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Abstract

Faces provide information about a person’s identity, as well as their sex, age, and ethnicity. People 

also infer social and personality traits from the face — judgments that can have important societal 

and personal consequences. In recent years, deep convolutional neural networks (DCNNs) have 

proven adept at representing the identity of a face from images that vary widely in viewpoint, 

illumination, expression, and appearance. These algorithms are modeled on the primate visual 

cortex and consist of multiple processing layers of simulated neurons. Here, we examined whether 

a DCNN trained for face identification also retains a representation of the information in faces 

that supports social-trait inferences. Participants rated male and female faces on a diverse set of 18 

personality traits. Linear classifiers were trained with cross validation to predict human-assigned 

trait ratings from the 512 dimensional representations of faces that emerged at the top-layer of a 

DCNN trained for face identification. The network was trained with 494,414 images of 10,575 

identities and consisted of seven layers and 19.8 million parameters. The top-level DCNN features 

produced by the network predicted the human-assigned social trait profiles with good accuracy. 

Human-assigned ratings for the individual traits were also predicted accurately. We conclude that 

the face representations that emerge from DCNNs retain facial information that goes beyond the 

strict limits of their training.
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1. Introduction

1.1. Background

The human face is the basis for a wide variety of judgments. From just a single glance, 

we can recognize friends, family, and acquaintances. Faces also help us retrieve semantic 

or emotional information about others (e.g., name, career, relation). In addition to being 

the primary cue for identity, faces carry information useful for making visually derived 

semantic categorizations (Bruce & Young, 1986). For example, we spontaneously perceive 
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the age, ethnicity, and gender of others (Cloutier, Mason, & Macrae, 2005; Macrae, Quinn, 

Mason, & Quadflieg, 2005). Among these categorizations are the personality inferences we 

make from faces (Bar, Neta, & Linz, 2006; Todorov, Said, Engell, & Oosterhof, 2008). 

Although the human tendency to infer personality traits from faces is well studied, much 

less is understood about the extent to which this information supports or interacts with the 

information used for face identification.

From a computational perspective, Oosterhof and Todorov (2008) and Walker and Vetter 

(2009) showed that human trait judgments can be modeled and manipulated reliably by 

computer graphics programs. These studies also demonstrated that faces contain quantifiable 

physical correlates for human social-trait judgments. In Oosterhof and Todorov (2008), 

participants labeled neutral-expression face images with words that related to social traits 

(e.g., sociable, mean, weird, confident). These responses were reduced to 13-dimensional 

social-trait vectors that described each face, which were then submitted to principal 

component analysis (PCA). This produced a trait space with two main axes. The first 

axis was interpreted as “trustworthiness/valence” and the second axis was interpreted as 

face “dominance.” Next, Oosterhof and Todorov (2008) generated a face-shape space using 

three-dimensional laser scans of faces. This space was used to produce three-dimensional 

models of faces that participants rated for trustworthiness and dominance. Using the best 

linear fit, Oosterhof and Todorov (2008) found that the fiducial points in the face-shape 

model could be manipulated to alter trait judgments. The degree of these manipulations 

predicted whether human participants rated faces as more or less trustworthy or dominant. 

Social information can also be inferred from highly variable images (e.g., large changes 

in viewpoint, expression, illumination, and age), albeit with a third important dimension in 

the trait space which is related to youthful/attractiveness (Sutherland et al., 2013; Vernon, 

Sutherland, Young, & Hartley, 2014).

One limitation of Oosterhof and Todorov’s (2008) model is that it considers only face shape 

and does not consider face reflectance or pigmentation. Walker and Vetter (2009) addressed 

this limitation with a model that included both the shape and reflectance of faces. They 

used 200 three-dimensional laser scans of faces to generate a three-dimensional morphable 

model (Blanz & Vetter, 1999) and collected trait ratings on a sample of faces. Using these 

ratings, they found the locations of faces in the space that had high values on specific traits 

and calculated the average position of these faces, as well as the direction of the vector 

toward this average from the global average in the space. To generate faces with variable 

amounts of these traits, individual faces in the space were moved along this trajectory to 

alter (decrease or increase) the presence of the trait. Walker and Vetter (2009) showed that 

these manipulations could be controlled to affect social trait inferences made by humans.

Combined, the work of Oosterhof and Todorov (2008) and Walker and Vetter (2009) 

demonstrates that it is possible to use computer graphics models, driven by human ratings, to 

“generate” faces that elicit specific social trait judgments. Consistent with these generative 
findings, other studies have shown that for a limited number of traits, it is possible to 

learn a direct mapping from face images to trait judgments, without explicit control or 

knowledge of the underlying two- or three-dimensional structure of the face. For example, 

using deep convolutional neural networks (DCNNs), Lewenberg, Bachrach, Shankar, and 
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Criminisi (2016) predicted social-trait judgments from face images. Lewenberg et al. (2016) 

crowd-sourced large numbers of “attribute” ratings from faces, on both objective (e.g., hair 

color, gender) and subjective (e.g., attractiveness, humor) aspects of facial appearance. 

Next, DCNNs were trained to classify images in a binary manner, according to the 

presence or absence of each attribute. Lewenberg et al. (2016) predicted objective attributes 

with very high accuracy (gender = 98.33%, ethnicity = 83.35%, hair color = 91.69%, 

makeup = 92.87%, age = 88.83%). Three subjective traits also were well-predicted, but 

to a lesser degree (attractiveness = 78.85%, humorous = 69.06%, chubby = 61.38%). In 

converging work, McCurrie et al. (2017) trained DCNNs to predict three subjective traits 

(trustworthiness, dominance, and IQ), as well as age. McCurrie et al. (2017) measured the 

proportion of shared variance (R2) between the trait predictions computed from their model 

and the trait ratings assigned by human participants. McCurrie et al. (2017) found significant 

agreement in all cases (trustworthiness R2 = 0.43, dominance R2 = 0.46, age R2 = 0.74, IQ 

R2 = 0.27).

It has also been shown that the social-trait inferences made by humans can be predicted 

using the output from DCNNs trained for different tasks (Song, Linjie, Atalla, & Cottrell, 

2017). Song et al. (2017) predicted human-assigned social traits from the principal 

components (PCs) of the feature responses produced by networks trained for object 

recognition, face identification, and facial landmark localization. They found that the highest 

correlation between human-assigned traits and predicted traits could be obtained using the 

features from a network trained for object recognition. This underscores the widespread 

availability of trait information in the visual features used to represent diverse images. 

However, the image set used by Song et al. (2017) did not control for emotional expressions 

or image characteristics (pose, illumination, etc.). These variables are known to influence 

the way humans perceive social traits (Said, Sebe, & Todorov, 2009). Thus, the social-trait 

prediction performance reported by Song et al. (2017) was based on a combination of 

features from face identity, expression, and image parameters. A more fine-tuned analysis 

is necessary to determine the extent to which each of these factors can contribute to the 

accuracy of the predictions. In this study, we focused primarily on properties of the face 

itself as a cue to social trait inferences.

Overall, the above studies indicate that DCNNs are capable of learning human-assigned 

social traits from face images, as well as attributes such as gender and age. The features that 

support these trait inferences were made concrete by the work of Oosterhof and Todorov 

(2008) and Walker and Vetter (2009). For example, wide eyes are seen as trustworthy, 

whereas thin eyes and lips are seen as untrustworthy. These features are an integral part of 

a person’s appearance and thereby a cue to their unique identity. An empirical indication 

that identity and trait information may be related comes from a study by Hassin and Trope 

(2000), who found that faces were judged to be more similar to one another when they were 

rated as having comparable social traits.

This returns us to the question we address here. How does the information in faces that gives 

rise to social-trait inferences relate to the information that specifies the identity of a face? 

To that end, we made use of a computational model trained exclusively to identify faces. 

We asked whether the face representations produced by this network retain the information 
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needed to make inferences about a face’s social-trait appearance. In other words, to what 

extent is it possible to use face representations optimized in an identity-trained neural 

network as a representation that supports human-like trait inferences?

Before proceeding, we digress briefly to define and discuss DCNNs, a class of hierarchical 

neural networks introduced by Krizhevsky, Sutskever, and Hinton (2012). DCNNs have 

changed the state-of-the-art in machine learning and have proven especially powerful for 

visual tasks such as face and object recognition (Krizhevsky et al., 2012; Taigman, Yang, 

Ranzato, & Wolf, 2014). These networks were designed originally to model the response 

properties of the primate ventral visual stream (Fukushima, 1988). DCNNs consist of 

layers of simulated neurons that alternately convolve and pool input, while expanding the 

representation in intermediary layers of the deep network (Hinton, Srivastava, Krizhevsky, 

Sutskever, & Salakhutdinov, 2012). The final layer(s) of DCNNs are typically fully 

interconnected and serve to compress the representation at the top level of the network into 

an abstract set of emergent features. These features form a highly compact representational 

code—usually on the order of a few hundred elements. It is important to note that the 

success of deep learning is in part due to the availability of extremely large, open-source, 

identity-labeled training datasets.

For face identification, a major accomplishment of DCNNs is their visual robustness to 

changes in viewpoint, illumination, expression, and appearance (AbdAlmageed et al., 2016; 

Chen, Patel, & Chellappa, 2016; Ranjan, Sankaranarayanan, Castillo, & Chellappa, 2017; 

N. Zhang et al., 2015). This is a consequence of the fact that DCNN architectures for face 

identification are trained on large numbers of identities and use multiple, variable images of 

each identity. DCNNs trained in this manner have consistently yielded state-of-the-art results 

on the well-tested Labeled Faces in the Wild and YouTube Faces datasets (Huang, Ramesh, 

Berg, & Learned-Miller, 2007; Parkhi, Vedaldi, & Zisserman, 2015; Schroff, Kalenichenko, 

& Philbin, 2015; Sun, Wang, & Tang, 2014; Wolf, Hassner, & Maoz, 2011; Zhou, Cao, & 

Yin, 2015).

For present purposes, the compact nature of the face representations produced by DCNNs, 

as well as the impressive ability of these representations to support identification, makes 

them an ideal tool for probing the co-dependence of trait and identity information in faces.

1.2. Overview

We tested the interdependence of identity and social-trait information in the top-level 

features of a DCNN trained for face identification. To study this, we collected social-trait 

ratings from participants for a large number of face images. Next, we obtained identity 

descriptors for each of the face images using a state-of-the-art face-identification DCNN 

(Sankaranarayanan, Castillo, Alavi, & Chellappa, 2016). We used the DCNN representations 

and the human-assigned trait ratings to address four questions. First, we asked whether the 

social-trait ratings we collected modeled a trait space similar to that described in previous 

research (Fiske, Cuddy, & Glick, 2006; Oosterhof & Todorov, 2008; Walker & Vetter, 2009; 

Wiggins, Phillips, & Trapnell, 1989). This was tested by interpreting the first two axes 

produced by a multivariate analysis of the human trait ratings.
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Second, we verified that the network used in this study produced an identity code powerful 

enough to support recognition. Specifically, we computed Receiver Operating Characteristic 

(ROC) curves to measure identification performance on the faces in our dataset, using the 

top-level features produced by the network as the representation of each face.

Third, we asked whether the top-level descriptors produced for each image by the face-

identification DCNN could be used to predict the human-assigned social trait ratings. 

We trained and tested a linear regression model with cross-validation and compared the 

similarity between the predicted trait profile and the human-generated trait profile for each 

face.

Fourth, we asked whether social traits could be predicted individually. To answer this, we 

measured the prediction error for each social trait.

2. Methods — human ratings

2.1. Participants

A total of 85 participants completed the data-collection portion of this experiment (20 males, 

65 females, aged 18–30, M = 21). Participants consisted mostly of undergraduate students 

from The University of Texas at Dallas. Participants enrolled in a psychology course were 

compensated for their participation with one credit toward that course. Participants not 

enrolled in a psychology course received no compensation. Of the 85 participants, one male 

and one female were excluded from analysis, because their arrival time overlapped with 

additional participants and they completed the experiment in an alternate setting.

2.2. Face stimuli

The face stimuli presented in this study were selected from the Human ID Database 

(O’Toole et al., 2005). To control for effects attributable to the race of the stimulus, only 

images of Caucasian identities were used in this experiment. All images showed individuals 

with a neutral expression. A total of 280 images were selected, depicting 192 distinct 

identities. Some identities (n = 83) appeared in the dataset multiple times to allow for 

verification of the network’s face–identification accuracy (see Section 4.2). In total, 109 

identities appeared once, 78 identities appeared twice, and five identities appeared three 

times. For the data collection task, to make the workload for participants manageable, the 

280 images were divided into four sets containing 70 images each (19 male, 51 female). 

All participants were assigned randomly to rate one of the sets. There were no duplicated 

identities within each set. Participants were unfamiliar with the identities in the images they 

were shown.

2.3. Social traits

The list of social traits used in this study was derived from the Big Five Factors of 

Personality (Gosling, Rentfrow, & Swann, 2003). The social traits listed by Gosling et 

al. (2003) constitute a generalizable and representative selection of traits pertaining to 

individual personalities. Each trait in the Big Five is classified into one of five personality 

domains — openness, conscientiousness, extraversion, agreeableness, or neuroticism. For 
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the data collection task, we selected 18 traits that were either from this list or were related 

to items from this list (see Fig. 1). We selected multiple traits from each of the five domains 

listed by Gosling et al. (2003). It should be noted that the traits we chose for this study are 

different than those used in previous work (e.g., Oosterhof & Todorov, 2008). The traits here 

were chosen to reflect a wide range of personality traits that fit theoretically into the Big 

Five axes, as well as face perception research that examines trait inferences. We consider 

the relationship of these terms to those used in previous work by constructing the trait space 

described in Section 4.1.

2.4. Procedure for human trait ratings

Participants in this study were asked to decide whether each item in a list of traits applied to 

a given face. Every participant viewed 70 face images (19 male, 51 female). Each face was 

presented on a computer screen next to a list of 18 social traits. For each trait, the participant 

was asked to select whether the trait: (a) applied perfectly, (b) applied somewhat, or (c) did 

not apply, to the face being shown. Previous studies examining social-trait inferences have 

used scales ranging from two points (Lewenberg et al., 2016) to nine points (Song et al., 

2017), indicating that researchers’ range of the response options has varied substantially. We 

used a 3-point scale to limit variance that might occur based on individual differences in 

the way participants used the scale. There was no default selection. Participants were able 

to advance to the next face only after making a selection for each trait. Participants were 

allowed as much time as they needed to rate each face. Fig. 2 provides an example page 

from this data collection task.

Trait ratings were collected from 19 and 23 participants per face image. The data comprised 

an n × m trait matrix, X, where n represents the number of faces and m represents the 

number of traits. Any given cell of the matrix Xi,j contained the mean of participants’ ratings 

for the jth trait on the ith face. The columns of this trait matrix were then converted into 

z-scores so that each face was represented by its deviation from the average ratings across 

the faces. The social-trait inferences assigned to different images of the same individual 

were more correlated than the trait inferences assigned to images showing different identities 

(same identity, r = .56; different identity, r = .13).

Several trait labels were applied very similarly by participants, indicating that at a higher 

level of abstraction, some subsets of traits measure the same underlying variable. The 

dimensionality of the trait space was reduced to minimize the effect of these duplicated 

traits within the dataset. To do this, traits that correlated highly with one another (Pearson 

correlation coefficient, r > .80) were averaged together and treated as a single trait. This 

reduced the final number of traits from 18 to 11 by combining (a) talkative and energetic; 

(b) warm, sympathetic, softhearted, trusting, helpful, and reliable; and (c) efficient and 

thorough. The traits talkative and energetic both imply levels of activity and were combined 

and relabeled as talkative. The traits warm, sympathetic, soft-hearted, trusting, helpful, and 

reliable all imply positive valence and were combined and relabeled as warm. The traits 

efficient and thorough both imply capability and were combined and relabeled as efficient. 
The social trait space considered in this study was comprised of the 11 traits that remained.
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3. Methods for DCNN trait analysis

3.1. DCNN network specification

The neural network features for each face were generated from the DCNN described in 

Table 1. This network was trained for face identification and has achieved state-of-the-art 

performance on the IJB-A dataset (Klare et al., 2015). Parametric rectified linear units 

(PReLU) are used to compute the activation function. The final output layer consists of 512 

units. The network was trained on the CASIA Webface database, which consists of 494,414 

images depicting 10,575 identities (Yi, Lei, Liao, & Li, 2014).

3.2. DCNN face representation

To carry out the simulation, the DCNN processed the 280 face images rated by participants 

to produce a unique 512-dimensional feature descriptor vector for each image. These feature 

descriptors were considered as the face identification network’s representation of each face.

4. Analysis and results

4.1. Consistency of social-trait space with previous findings

First, we examined the underlying social-trait space from our human-assigned trait ratings 

to compare with previous findings (Fiske et al., 2006; Oosterhof & Todorov, 2008; Wiggins 

et al., 1989). This was important given that the social traits used in this study differed 

from those used in previous work. To this end, we submitted our participants’ responses to 

a principal component analysis (PCA). PCA is a multivariate analysis technique that uses 

singular value decomposition to rotate the data and create a new space defined by orthogonal 

components that are ordered according to the percentage of variance they explain. Here, 

PCA was applied to the human trait inferences. The coordinates of each trait were plotted 

along the first two principal components and visualized to ensure parity with the existing 

literature (Fig. 3).

The first component produced by a PCA of the human-assigned traits was interpreted 

as approachability and separates traits such as talkative, efficient, and warm, from traits 

such as anxious, and quiet. The second component was interpreted as dominance and 

separates traits such as assertive and impulsive from traits such as shy, quiet, and anxious. 

These results are generally consistent with previous studies, which identified two primary 

social-trait components corresponding to slight variations on the axes we found: affiliation 

and dominance (Wiggins et al., 1989), warmth and competence (Fiske et al., 2006), and 

trustworthiness and dominance (Oosterhof & Todorov, 2008).

4.2. Face-identification accuracy

To test the DCNN for identification accuracy, we computed the cosine similarity between 

the 512-dimensional feature descriptors for all possible pairs of the 280 face images in our 

stimulus set. This resulted in an n × n similarity matrix, where n represents the number 

of face images. Identification accuracy was analyzed using an ROC curve to measure 

the separability between same-identity (match) and different-identity (non-match) image 

comparisons. The same-identity distribution contained the similarity scores for all image 
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pairs in which the same individual was shown in both images. In all cases, these were two 

different images of the same person, taken over a span of weeks or months. The different-

identity distribution consisted of all pairs of images depicting two different individuals. We 

considered only scores from the upper triangle of the symmetric similarity matrix.

The ROC showed near-perfect performance on our stimulus set, as measured using the area 

under the curve (AUC = 0.995). This illustrates the high quality of the identity information 

in the top-level DCNN features.

4.3. Trait-profile predictions from DCNN face representations

A regression model was trained to predict the human-generated social-trait responses from 

the face representation generated by the face-identification DCNN. The trait ratings were 

represented in an n × m matrix, Y, where each of the n rows represented one of the 280 

stimuli and each of the m columns represented one of the 11 traits. The face recognition 

features were represented in an n × k matrix, X, where each of the n rows again represented 

one of the 280 stimuli and each of the k columns represented one of the 512 top-level 

features. The regression model used to train the mapping from DCNN features to traits was:

Y = XB + E

where B represents the learned k × m weight matrix and E represents the error matrix. This 

model was trained using cross validation, wherein the regression model was learned using 

all but one of the stimulus images and was tested on the left-out image. In cases where the 

identity in the test image also appeared in the training images, all images of that identity 

were held out from the training set. This produced an n × m output matrix, Y , similar to Y, 

but where all trait values were model predictions rather than human responses.

Human-generated trait vectors and computer-predicted trait vectors were compared using 

their cosine similarity. To test for statistical significance, we compared the average 

cosine similarity between the human- and computer-generated social-trait vectors to a null 

hypothesis distribution. This null distribution was created by a permutation test where 

the values within each column of the n × m trait matrix, Y, were reordered randomly. 

This effectively destroyed the relationship between social traits and stimuli, but preserved 

the underlying distribution of scores within each trait. The regression model was then 

re-computed. This was repeated for 1,000 iterations. After each iteration, the average cosine 

similarity between the 280 human-generated trait vectors and the 280 computer-predicted 

trait vectors was calculated.

The average cosine similarity between the human trait ratings and the computer-predictions 

(i.e., true cosines) was compared to the cosine similarities from the null distribution. The 

results show that the vectors of social-trait inferences predicted using the actual model 

were significantly more similar (p < .001) to the human-generated traits than the social-trait 

vectors predicted from the null distribution. There was no overlap between the mean of 

the true cosines (M = 0.353) and any of the cosines computed in the null distribution (M 
= 0.078). Thus, we conclude that the top-level features produced by the face-identification 

network contain information that supports human-generated social-trait ratings.
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Next, we explored the degree to which social-trait information is distributed throughout 

the top-level features from the face-identification DCNN. This was tested by eliminating 

varying amounts of top-level DCNN features from the space and then re-computing the 

regression model. Deleting features containing information critical to social-trait prediction 

should reduce the cosine similarity between the human-generated trait vectors and the 

computer predictions. Alternatively, deleting “noisy” features (i.e., features consisting of 

only information extraneous to the social-trait prediction task) should increase the accuracy 

of the trait predictions.

The top-level features from the DCNN were ordered according to their contribution to 

the regression model. The contribution of each feature was assessed using its regression 

weights and was measured to be the sum of absolute values across the rows in the k 
(number of features) by m (number of traits) weight matrix. Rows with the lowest sums 

contributed the least to the regression model and rows with the highest sums contributed 

the most. Beginning with the lowest 5%, an increasing number of features were removed 

and the regression models were recomputed. This was repeated until the prediction accuracy, 

indicated by cosine similarity, began to decrease. A decrease in prediction accuracy occurred 

after removing 27.5% of the features. The remaining 72.5% of features represent the 

optimal set of predictors. The average cosine similarity between human-generated trait 

vectors from this optimized regression model was significantly higher (M = 0.533, p 
< .001) than the average cosine similarities computed using the null distribution (M = 

0.078). There was no overlap between the average of the true cosines and the cosines 

computed in the null distribution. These results show that social trait information is not 

evenly distributed throughout the top-level feature space learned by the face-identification 

DCNN. The importance of individual top-level DCNN features for either identification or 

for predicting social-trait inferences should be explored in-depth in future work. Here, we 

report the finding that accurate trait-inference prediction requires just a subset of the features 

from the overall top-level DCNN feature space.

4.4. Predicting individual traits from face representations

The previous regression experiment established that a profile of social-trait information is 

represented in the top-level features of the face-identification DCNN. We now address the 

extent to which individual social traits can be predicted in isolation. Regression-model 

predictions were computed for each of the 11 individual traits. The resulting n × 1 
dimensional trait vectors were compared to the corresponding columns from the original 

n × m trait matrix using the coefficient of determination (R2). This provides a direct measure 

of the similarity between each predicted trait and its human-generated counterpart.

The coefficients of determination for predicting each trait individually are presented in 

Fig. 4. In Fig. 5, we plot the prediction accuracy for each trait contrasted against a null 

distribution. This figure shows that all of the social traits considered in this study were 

predicted at levels significantly above chance. The best-predicted traits here were impulsive, 

anxious, and warm. These social traits were predicted at levels comparable to the subjective 

trait predictions reported for the three traits examined in McCurrie et al. (2017). In the 
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present case, however, predictions were made from a network trained for face identification, 

whereas in McCurrie et al. (2017), the network was trained explicitly for trait prediction.

5. Discussion

Human faces provide a rich source of information that can be used to identify individuals, 

as well as to form first impressions of strangers. Both topics have received considerable 

attention in the literature, but they have never been investigated simultaneously. In this study, 

we examined the co-existence of identity and trait information in faces. The main findings 

are as follows. First, we demonstrate that information related to social and personality 

traits is retained in the top-level features of a DCNN trained for face identification. This 

finding complements previous work illustrating that DCNNs retain specific information 

about images that is not directly relevant for object/face recognition (Hong, Yamins, 

Majaj, & Dicarlo, 2016; Parde et al., 2017). Second, we show that DCNN face “identity” 

representations predict human-generated social-trait inferences, both at the individual-trait 

level and at the level of full trait profiles. Third, we show that the DCNN used in this 

study identifies faces with high accuracy, allowing us to consider the retention of social trait 

information in the context of a high-performing identification system. Fourth, we verify that 

the particular social trait ratings we collected in this study, which differ somewhat from 

previous studies, produce a social-trait space similar to those reported in previous work 

(Oosterhof & Todorov, 2008; Walker & Vetter, 2009).

To understand the implications of these findings, it is useful to return to what we know 

about the nature of the physical information that supports trait inferences and to expand our 

discussion beyond simple face structure. The literature offers evidence that three sources 

of information contribute to social-trait inferences (Sutherland et al., 2013): face structure 

(Oosterhof & Todorov, 2008; Walker & Vetter, 2009), emotional facial expressions (Said 

et al., 2009; Sutherland et al., 2013), and image characteristics (Todorov & Porter, 2014). 

As noted previously, evidence for the role of face structure in trait inferences comes from 

findings indicating that the manipulation of face structure, using computer graphics models, 

affects human trait judgments in predictable ways (Oosterhof & Todorov, 2008; Walker & 

Vetter, 2009). The fact that face structure contributes substantially to both face identity and 

trait inferences is perhaps not surprising, but makes it clear that information relevant for one 

of these tasks may also be relevant for the other.

In addition to face structure, both posed facial expressions and expressions that are derived 

from the structure of neutral faces have been shown to influence trait ratings (Oosterhof & 

Todorov, 2008). For example, Montepare and Dobish (2003) showed that deliberate changes 

in the emotional expression of a face influence social trait ratings. These differences in the 

perception of social traits reflect the structural resemblance of a face to a specific emotion 

(Said et al., 2009). Further, a recent study by Todorov and Porter (2014) showed that 

image characteristics, which include photometric variables such as illumination and image 

quality, are linked to social-trait perception. It has also been shown that DCNNs trained for 

face identification retain information pertaining to these image characteristics (Parde et al., 

2017). Together, these studies provide further evidence that identity and social traits can 

coexist in a unitary representation. In this study, face emotion and image characteristics were 
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controlled to reduce the noise associated with social-trait judgments. Because of this, the 

present results may underestimate the extent to which it is possible to predict social-trait 

inferences from more naturalistic stimuli (see Song et al., 2017 for an approach that allows 

face expression to support trait classification).

Returning to the question of how trait and identity information are related, it is important to 

remember that face structure is relevant for face identification, but that facial expression and 

image characteristics are not. The finding that facial expression and image characteristics 

contribute to trait inferences makes it clear that first impressions are based not only on 

the face itself, but also on the specific circumstances in which a face is encountered. 

Although the behavioral and neural literatures reflect a conceptual division between social-

trait and identity processing (Haxby, Hoffman, & Gobbini, 2000), advances in modeling face 

identification with DCNNs demonstrate that this division is not computationally necessary to 

account for the creation of a unitary face representation that can support both identity and 

trait perception.

DCNNs are designed to model the computational processes seen in the primate ventral 

visual stream (Fukushima, 1988; Krizhevsky et al., 2012). There are some questions 

concerning the validity of the claim that these networks are good models of ventral stream 

visual processing, given that their architectures are not well-suited for complex, sequential 

behavior (Edelman, 2016). However, research has shown that the response properties of 

units in the intermediate layers of a DCNN predict the response properties of neurons in 

primate visual area V4. Moreover, units in the top level of the DCNN predict the responses 

of neurons in the inferotemporal (IT) cortex (Yamins & DiCarlo, 2016; Yamins et al., 2014). 

Although interpreting the similarities between the ventral visual stream and DCNNs requires 

caution, the finding that these networks can accommodate both identity and social-trait 

information is consistent with recent evidence suggesting specific modifications to the 

distributed model of face processing (Haxby et al., 2000).

The distributed model posits a functional division of identity and social information from 

faces, whereby invariant identity information from faces (e.g., face structure) is processed in 

ventral stream face areas, and social (e.g., changeable aspects, including emotion, gaze, 

and head rotation) information is processed in the dorsal stream face areas (posterior 

Superior Temporal Sulcus). Although this theory is consistent with much existing data 

on the neural processing of faces (Allison, Puce, & McCarthy, 2000; Gobbini & Haxby, 

2007; Puce, Allison, Bentin, Gore, & McCarthy, 1998), recent work suggests that the 

ventral pathway is also sensitive to some changeable information from faces. For example, 

Duchaine and Yovel (2015) suggest that the ventral temporal cortex processes emotional 

expression. More concretely, it has been shown that the fusiform face area (FFA) responds 

to faces regardless of whether people attend to the expression of the faces they view (Ganel, 

Valyear, Goshen-Gottstein, & Goodale, 2005). In addition, the intensity of observed facial 

expressions modulates neural responses in the FFA (Surguladze et al., 2003).

Further work is required to determine whether these responses arise purely from faces, or 

from faces and bodies in motion. However, combined with the present results, these neural 

findings advance support of the distributed model modification suggested by Duchaine and 
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Yovel (2015). Specifically, this modification posits that ventral temporal representations 

support both identity and social judgments about faces. This modification does not alter 

the distributed model’s original hypothesis that social information from facial motion is 

processed in the dorsal stream (pSTS). Rather, it suggests that both ventral and dorsal stream 

face areas can play a role in the social processing of faces. In considering DCNN properties 

in this context, it is worth noting that there is now strong evidence that DCNNs retain 

specific information about face images, in addition to face categories (e.g., identity). That 

DCNNs are able to generalize well is paradoxical, given their enormous degrees of freedom. 

The topic of why DCNNs generalize is discussed in depth in O’Toole, Castillo, Parde, Hill, 

and Chellappa (2018) and C. Zhang, Bengio, Hardt, Recht, and Vinyals (2017). Presently, 

the surprising generalizability of DCNNs implies that these networks have the potential to 

model trait inferences based on expression and image-characteristics in addition to facial 

structure (cf., O’Toole et al., 2018; Parde et al., 2017). Future work should consider ways to 

dissect the sources of face-identity and face-image information that allow DCNNs to predict 

social trait inferences (see methods proposed by Yosinski, Clune, Nguyen, Fuchs, & Lipson, 

2015).

In conclusion, we present the novel finding that social-trait information and identity 

information are not independent from one another. Understanding how social traits and 

identity are linked can provide clues to the structure of high-level visual information 

processing in general face perception. The simple and direct linear classification methods 

used in this study underscore the fact that trait information is readily accessible within the 

representations produced by DCNNs trained for face identification. The presence of this trait 

information may constrain theories of how neural codes for faces can serve multiple face 

processing tasks.
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Fig. 1. 
List of social traits considered for this study. The original trait list shows the traits rated 

by participants. The reduced trait list shows the 11 unique ways participants used traits 

from this original list. Traits from the original list whose value correlated strongly with one 

another (>0.8 Cohen’s d) were averaged together.
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Fig. 2. 
A screenshot taken from the data collection task completed by participants. Participants 

viewed 70 (19 males, 51 females) faces in total, organized into sets according to gender. The 

list of traits was displayed next to each face. For each trait, participants were asked to select 

whether the trait “applies perfectly,” “applies somewhat,” or “does not apply” to the face 

being viewed.

Parde et al. Page 17

Cogn Sci. Author manuscript; available in PMC 2022 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Principal component analysis of the trait ratings collected from human participants. The 11 

traits used to create our trait space are positioned according to their factor scores on the first 

(x-axis) and second (y-axis) components. The correlation between traits can be interpreted 

according to the angle between them, where a 0° angle implies perfect positive correlation, a 

90° angle implies no correlation, and a 180° angle implies perfect negative correlation.
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Fig. 4. 
Coefficients of determination (R2) for each of the traits predicted by the top-level DCNN 

features. Traits are listed along the y-axis, and the coefficient of determination between 

predicted trait ratings and human-generated trait ratings are listed along the x-axis. The 

similarity between human-assigned traits and computer predictions was assessed both in 

terms of R2 as well as prediction error (Fig. 5).
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Fig. 5. 
Trait prediction error (difference from human ratings) when using the actual model (red 

line) versus a null distribution (gray). The dashed blue line represents a Bonferroni-corrected 

alpha level of α = 0.00225 (0.025/11) on the null distribution. All traits were predicted with 

significantly less error when using the actual model than when using the null distribution.
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Table 1

The deep network architecture of the face recognition network described by Sankaranarayanan et al. (2016). 

The analyses presented in this study examine the features extracted from the Fc7 layer of this network, for 

each of the images in our dataset

Deep Network Architecture

Layer Kernel Size/Stride No. of Parameters

Conv1 11 × 11/4 35 k

Conv2 5 × 5/2 614 k

Conv3 3 × 3/2 885 k

Conv4 3 × 3/2 1.3 M

Conv5 3 × 3/1 885 k

Conv6 3 × 3/1 590 k

Fc6 1,024 9.4 M

Fc7 512 524 k

Fc8 10,575 5.5 M

Softmax loss 19.8 M
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