-cell lymphoma or HL.

Abbreviations: 18F-FDG, 18F-fluorodeoxyglucose; ANN, artificial neural network; AUC, area under curve; CFSC, class-driven feature-selection 
& classification; DLBCL, diffuse large B-cell lymphoma; DSC, dice similarity coefficient; ENKTL, extranodal NK/T cell lymphoma; nasal type; 
FC-CRF, fully connected conditional random fields; FCN, fully convolutional network; FoM, figures of merit; FROC, free-response receiver 
operating characteristic; ICC, intraclass correlation coefficient, JSC, Jaccard similarity coefficient; MH, metabolic heterogeneity; MHD, modified 
Hausdorff distance; MIP, maximum intensity projection, MLP, multilayer perception; MM, multi-regression model, MSE, multi-scale super 
pixel-based encoding; MTV, metabolic tumor volume; NHL, non-Hodgkin lymphoma; NM, nuclear medicine; NPV, negative predictive value; 
OS, overall survival; PA, percentage agreement; PERCIST, PET response criteria in solid tumors; PFS, progression-free survival; PPV, positive 
predictive value, PSI, prediction similarity index; R, Pearson correlation coefficient; RF, random forest; ROI, region of interest; Sens, sensitivity, 
sFEPU, sites of FDG excretion and physiologic FDG uptake; Spec, Specificity; SVM, Support Vector Machine, TLG, Tumor lesion glycolysis; 
TMTV, total Metabolic Tumor volume.
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Table 2.

The mathematical definitions for the evaluation metrics used in the reviewed articles

Evaluation Measure Mathematical Definition

Sensitivity TP
TP + FN

Specificity TN
TN + FP

PPV or Precision TP
TP + FP

Dice similarity coefficient (DSC) (Synonyms: Dice similarity index, Sorensen–Dice coefficient, F1-Score, 
Sorensen–Dice index, Dice’s Coefficient)

2TP
2TP + FP + FN

Dice Ref (equivalent to Dice)
F(M) is defined as the number of elements in set M. G = ground truth regions composed of gi voxels. B = set of 
detected lymphoma regions consisting of bi voxels.56

2F B ∩ G
F G + F B

Dice Global
56

Same as the DiceRef reference but includes false-positive regions. S is the set of all detected false regions.
2F B ∩ G

F G + F B + F S

Volume Sup
56

For evaluating the volume of the false-positive region.
F S

F B ∪ S
Jaccard similarity coefficient (JSC) TP

TP + FP + FN
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Table 3.

Survey of classification, prognostication, and prediction methods based on 18F-FDG-PET radiomics

Authors 
(Year)

Lymphoma 
Subtypes

Aim of Study Radiomic Feature Information Discriminator 
Used

Figures of 
Merit

Input Goal Extraction 
Method

Features 
Used

Notable 
Radiomic 
Features

Studies in which radiomic features were utilized for the classification of lymphoma

Ou et al,74 

2020
Breast 
lymphoma

Segmented 
breast tumor 
VOIs on 18F-
FDG-
PET/CT

Differentiation 
(breast 
lymphoma vs 
breast 
carcinoma)

LifeX First and 
second-order 
radiomic 
features

PETa and CTa 
models 
demonstrated 
great potential 
to differentiate 
in training and 
validation group

LDA Not given 
for testing 
datasets

Xu et al,75 

2019
Hepatic 
lymphoma

Segmented 
hepatic 
tumor VOIs 
on 18F-FDG-
PET

Differentiation 
(hepatic 
lymphoma vs 
HCC)

LifeX 6 image-
based 
parameters 
and 39 
texture 
features

Combination 
model of texture 
and image 
features had 
greater 
diagnostic 
capability

ROC analysis AUC = 
0.898

Ou et al,76 

2019
Breast 
lymphoma

Segmented 
breast tumor 
VOIs on 18F-
FDG-
PET/CT

Differentiation 
(breast 
lymphoma vs 
breast 
carcinoma)

LifeX First and 
second-order 
radiomic 
features

Combination 
model of PET 
and CT features 
had greater 
diagnostic 
capability

Binary logistic 
regression

PET: AUC = 
0.751.
CT: AUC = 
0.729; PET 
+ CT: AUC 
= 0.771

Aide et 
al,77 2018

DLBCL Axial 
skeleton 
segmented 
on 18F-FDG-
PET

Identify bone 
marrow 
involvement in 
DLBCL based 
on radiomic 
features from 
18F-FDG-PET

LifeX 4 first-order, 
6 second-
order and 11 
third-order 
texture 
features

SkewnessH was 
most predicitive 
of lymphoma

Linear 
regression, 
ROC analysis

AUC = 
0.820

Lartizien 
et al,60 

2014

All types Segmented 
suspicious 
regions of 
interest on18-
F-FDG-
PET/CT

Lymphoma vs 
HiNA

Not 
reported

105 features 
(GLDM, 
GLCM, 
GLISZ, 
GLRLM, and 
first order)

Combination 
model of PET 
and CT features 
had greater 
diagnostic 
capability

SVM Combination 
of CT and 
PET: AUC = 
0.910

Studies in which radiomic features were used for the prognosis/prediction of lymphoma

Rodriguez 
Taroco et 
al,78 2021

HL Segmented 
tumor VOIs 
on 18F-FDG-
PET

Prediction of 
PFS from 18F-
FDG-PET 
radiomic 
features in HL 
and DLBCL

Not 
specified

8 first-order 
features, 23 
features from 
GLCM, 11 
features from 
GLRLM, 5 
features from 
NGLM, 3 
features from 
the 
neighborhood 
grey-tone 
difference

PFS in patients 
with Deauville 
scores of 1, 2, 3, 
and X at initial 
PET was higher 
than that in 
patients with a 
Deauville score 
of 4

Univariate and 
multivariate 
Cox 
regression 
analysis

Average 
PFS, for 
patients with 
Deauville 4 
score, of 
1120 d (95% 
CI, 229–
672)

Eertink et 
al,79 2021

DLBCL Segmented 
tumor VOIs 
on 18F-FDG-
PET

Prediction of 
treatment 
outcome with 
first-line 
treatment of 
DLBCL from 
baseline 18F-
FDG-PET 
radiomic 
features

RaCat Large 
number of 
morphologic 
and texture 
features were 
extracted

Five models 
were created 
based on 
radiomic 
features as well 
as clinical 
predictors; 
combination of 
clinical and 
radiomics 

ROC analysis Combined 
model: HR 
= 4.6 (95% 
CI, 2.6–7.9)
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Authors 
(Year)

Lymphoma 
Subtypes

Aim of Study Radiomic Feature Information Discriminator 
Used

Figures of 
Merit

Input Goal Extraction 
Method

Features 
Used

Notable 
Radiomic 
Features

predictors was 
best

Wang et 
al,80 2020

ENKTL Segmented 
tumor VOIs 
on 18F-FDG-
PET

Identify a 18F-
FDG-PET 
radiomics-
based model 
for predicting 
PFS and OS in 
ENKTL

LifeX 41 features Radiomics and 
metabolism-
based models 
were combined 
to predict both 
PFS and OS

Univariate and 
multivariate 
Cox 
regression 
analysis

PFS: 0.788 
(95% CI = 
0.682–
0.895) and 
0.473 (P = 
.803)
OS: 0.637 
(95% CI = 
0.488–
0.786) and 
0.730 (95% 
CI = 0.548–
0.912)

Sun et al,81 

2020
Primary 
gastric 
DLBCL

Segmented 
tumor VOIs 
on 18F-FDG-
PET

Texture 
analysis of 
18F-PET-CT 
scans to predict 
interim 
response after 
3–4 rounds of 
chemotherapy 
in primary 
gastric DLBCL

In-house 
software

First and 
second-order 
features

Combination of 
SUVmax, 
volume, and 
entropy in one 
model best 
predicted 
treatment 
response

Mann-
Whitney U

AUC = 
0.915

Aide et 
al,82 2020

DLBCL Segmented 
tumor VOIs 
on 18F-FDG-
PET

Prognosticate 
DLBCL treated 
with first-line 
immunotherapy 
using radiomic 
features from 
baseline 18F-
FDG-PET

LifeX 19 features 18F-FDG-PET 
heterogeneity of 
the largest 
lymphoma 
lesion is 
associated with 
2y-event free 
survival (EFS)

Univariate and 
multivariate 
Cox 
regression 
analysis

EFS: HR = 
7.47 (95% 
CI = 0.83–
66.99)

Wu et al,83 

2019
DLBCL 18F-FDG-

PET/CT pre 
and 
posttreatment

Radiomics-
based treatment 
outcome 
prediction 
model

MATLAB GLCM, 
GLRLM, 
GLSZM

Belief-function 
theory-based 
outcome 
prediction 
outperformed 
than other 
studies

EK-NN and 
SVM

Therapy 
response: 
NS

Tatsumi et 
al,84 2019

FL Segmented 
tumor VOIs 
on 18F-FDG-
PET

Predict 
response and 
recurrence after 
therapy in FL

PETSTAT 6 texture 
features

low gray-level 
zone emphasis 
(LGZE) in 
texture features 
predicted 
complete 
response

Logistic 
regression

Therapy 
response: 
AUC = 
0.720; PFS: 
NS

Lue et al,85 

2019
HL Segmented 

tumor VOIs 
on 18F-FDG-
PET

18F-FDG-PET 
was analyzed 
using 
radiomics to 
predict/
prognose HL

OsiriX, 
CGITA, 
MATLAB

11 first-order, 
39 higher-
order, 400 
wavelet 
features

Ann Arbor 
stage, GLRLM 
and SUV 
kurtosis were 
associated with 
PFS

Univariate and 
multivariate 
Cox 
regression 
analysis

PFS: HR = 
6.640 (95% 
CI, 1.261–
34.96; P = 
.026);
OS: HR = 
14.54 (95% 
CI, 1.808–
117.0; P = 
.012)

Lue et al,86 

2019
HL Segmented 

tumor VOIs 
on 18F-FDG-
PET

Radiomic 
intratumor 
heterogeneity 
in 18F-FDG-
PET to predict 
treatment 
response and 
survival 

OsiriX, 
CGITA, 
MATLAB

7 SUV and 
HU, 78 
second- and 
higher-order, 
624 wavelet 
features

Treatment 
response was 
associated with 
high-intensity 
run emphasis 
(HIR) was 
performed on 
PET images and 

Cox 
proportional 
hazards 
model, ROC 
curve, logistic 
regression

PET: 
Therapy 
response: 
OR = 36.4 
(95% CI, 
2.060–
642.0, P = 
.014);
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Authors 
(Year)

Lymphoma 
Subtypes

Aim of Study Radiomic Feature Information Discriminator 
Used

Figures of 
Merit

Input Goal Extraction 
Method

Features 
Used

Notable 
Radiomic 
Features

outcomes in 
patients with 
HL

run-length 
nonuniformity 
(RLNU) of CT 
extracted from 
gray-level run-
length matrix 
(GLRM) in 
high-frequency 
wavelets
PFS was 
independently 
associate with 
intensity 
nonuniformity 
(INU) of PET 
and wavelet 
short-run 
emphasis (SRE) 
of CT from 
GLRM and Ann 
Arbor stage.
OS was 
associated with 
zone-size 
nonuniformity 
(ZSNU) of PET 
from gray-level 
size zone matrix 
(GLSZM)

PFS: HR = 
9.286 (95% 
CI, 1.341–
66.28; P = 
.023);
OS: HR = 
41.02 (95% 
CI, 4.206–
400.1; P = 
.001)

CT:Therapy 
response: 
OR = 30.4 
(95% CI, 
1.700–
545.0; P = 
.014);
PFS: HR = 
18.480 (95% 
CI, 1.918–
178.1; P = 
.012);
OS: NS

Zhou et 
al,87 2019

Primary 
gastric 
DLBCL

Segmented 
tumor VOIs 
on 18F-FDG-
PET

Prediction of 
OS and PFS 
from 18F-FDG-
PET radiomic 
features in 
primary gastric 
DLBCL

LifeX 44 texture 
features

Kurtosis, 
TMTV, GLNU, 
and HGZE were 
identified as 
independent 
prognostic 
factors

Univariate and 
multivariate 
Cox 
regression 
analysis

PET: PFS: 
HR = 14.642 
(95% CI, 
2.661–
80.549; P = 
.002);
OS: HR = 
28.685 (95% 
CI, 2.067–
398.152; P = 
.012)

CT: PFS: 
HR = 11.504 
(95% CI, 
1.921–
68.888; P = 
.007);
OS: HR = 
11.791 (95% 
CI, 1.583–
87.808; P = 
.016)

Milgrom et 
al,88 2019

Mediastinal 
HL

Segmented 
nodal disease 
on 18F-FDG-
PET/CT

Predict 
response to 
therapy in 
mediastinal HL

MIM, 
IBEX

GLCM, 
intensity 
histogram, 
shape

A combination 
model of 5 most 
predictive 
features 
accomplished 
the highest AUC 
(SUVmax, 
TMTV, inverse 
variance, and 2 
measures of 
tumor 
heterogeneity)

ROC analysis AUC = 
0.952

Wang et 
al,89 2019

Renal/
adrenal 
lymphoma

Segmented 
tumor VOIs 
on 18F-FDG-
PET

Prognose 
patients with 
primary renal 
lymphoma and 

LifeX 37 texture 
features

GLRLM_RLNU 
(gray-level co-
occurrence 
matrix run-

Univariate and 
multivariate 
Cox 

OS: HR = 
9.016 (95% 
CI, 1.041–
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Authors 
(Year)

Lymphoma 
Subtypes

Aim of Study Radiomic Feature Information Discriminator 
Used

Figures of 
Merit

Input Goal Extraction 
Method

Features 
Used

Notable 
Radiomic 
Features

primary 
adrenal 
lymphoma 
using texture 
features

length 
nonuniformity) 
was most 
predictive of 
OS.

regression 
analysis

78.112; P = 
.046)

Parvez et 
al,90 2018

NHL TMTV using 
thresholding 
and radiomic 
features

Predict 
response to 
therapy and 
outcome in 
NHL using 
radiomic 
features 
extracted from 
18F-FDG-
PET/CT

LifeX GLCM, 
NGLDM, 
GLRLM, 
GLZLM, 
indices from 
sphericity 
and 
histogram

GLNU 
correlated to 
DFS, and 
kurtosis 
correlated with 
OS

Univariate 
Cox 
regression 
analysis

Therapy 
response: 
NS; DFS: P 
= .013; OS: 
P = .035

Aide et 
al,77 2018

DLBCL Axial 
skeleton 
segmented 
on 18F-FDG-
PET

Determine 
prognostic 
value of 
skeletal 
textural 
features in 
DLBCL

LifeX 4 first-order, 
6 second-
order and 11 
third-order 
texture 
features

The only 
independent 
predictor of PFS 
was SkewnessH

ROC analysis PFS: HR = 
3.17 (95% 
CI, 1.00–
10.04; P = 
.032)

Ben 
Bouallègue 
et al,91 

2017

Bulky HL 
and NHL

Segmented 
tumor VOIs 
on 18F-FDG-
PET

Predict 
response to 
therapy in 
bulky HL and 
NHL

In-house 
software

Shape, 
texture 
features

SVM 
accounting for 
both texture and 
shape features 
achieved the 
highest ROC 
AUC

ROC analysis AUC = 
0.820

Abbreviations: 18F-FDG-PET, 18F-fluorodeoxyglucose-positron emission tomography; ACC, accuracy; AUC, area under the curve, DFS, disease-
free survival; DLBCL, diffuse large B cell lymphoma; EFS, event-free survival; EK-NN, evidential k-NN; FL, follicular lymphoma; GLCM, 
grey-level co-occurrence matrix; GLRLM, grey-level run-length matrix; GLSZM, grey-level size-zone matrix; GLZLM, grey-level zone length 
matrix; HL, Hodgkin’s lymphomas; HR, hazard ratio; LDA, linear discriminant analysis; MCL, mantle cell lymphoma; NGLDM, neighborhood 
grey-level different matrix; NHL, non-Hodgkin’s lymphomas; NS, not significant; OR, odds ratio; OS, overall survival; PFS, progression-free 
survival; ROC, receiver operating characteristic; RUN, run-length matrix; SEN, sensitivity; SPE, specificity; SVM, support vector machine; TF, 
texture features; VOI, volume of interest.
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