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Abstract Reliable data are essential to obtain ade-
quate simulations for forecasting the dynamics of epi-
demics. In this context, several political, economic, and
social factors may cause inconsistencies in the reported
data, which reflect the capacity for realistic simulations
and predictions. In the case of COVID-19, for example,
such uncertainties are mainly motivated by large-scale
underreporting of cases due to reduced testing capac-
ity in some locations. In order to mitigate the effects of
noise in the data used to estimate parameters ofmodels,
we propose strategies capable of improving the ability
to predict the spread of the diseases. Using a compart-
mental model in a COVID-19 study case, we show that
the regularization of data by means of Gaussian pro-
cess regression can reduce the variability of successive
forecasts, improving predictive ability. We also present
the advantages of adopting parameters of compartmen-
tal models that vary over time, in detriment to the usual
approach with constant values.
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1 Introduction

Since the onset of the novel coronavirus (SARS-CoV-
2) pandemic, at the end of 2019, a wealth of research
has been carried out from across the globe, aiming to
understand the dynamics and transmission patterns of
the disease. More than a year after the notification of
the first case, the number of infected individuals keeps
rising significantly worldwide. In the meantime, the
confirmation of reinfections and identification of sea-
sonal immunity [17] reinforces the need for actions to
contain the disease, even in locations where the epi-
demic would be under control.

Governmental decisions to mitigate the spread of
the disease, such as the introduction of lockdown and
social distancing measures, are usually based on com-
putational simulationswhose preeminent objective is to
predict the way the disease spreads in the population,
considering continuously reported data [15]. However,
there are several factors associated with natural, eco-
nomic, and social aspects that make it difficult to ade-
quately predict the spread of the disease and, conse-
quently, the definition of a comprehensive policy for
prevention and control of the disease [21,36,46]. The
heterogeneity of the population concerning attributes
such as demographic diversity, age-dependent charac-
teristics, and randomness related to the mobility and
interaction of individuals makes it hardly possible to
create a model capable of incorporating all these fea-
tures together (see, for instance, Refs. [7,10,12,16]).
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Asymptomatic people also play a significant role in
the ongoing pandemic. Oran and Topol [35] presented
a comprehensive bibliographic review on the estima-
tion of asymptomatic cases of COVID-19 in different
parts of the world and concluded that the proportion of
asymptomatic individuals may vary from 40 to 45% in
relation to the total number of reported cases. The sce-
nario ofwidespread underreporting coupledwith a defi-
cient screening and testing capacity leads to significant
uncertainty in relation to the reported data of infected
individuals. The impact of such uncertainties was ana-
lyzed by Ioannidis [22], Li et al. [26], andWuet al. [58].

Turning attention to the impact of the pandemic in
Brazil, a country with a continental dimension, such
problems tend to become even more evident [28].
Socioeconomic inequalities [43,55] and cultural fac-
tors [14,38] have a direct impact on access to infor-
mation and health services, which translates into high
rates of infection and, as a consequence, underreport-
ing cases. Veiga e Silva et al. [56] also analyzed pre-
sumptive inconsistencies in the data collected andmade
available by the Ministry of Health in Brazil. They
reported that there may be a difference of approxi-
mately 41% in the number of deaths caused byCOVID-
19 related complications.

In an attempt to describe the spread of COVID-19
on different population groups, several models have
been proposed by means of integrating typical features
related to the disease, such as the quarantine period,
lockdown, social distancing, and hospitalization. Mas-
sonis et al. [29] bring together several of these mod-
els, classifying them hierarchically in relation to the
number of coupled features. In general, even the most
complex models, that is, those with supposedly more
capacity to associate knowledge about the spreading
dynamics of the disease, tend to experience some diffi-
culties in identifying the behavior of noisy data in the
long term, as shown by Alberti and Faranda [2] and
Roda et al. [46].

Themajormotivation of thiswork is to provide alter-
natives to enhance the capacity of estimating parame-
ters in compartmental models and predicting the spread
of COVID-19, taking into account data with a high
level of uncertainty, such as the number of new cases
reported in the state of Rio de Janeiro since March
05, 2020. The data do not have well-defined behav-
ior, in such a way that the variations in subsequent
days are caused, in part, by the factors that deepen
the disparities in the notifications of cases of infec-

tion. In addition, the Brazilian government estimates
the COVID-19 data considering the daily count in the
municipalities—Brazil is made up of 5570 municipali-
ties, of which 92 make up the state of Rio de Janeiro—
which are autonomous in relation to population testing
policy and do not follow a common strategy to prevent
the disease. As in some locations data are not reported
on weekends, there are sudden drops in the number
of new infections, which afterward cause unexpected
increases when data are reported at the beginning of
the following week.

In this context, aiming at expanding the predictive
capacity of compartmental models subject to scenarios
of great uncertainty, the objectives of this work are to
propose the use of strategies capable of reducing the
variability of the estimation of model parameters and
to discuss the advantages of considering time-depen-
dent parameters. We propose that the noisy data set
be regularized by means of Gaussian process regres-
sion (GPR). This approach allows a set of data to
be smoothed, so as to decrease its noise level with-
out significantly changing its behavior. To confirm this
assumption, we compared a subgroup of reported data
on dead and infected individuals in the state of Rio
de Janeiro to simulations produced by the SEIRPD-
Q model (which is defined in the due section), whose
parameters are estimated using regularized data. The
results obtained are also compared to the simulations
calculated in the usual way, without regularizing the
data, in order to quantify the predictive capacity in
relation to known data and the gain in relation to the
parameter estimation approach with unchanged data.

A recent review of the literature on the subject found
that, to date, few works that incorporate the concepts
of Gaussian process (GP) applied to the epidemio-
logical modeling of COVID-19 have been published.
These works are briefly presented below. Ketu and
Mishra [24] proposed theMulti-Task GPRmodel, aim-
ing to predict theCOVID-19outbreakworldwide.Zhou
and Ji [60] proposed a model for transmission dynam-
ics of COVID-19 considering underreporting of cases
(what they called undocumented infections) and esti-
mated the time-varying disease transmission rate using
GPR and a Bayesian approach. Arias Velásquez and
Mejía Lara [3] demonstrated the correlation between
industrial air pollution and infections by COVID-19
before and after the quarantine in Peru, by presenting a
classification model using Reduced-Space GPR. This
methodology is used by the same authors in Ref. [3] to
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report a long-term forecast for COVID-19 in the USA.
In turn, Ribeiro et al. [44] compared the predictive
capacity of various machine learning regression and
statistical models, considering short-term forecasting
of COVID-19 cumulative cases in Brazil. As far as we
are aware, this is the first time that GPR is employed for
the regularization of COVID-19 data, which are subse-
quently analyzed using a compartmental model.

Other techniques can be used to regularize the data
as proposed in this work. One of the approaches that
come closest to GPs is the Kalman filter (see Ref. [20]
for details). Kalman filters can be seen as a special
case of GPs, although the former is not thought of as a
nonparametric model. It is widely used for time-series
forecasting and canbemore efficient thanGPswhen the
problem is described by a Markovian process or linear
observation models [42], which is not our case. Other
methods used in smoothing noisy data are spline mod-
els, support vector machines, and auto-regressive mov-
ing average models, for instance (for more details, see
Refs. [8,40]). In the context of the spreading dynamics
of COVID-19, these techniques were also employed to
help predict the number of cases and dead individuals,
as seen in Refs. [1,4,50,59]. However, it is important to
emphasize that our objective is not to compare numeri-
cal regularization techniques but employ GPs as a data
regularization technique, in order to improve the pre-
dictive capacity of models, through data noise reduc-
tion. GPs provide all the necessary framework for the
analyses proposed in this work, which is reasonable to
support our choice.

The objective of the present paper is to answer the
following issues: (i) how the regularization of data
using GPR can affect the parameter estimation prob-
lem? (ii) what is the influence of time-varying param-
eters in terms of improving the descriptive capacity
of models? In our analysis, we partition the data sets
between training and test data and carry out successive
parameter estimations varying the proportion between
these types of data, in order to show the behavior of
the obtained parameter set. We show that some of these
parameters can be approximated by functions and, con-
sidering this possibility, we analyze the influence of
adopting variable parameters over time. We use both
a deterministic approach, in terms of least squares, to
estimate the gain related to the use of regularized data
and time-varying parameters, and aBayesian approach,
in order to analyze parameter uncertainties, which are

propagated to the model to quantify uncertainties on
the model outcomes.

2 Materials and methods

2.1 Compartmental model description

Following the models proposed by Jia et al. [23]
and Volpatto et al. [57], we develop an extension
of the susceptible–exposed–infected–removed (SEIR)
model, termed SEIRPD-Q model, which further con-
siders Positively Diagnosed (P) and Dead (D) groups
of individuals. To account for social distancing mea-
sures, we implicitly consider a mechanism that isolates
individuals from the virus transmission (−Q) rather
than defining a specific compartment for individuals in
quarantine. A schematic description of the SEIRPD-Q
model is presented in Fig. 1. We consider a population
susceptible to a viral outbreak, whose rate of transmis-
sion per contact is given by β. At the beginning of a
COVID-19 infection, infected individuals pass through
a latency period in which they are not capable of trans-
mitting the disease to another individual, becoming
infectious only after this stage, even without showing
any sign of disease. Individuals in such conditions are
said to be exposed, with incubation period given by
1/σ̃ . The infectious individuals are then divided into
infected and positively diagnosed compartments, based
on the premise that a large number of individuals who
contract the virus are not diagnosed. This is due to the
reduced testing capacity in some locations so that the
diagnosis is made, primarily, in individuals who have
severe symptoms or are hospitalized. The proportion

Fig. 1 Schematic description of the SEIRPD-Q model
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of infected individuals, given by ρ, is related to the
majority of people that only suffer mild symptoms and
get recoveredwithout significant complications. On the
other hand, the complement of this group is those indi-
viduals who, in fact, have been positively diagnosed.
In turn, individuals who recover from the disease after
being in the infected compartment are moved to the
removed compartment at a rate of γI . The same goes
for positively diagnosed individuals, who are removed
at a rate of γP . In addition, it is reasonable to assume
that most of the individuals who died from complica-
tions caused by the disease had severe symptoms and
were tested or hospitalized. Therefore, we do not con-
sider that individuals in the infected compartment die
fromvirus-related causeswithout being diagnosed, and
the mortality rate of positively diagnosed individuals is
given by dP .

Quarantine measures are also incorporated in this
model, affecting the susceptible, exposed, and infected
compartments. Individuals in these compartments are
kept in quarantine at a rate of ω, and are not assumed
to be infectious considering restrictive quarantine mea-
sures. The quarantine compartment is implicitly mod-
eled and, therefore, the removed compartment includes
individualswho have undergone quarantine, alongwith
those who have been infected and have recovered from
the disease. The formulation of the SEIRPD-Q model
is given by the following systemof ordinary differential
equations:

dS

dt
= −βSI − ωS

dE

dt
= βSI − σ̃ E − ωE

dI

dt
= σ̃ ρE − γI I − ωI

dP

dt
= σ̃ (1 − ρ) E − dP P − γP P

dR

dt
= γI I + γP P + ω (S + E + I )

dD

dt
= dP P. (1)

The SEIRPD-Q model presents some fundamental
differences in relation to those on which it was based:
first, Jia et al. [23] consider that only susceptible indi-
viduals are subject to quarantine measures, which is
modeled using an explicit compartment and also con-
sidering an additional parameter that controls the social

distancing relaxation; second, we disregard the asymp-
tomatic compartment, according to Volpatto et al. [57],
due to the lack of this information associated with lim-
ited testing of the population; third, we consider only
the mortality rate of positively diagnosed individuals,
unlike Volpatto et al. [57].

2.2 Data

The data used in this work are the daily number of
infected (positively diagnosed) and dead individuals
in the state of Rio de Janeiro. The Brazilian Ministry
of Health reports the data daily, which are synthesized
andmade available as shown in Ref. [13]. The analyzed
data refer to the period between March 10, 2020, and
October 5, 2020, consisting of 210 records. Although
the number of recovered individuals is also available, it
may bewise not to use these data to estimate the param-
eters of the model since, due to the unseemly policy of
testing the population, there is much uncertainty about
these data.

In the following, the observable quantities are
denoted by the time series D( j)

i = D( j) (ti ), for
i = 1, . . . , p and j ∈ {P, D}. Overall, let
D = {D1, . . . , Dp

}
be the finite set of real-valued

measurements collected from successive observations
of the daily number of positively diagnosed and dead
individuals at different times ti .

2.3 Deterministic approach for parameter estimation

Here, we want to solve the so-called inverse prob-
lem, i.e., to determine the model parameters that gen-
erate outputs as close as possible to the observable
data. To this end, let θ be the m-dimensional vector
of model parameters, and y( j)

i = y( j) (ti , θ) be the
model responses at different times ti , i = 1, . . . , p
and j ∈ {P, D}, as used previously. Additionally, let
Y ( j)
i denote the cumulative sum of all model responses

given by y( j)
i .

The objective of the inverse problem is, therefore, to
find the vector θ̂ (an estimate of θ) that produces outputs
ŷ( j)
i capable of fitting the available observations. The
best fit between the responses of the model ŷ ∈ R

p and
the observed data can be estimated in terms of the resid-
uals, the difference between observed and predicted
measurements, given by r (θ) = ŷ − D. The solution
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to an inverse problem is, in other words, the data fitting
whose objective is to calculate an estimate θ̂ that min-
imizes some error norm ‖r‖ of the residuals [45,52].
The least squares fitting calculates the vector of opti-
mal parameters by taking themean squared error, given
by

E (θ) = 1

p
r (θ)� r (θ) = 1

p

p∑

i = 1

ri (θ)
2 , (2)

and the estimate θ̂ is the vector that minimizes this
quantity:

θ̂ = argmin
θ

E (θ) .

Equation (2) is usually called the objective function (or
cost function). When E → 0, the estimate θ̂ generates
an output vector ŷ that has a high level of agreement
with the observed dataD, that is, the residuals are min-
imized. In general, real problems do not admit E = 0,
since the noise that affects the model cannot be pre-
dicted with such accuracy.

2.4 Bayesian approach for parameter estimation

Bayesian inference provides another perspective for
estimating the value of a set of parameters that best
characterizes the output of a model, given a set of
data. Bayesian inference differs from the deterministic
approach because in addition to calibrate the parameter
values, it measures their uncertainties, which is one of
the focuses of this work. To conduct Bayesian infer-
ence, we need some familiarity with a few basic con-
cepts of probability. Here, we give a brief overview of
such concepts. A more detailed description is provided
by Refs. [5,27,54].

Bayes theorem provides a formulation to estimate
the posterior probability of the model parameters given
a set of observationsD, based on the likelihood of the
event of interest occurring given the prior knowledge
on the parameters. The theorem is stated as

ppost (θ |D) = plike (D | θ) pprior (θ)
pevid (D)

, (3)

where plike (D | θ) is the likelihood function, pprior (θ)
is the prior information or beliefs on θ, pevid (D)

is the evidence related to the observations D, and
ppost (θ |D) is the posterior distribution associated
with θ.

Prior knowledge can be thought of as the probability
density function over the feasible values of the model
parameters, the current knowledge on their values. In
turn, the likelihood assumes the role of estimating the
probability of characterizing the available data, given a
set of parameters. In other words, the likelihood func-
tion measures howwell the data are being explained by
the model. In this work, we assume a Gaussian likeli-
hood, which has the form

plike (D | θ)

=
∏

j

1

σ j
√
2π

exp

⎛

⎜
⎝−

p∑

i = 1

(
D( j)

i − y( j)
i

)2

2σ 2
j

⎞

⎟
⎠,

where σ 2
j is a measure of the uncertainty (encom-

passing data errors) related to each quantity j , for
j ∈ {P, D}. Here, both σ 2

P and σ 2
D are considered

hyperparameters to be estimated togetherwith the set of
parameters θ. The evidence, also referred to asmarginal
likelihood, is the integral of the likelihood over the prior
and is considered as a normalization constant. Thus, we
actually evaluate ppost (θ |D) ∝ plike (D | θ) pprior (θ)
to produce the posterior distribution ppost (θ |D) over
the parameters, that is, an updated belief about θ, given
D.

We conducted the Bayesian inference using the
probabilistic programming library PyMC3 [47]. We
adopt the Transitional Markov Chain Monte Carlo
method proposed by Ching and Chen [11] for parame-
ter estimation (which is not described here, for the sake
of brevity).

2.5 Gaussian process regression

Here, we describe the general GP framework, with spe-
cial attention to regression problems using noisy obser-
vations. By definition, a GP is a collection of random
variables, any finite number ofwhich have a joint Gaus-
sian distribution [40]. In other words, it is an extension
of the multivariate Gaussian distributions to infinite
dimensionality. GPRs take place directly in the space of
functions, defining priors over functions that, once we
have seen some data, can be converted into posteriors
over functions [32]. Thus, a GPR model is a Bayesian
nonlinear regression model that takes into account the
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GP prior and whose posterior is the desired regression
function that belongs to an infinite dimension random
function space [49].

To introduce the GP, denote by t = (
t1, . . . , tp

)�

the time training points associated with a finite set of p
observations D = (D1, . . . , Dp

)�. We assume that
each observation D at location t is a random variable
associated with the GP stochastic process

f (t) ∼ GP (
m(t), k

(
t, t ′

))
,

which is completely defined by its mean function
m (t) = E [ f (t)], the expected value of all functions
in the distribution evaluated for an arbitrary input t ,
and k

(
t, t ′

)
, the covariance function of f (t), which

describes the dependence between the function values
for a pair of arbitrary input time points t and t ′, given
by k

(
t, t ′

) = E
[
( f (t) − m(t))

(
f
(
t ′
) − m

(
t ′
))]

.We
now consider the regression problem

Di = f (ti ) + ε (4)

with ε being an additive Gaussian noise with zero
mean and variance σ 2. The GPR begins by assuming
the vector-value function f ∼ N (0,K) as the prior
distribution, where K is the p × p covariance matrix
whose entries are k

(
t, t ′

)
. Considering this prior and

noise in the time training set, as defined in Eq. (4), the
joint distribution taking into account new input time
points t∗ and their associated output D∗ is given by

[ D
D∗

]
∼ N

(
0,

[
K (t, t) + σ 2I K (t, t∗)

K (t∗, t) K (t∗, t∗)

])
,

where I stands for the p× p identity matrix. Therefore,
the predictive equations for GPR are derived from the
conditional distribution property for the multivariate
Gaussian distribution [40]. Considering the Schur com-
plement (for more details on Schur complements, refer
to Puntanen and Styan [39]), the posterior predictive
distribution is the multivariate Gaussian distribution

p
(D∗ | t∗, t, D) = N (

μ∗, �∗) , (5)

with mean

μ∗ = K
(
t∗, t

) (
K (t, t) + σ 2I

)−1D (6)

and covariance matrix

�∗ = K
(
t∗, t∗

) − K
(
t∗, t

) (
K (t, t) + σ 2I

)−1
K

(
t, t∗

)
. (7)

Therefore, the calculation of Eqs. (6) and (7) is suffi-
cient to predict D∗. Note that this involves first calcu-
lating the four covariance matrices. Furthermore, the
covariance depends only on the time training set (t)
and the new input points (t∗), and not on the obser-
vation measures vector (D). By applying the GPR to
the observation set D( j), for j ∈ {P, D}, we then

obtain p
(
D( j)∗ ∣∣ t∗, t, D( j)

)
, whose corresponding

mean values at the time training points are the regular-
ized data used in this work.

The covariance function is commonly called the ker-
nel of theGP. This functionmaps a pair of general input
vectors t, t ′ ∈ t into R. The idea behind the kernel is
that if t and t ′ are said to be similar, it is expected that
the function output (observations) at these points will
also be similar. The main attribute of the kernel is to
avoid the computation of an explicit nonlinear map-
ping function that relates input and output data, obtain-
ing the identification of themapping in the space where
the number of parameters to be optimized, the so-called
hyperparameters, is smaller [25]. Thus, the choice of
an appropriate kernel is usually based on prior knowl-
edge related to the behavior of the training data, as for
example the occurrence of periodic oscillations, and
assumptions such as smoothness [48]. Finding suitable
properties for the kernel function is one of the main
tasks for defining an appropriate GP.

The kernel can be any function that relates two input
vectors, on the assumption that it can be formulated
as an inner product, producing a positive semi-definite
matrix [8]. Different functions can be combined to
produce kernels with a variety of features, generally
by both adding and multiplying kernels. Rasmussen
and Williams [40] present a comprehensive analysis
on the construction of kernel functions. Considering
the ability of GPR to approximate the behavior of the
used data, we adopt the radial basis function (RBF)
k

(
t, t ′

) = kRBF
(
t, t ′

)
, which is explicitly defined as

kRBF
(
t, t ′

) = exp

(
−|t − t ′|2

2	2

)
,

where 	 is the length scale of the kernel.
Rasmussen and Williams [40] present an algorithm

for GPR employing Cholesky factorization to solve the
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matrix inversion required by Eqs. (6) and (7). Practical
implementations of GPR, such as those provided by
the Scikit-learn library [37], which we have adopted
in this work, use the Cholesky factorization instead of
directly inverting thematrix

(
K (t, t) + σ 2I

)
, since the

procedure is faster and numericallymore stable. For the
Cholesky decomposition, the computational complex-
ity is p3/6. For our particular case where the training
data sets to be regularized are small (p = 210, see
Sect. 2.2), there are no stability issues. Furthermore,
studies on GPR stability are provided in Refs. [6,18].
Hyperparameters are calculated using a computational
routine internal to the library, which uses the L-BFGS-
B algorithm [34] to obtain the optimal values. The opti-
mizer is restarted 50 times in order to increase the
chances of convergence to the optimal set of hyper-
parameters. In fact, the number of restarts is an arbi-
trary choice and, as the GPR is executed only once,
the computational cost associated with this procedure
is negligible.

2.6 Parameter and numerical experiment setups

In models with more compartments and which, in
general, have more parameters, finding a unique set
of parameter values that best fits some data may be
unattainable. Different combinations of parameters can
produce similar results for data fitting. This fact is
a characteristic of the non-identifiability of parame-
ters [41]. To overcome this issue, some of the biologi-
cally known parameters are fixed, namely the incuba-
tion period σ̃ = 1/5.8 day−1 [30], the proportion of
symptomatic infected individuals ρ = 0.6 [35], and
both the recovery rate of infected and positively diag-
nosed individuals, defined asγI = γP = 1/16.7 day−1

[53]. Therefore, the parameters to be estimated are the
rate of transmissionβ, rate of removal due to quarantine
measuresω, andmortality rate dP . When analyzing the
influence of data regularization on the predictive capac-
ity of the model, we considered a constant mortality
rate. Later, we specifically analyze the gain of adopting
dP as a time-varying parameter, where the correspond-
ing parameters (d0 and d1) must be estimated.

In order to define the initial conditions that make it
possible to solve Eq. (1), first consider that the popula-
tion of the state ofRio de Janeiro is approximately equal
to N = 17,264,943 individuals, according to the last
demographic census conducted by the Brazilian Insti-

tute of Geography and Statistics [9]. Using the reported
data, it is possible to define the initial conditions for the
number of infected and positively diagnosed individu-
als, which we assume to be the same at the beginning of
the time series. The number of dead individuals on the
first day considered in this analysis is also sufficient to
define the initial condition for D. In addition, it is rea-
sonable to assume R(0) = 0, since it is not expected to
have recovered individuals at the outbreak of COVID-
19. Therefore, the only initial condition for which there
is no information from the reported data is related to
the exposed individuals. Therefore, we assume E(0)
as a parameter to be estimated and the initial condition
for the number of susceptible individuals is given by
S(0) = N − (E(0) + I (0) + P(0) + R(0) + D(0)).

We partition data sets into two subsets, which we
call training data and test data. The key idea behind
this approach is to analyze the predictive capacity of the
model, by comparing test data with short-term simula-
tions, which are calculated using parameters estimated
with training data. In this way, it is possible to compare
the gain of using regularized data in the parameter esti-
mation procedure, analyzing the results considering an
actual scenario. Furthermore, we only consider short-
term predictions in our analyses since the simulations
are compared with original data. Therefore, we analyze
scenarios in which we adopt 14 data points in the test
set. Of note, other time windows could also be used.

Arbitrarily,we choose theminimumsize of the train-
ing data set equal to 60. We set up 14 values in the
test data set and calculate successive estimates of the
parameters of the model, gradually increasing the pro-
portion between training and test data. After each run,
new data are added to the training set, so that the test
set is composed of the next 14 values in the time series.
As data for 210 days are available, 136 sets of param-
eters are estimated, using the deterministic approach
described in Sect. 2.3. This procedure is performed
both using training data as it stands and after regu-
larization. The simulations using the optimal parame-
ters are compared to the corresponding test set (with-
out being regularized), by the computation of the nor-
malized root-mean-square error (NRMSE) [19], con-
sidering both the cumulative number of infected and
dead individuals—in this step, the cumulative data are
adopted, with the purpose of minimizing the influence
of noise. The root-mean-square error is normalized by
the difference between the highest and lowest values in
the corresponding data set.
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Fig. 2 Results of the regularization of data using GPR. The blue
dots are the original data and the orange dots represent the result-
ing regularized data. Shaded areas indicate two standard devia-

tions from the corresponding regularized data. We also show the
cumulative data, for comparison purposes

All optimal parameters are calculated by combining
the Differential Evolution [51] and the Nelder–Mead
Simplex [33] methods. For each problem, the solution
is estimated by Nelder–Mead Simplex and refined by
Differential Evolution, which searches for the optimal
parameters in the vicinity of the previously obtained
point. The solution to each problem—the best individ-
ual in the population—is taken as an initial estimate
for the next problem. Nelder–Mead Simplex runs with
coefficients of reflection, expansion, contraction, and
shrinkage equal to 1, 2, 0.5, and 0.5, respectively (as
commonly adopted in the literature). In turn, Differen-
tial Evolution runs with 20 individuals in the popula-
tion, amplification factor equal to 0.6, and crossover
probability equal to 0.95. The search space is bounded
by 0 ≤ β ≤ 10−6, 0 ≤ ω ≤ 1, 0 ≤ dP ≤ 1, and
0 ≤ E(0) ≤ 104 in appropriate units (a.u.).

3 Results and discussion

3.1 Influence of regularization of data

The GPR was employed to generate regularized data.
The values of the hyperparameters tuned for the RBF
kernel are 	 = 68.9 and 	 = 50.2 for daily data of
infected and dead individuals, respectively. Consider-

ing these values, we then employ the mean as the regu-
larized data, and the variance provides the uncertainty
range of the regularization (refer to Eqs. (6) and (7),
respectively). Figure 2 shows an illustrative compar-
ison between the original data for daily infected and
dead individuals, alongside the corresponding, regu-
larized data. Shaded areas represent two standard devi-
ations from the fitting data.We also show the respective
cumulative data, in order to allow a visual inspection
of the agreement of the data resulting from the regular-
ization, but smoothing out the noise. The mean values
resulting from the regularization are used to estimate
the model parameters.

Next, the influence of estimating the parameters of
the SEIRPD-Q model, presented in Sect. 2.1, using
the regularized data set, in relation to the approach
that adopts the original data is analyzed. Our focus
is to assess the gain related to the regularization of
data within the scope of compartmental models and,
therefore, we consider the simulations using the model
adopted in this analysis. It is worth mentioning that the
proposed analysis can be extended to any compartmen-
tal model with a structure similar to the model given
by Eq. (1). The analysis is performed by evaluating the
NRMSE between model predictions and test data.

Results concerning the optimal parameters calcu-
lated by Differential Evolution and Nelder–Mead Sim-
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Fig. 3 NRMSEs computed by comparing simulations of the
SEIRPD-Q model, performed using parameters that best fit the
training data, where θ = (β, ω, dP , E(0)), in relation to the
test set (composed of 14 points). The area under the curve repre-
sents the total deviation relative to the test data in all runs, where
the number of training data varies. (Color figure online)

plex (Sect. 2.6) are shown in Fig. 3. For each set of
parameters obtained in the 136 runs using the method-
ology described in Sect. 2.6, considering each type of
data (original and regularized), the model is simulated
and we calculate the corresponding NRMSE. Then we
compute the area under the curve, which is composed
of the values of the NRMSEs. Analyzing Fig. 3, the
effect of data regularization on parameter estimation
is clear: for most of the estimated parameter sets, the
corresponding simulations have better agreement with
the test data. Translating into numbers, regularized data
resulted in more reliable predictions in 64.71% of runs.
The area under the curve for original data is approxi-
mately equal to 899.66 u. a. (unit of area), whereas for
regularized data it is 705.70 u. a. This represents an
average improvement of approximately 21.56%. Note
that the effect of the regularization is more prominent
when the data set to be fitted is larger since the influence
of the noise tends to become more intensive.

The implication of using regularized data is even
more straightforward when we analyze the variability
of simulations resulting from the optimal parameters
corresponding to each point in Fig. 3. For this purpose,
consider the results shown inFig. 4, inwhich the shaded
area represents the range of the simulations related to
the daily number of infected and dead individuals, for
both original and regularized data, whose parameters
are estimated by varying the amount of training data, as
previously described. In turn, the points represent the
corresponding data, which together with the box-and-
whisker diagrams, aim to demonstrate the variability of
the simulations on specific days. We also show the cor-

responding cumulative values of the results obtained, in
order to provide better conditions for comparison. It is
worthmentioning that the set of training data, even pre-
senting variable size considering each set of parameters
that are estimated, is completely shown in all cases.

It is clear that simulations resulting from parameters
estimated using data with no regularization have more
variability than after regularization. Considering that
on October 5, 2020 (the last day of the simulation), Rio
de Janeiro had 273,335 confirmed cases, the boundary
values of the shaded area on this day, for the cumula-
tive number of infected individuals obtained with orig-
inal data are 146,763.4 and 36,518,946.5, whereas the
quantities obtained with regularized data vary between
80,762.4 and 253,387.8. In the case of dead individ-
uals, the variation is between 8,066.9 and 3,579,976.6
for original data, and between 6,950.6 and 17,528.7 for
regularized data, with the actual cumulative number of
dead individuals on this day being 18,780.

The dispersion of these results can be alternatively
analyzed using a box-and-whisker diagram. The boxes
are bounded by the lower and upper quartiles (which
we call Q1 and Q3, respectively) of the full model
prediction values, and the horizontal line inside the
box represents the median. Whiskers, the vertical lines
bounded by perpendicular dashes, extend from themin-
imum value of the data to the first quartile, and from
the third quartile to the maximum value of the data.
Whiskers express the variability outside these quar-
tiles. They range from the lowest to the highest val-
ues of each set, both for original and regularized data,
since no simulation can be considered an outlier. The
statistical results associated with the box-and-whisker
diagrams in Fig. 4 are summarized in Table 1. It is clear
that regularization usingGPR preserves the behavior of
the data, although substantially reducing the variability
of the simulations. The reduction in variability provides
evidence that regularizing the data with the GPR does
not cause problems related to overfitting. Simulations
influenced by overfitting would deviate significantly
from the real data. In this case, parameter estimation
using regularized data provides a means of reducing
noise without negatively influencing forecasts [31].

Now consider a forecast of the epidemic in terms of
the cumulative number of infected and dead individu-
als, aiming to show the difference of the simulations in
relation to the analyzed data. For this purpose, we adopt
the Bayesian approach for parameter estimation, pre-
sented in Sect. 2.4. We arbitrarily choose the training
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Fig. 4 Simulations of the daily number of infected and dead
individuals using optimal parameters obtained with the deter-
ministic approach, by varying the amount of data in the training
set. The shaded areas represent the variation range of the simu-
lations, whereas the points are the fitted data. Box-and-whisker
diagrams are used to show the variability of the simulations on

specific days. We also show the corresponding results for cumu-
lative data, where the noise is less effective, for comparison pur-
poses. The results follow the same color scheme as in Fig. 2, blue
for original data, and orange for regularized data. (Color figure
online)

data sets for the daily number of infected and dead indi-
viduals, both original and regularized, with 196 values,
the maximum number of elements that the training set
can contain. In turn, the test set is made up of the next
14 values in the time series. By this analysis, we present
a visual perspective of the benefit of using regularized
data in the parameter estimation procedure, providing a
way of comparing the agreement between simulations
and test data.

The parameters to be estimated are the same as in
the previous analysis, and are assumed to be uniformly
distributed, in such a way that β ∼ U (

0, 10−6
)
, ω ∼

U (0, 1), dP ∼ U (0, 1), and E(0) ∼ U (
0, 104

)
, in

a.u. Table 2 shows the maximum a posterior (MAP)
estimates of the parameters, as well as the correspond-
ing 95% credible interval (CI) [5]. Likewise, all other
parameters of the SEIRPD-Q model are taken as bio-
logical parameters and have the same values previously
reported (see Section 2.6). Figure 5 shows the pos-
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Table 1 Statistical results of all 136 simulations performed
using the optimal parameters. The results refer to the cumula-
tive number of infected and dead individuals, that is, Y( j)

p for

j ∈ {P, D}, obtained using both original and regularized data
on the last day that themodel was simulated, October 5, 2020. On
this day, Rio de Janeiro accumulated 273,335 confirmed cases
and 18,780 deaths

Original data Regularized data

Y(P)
p Y(D)

p Y(P)
p Y(D)

p

Min 146,763.4 8,066.9 80,762.4 6,950.6

Max 36,518,946.5 3,579,976.6 253,387.8 17,528.7

Median 259,406.5 17,313.5 217,621.5 16,196.7

Q1 172,065.9 14,796.5 163,064.3 15,249.4

Q3 3,970,094.4 342,994.5 243,274.8 17,059.5

Table 2 MAP values and 95% CIs of the parameters estimated
using Bayesian calibration (in a.u.)

Data type

Original Regularized

β 1.5248 × 10−8 1.2419 × 10−8

(1.2795, 1.7991) × 10−8 (1.2206, 1.2639) × 10−8

ω 0.007121 0.004859

(0.005704, 0.008576) (0.004738, 0.004996)

dP 0.07126 0.0625

(0.06215, 0.08161) (0.06030, 0.06475)

E(0) 1190.8021 1236.5740

(655.0367, 1818.3565) (1168.6603, 1305.0816)

terior distribution of the estimated parameters of the
SEIRPD-Q model, obtained when original (blue bins)
and regularized (orange bins) data are employed for
calibration. In the right frame, violin plots express the
variance of the inferred parameters using original and
regularized data. Of note, the latter is much narrower
than the former. This fact is reflected in the stochastic
simulation of the SEIRPD-Q model shown in Fig. 6,
along with the training and test data sets (note that the
latter is never regularized). The solid curves represent
the model responses when the free parameters are set
to be the respective MAP values, shown in Table 2. In
turn, the shading around the curves represents the 95%
CI, the discrete points are the available data, and the
ranges of the training and test sets are colored in gray for
daily and cumulative data, respectively. Results related
to infected individuals are shown in red, whereas dead
individuals are shown in green.

Analyzing Fig. 6, it is clear that the Bayesian infer-
ence obtained suitable results, using both original and
regularized data. The deviation between the simula-
tions and the cumulative data in the test data range
when regularized data are used for calibration is due
to the regularization calculated using GPR, as can be
seen in Fig. 2. Nevertheless, the regularization of the
training data seems to make the predictive capacity of
the model less unstable. Thus, the model could bet-
ter capture the behavior of the data, eventually leading
to more appropriate predictions. Of note, the narrower
posterior distributions obtained by performing the cali-
bration with the regularized data resulted in less uncer-
tainty about the values predicted by the model, as can
be seen in Fig. 6. This is because the posterior distribu-
tions obtained when data are regularized tend to have a
smaller standard deviation, as can be seen in the right
frame of Fig. 5 and in the CIs shown in Table 2.

3.2 Influence of time-varying parameters

A further feature that may improve the predictive
capacity of compartmental models is the adoption of
time-varying parameters. In an effort to analyze this
aspect, consider the 136 sets of optimal parameters,
obtained using the deterministic approach that led to
the results shown in Fig. 3. Figure 7 shows the values of
the calibrated parameters for each corresponding run,
both using original and regularized data. Initially, note
that the variability of the set of parameters obtained by
fitting the original data is much higher than those refer-
ring to regularized data. This is a consequence of the
high level of noise in the data. Note, for instance, the
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Fig. 5 The left frame shows the posterior distribution of the
parameters obtained in the Bayesian inference for original (in
blue) and regularized (in orange) data, by fitting the daily num-

ber of infected and dead individuals; the right frame illustrates
the variance of each parameter in a comparative way, where the
same color scheme is adopted. (Color figure online)

gray shaded areas in Fig. 7. They refer to the same runs
for all parameters and correspond to the shaded area in
the same color in Fig. 2. In this time window, the data
show very large variations on subsequent days, espe-
cially those of the daily number of infected individuals.
These variations influence the values of the parameters
obtained, giving rise to a great difference in the value
of the set of parameters that best fits the data just by
adding a new single value to the training set, which
does not occur with regularized data.

The optimal parameters in Fig. 7 express some
meaningful facts: first, the behavior of the initial condi-
tions for exposed individuals reveals that defining this
value just as a fixed proportion of the population size
can undermine the capacity of the method for solving
the system of differential equations; second, the param-
eters β and ω exhibit similar behaviors (especially
when considering the results obtained with regularized
data). Over time, the rate of contact between suscep-
tible and infected individuals decreases (assuming the
hypothesis that recovered individuals are immune for

some time), so that quarantine measures end up being
eased, which is reflected in the reduction of isolation
measures. Definitely, political and social interests also
play a significant role in this behavior.

The inspection of the behavior of dP in Fig. 7 indi-
cates that the mortality rate of positively diagnosed
individuals basically only decreases after a certain run,
around the gray shaded area. This behavior suggests
that the parameter can be approximated by a function.
In this case, we propose to represent dP as a function
of the form

dP (t) = d0 exp (−d1t) . (8)

This approach assumes an inherent error related to the
first runs, at expense of better representing the parame-
ter behavior in later times. Thus, dP becomes variable
over time, and the vector of parameters to be estimated
is formed by θ = (β, ω, d0, d1, E(0)).

We then repeated the methodology used previously
to investigate the impact of using the time-dependent
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Fig. 6 Simulations with parameters obtained by fitting the daily
number of infected (in red) and dead (in green) individuals using
the Bayesian approach. The shaded areas refer to the 95% CI

(see Table 2). Hatched areas bound the range of training and test
data. Training data is never regularized. (Color figure online)

dP (t) defined inEq. (8) on themodel outcomes. Specif-
ically, we sequentially estimated the new 136 sets of
parameters θ as additional data, original and regu-
larized, were gradually included in the analysis. The
search intervals for the new parameters are 0 ≤ d0 ≤ 1
and 0 ≤ d1 ≤ 1 and all other parameters follow the
same specifications defined before. Figure 8 shows that
this strategy is reflected in the reduction of the NRMSE
considering the test data set with 14 values, in most
simulated forecasts. TheNRMSEs considering regular-
ized data and time-varying dP (orange dots) represent
a better approximation of the test data set in 73.53%
of the analyzed runs, in relation to the results consider-

ing original data (blue dots). The area under the curve
obtainedwith regularized data and dP (t) is 733.06 u. a.,
whereas for original data the area is equal to 1427.28
u. a., which represents a reduction of approximately
48.64%.

As in Fig. 7, we are interested in understanding the
behavior of the parameters inherent to the function
when dP varies over time. Figure 9 shows the param-
eters d0 and d1, as well as the other calibrated param-
eters of the model, calculated in each parameter esti-
mation procedure using both original and regularized
data. The color scheme follows what has been adopted,
blue for original data and orange for regularized data.
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Fig. 7 Optimal parameters obtained by fitting the daily data of
infected and dead individuals, for θ = (β, ω, dP , E(0)). Each
run is associated with a training set with a specific size, from 60
to 196 data in each set. The test data refer to the 14 subsequent

data from the corresponding run. Parameters obtained by fitting
original data are shown in blue, and regularized data are shown
in orange. (Color figure online)

Fig. 8 NRMSEs computed by comparing simulations of the
SEIRPD-Q model, performed using parameters that best fit the
training data, where θ = (β, ω, d0, d1, E(0)), in relation to
the test set (composed of 14 points). The area under the curve
represents the total deviation relative to the test data in all runs,
where the number of training data varies

In addition, Fig. 9 shows the range of Eq. (8), taking
the optimal values of d0 and d1, alongside the values of
dP (shown in Fig. 7) for both original and regularized
data. In this regard, we are interested in analyzing the
behavior of dP (t) in terms of the values obtained for
the case where dP is constant.

In the first runs, dP (t) is expressed by a nearly con-
stant function, since the values of d1 are very close to
zero (see the behavior of d1 in Fig. 9). In this case,
dP (t) ≈ d0. These curves practically coincide with
the first points shown in the frame corresponding to
dP (t) obtained with regularized data in Fig. 9, which
means that, in fact, the calibrations are quite similar.

This behavior occurs because, given the training set for
such runs, the model identifies that the mortality rate
is not decreasing and, therefore, the calibration proce-
dure estimates the most suitable function for such data
(by means of d0 and d1), which in this case is nearly
constant, without loss of generality.

As the training set gets larger, dP (t) starts to behave
as expected, exponentially decreasing. In this case, the
first calibrations provide functions relatively distant
from the corresponding points in Fig. 9, especially in
the early times. In the last runs, the functions show
good agreement with the compared points. However, it
is important to note that dP (t) is not expected to repre-
sent the exact behavior of such data in the long run. In
general, when the mortality rate varies over time, the
compartmental model may be more capable of captur-
ing the dynamics of the data, allowing for more accu-
rate predictions. This hypothesis is supported by the
last results obtained in Fig. 8, where the orange dots
always represent the best approximation in relation to
the test data.

4 Conclusions

In this work, the focus was to provide methodologies
capable of improving the predictive capacity of com-
partmental models for intrinsically noisy data such as
the COVID-19 pandemic. Our contribution is divided
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Fig. 9 Optimal parameters obtained in a procedure similar to
that of Fig. 7, for θ = (β, ω, d0, d1, E(0)). We also show the
interval that includes the curves of dP (t), for each optimal value

of d0 and d1 associated with the same run. In addition, we also
show the optimal values of dP presented in Fig. 7, for purposes
of comparison with the curves of dP (t)

into two parts: first, we proposed the use of GPR to
regularize the training data. Second, we proposed the
use of a time-varying parameter, rather than being con-
stant as usual, in order to increase the descriptiveness
of the model. In summary, we conducted successive
predictions, increasing the amount of data in the train-
ing set, so that the variability of the model outcomes
was clearly reduced when such strategies were adopted
for estimating the parameters of the model, leading to
more accurate predictions.

Our study provides a framework that aims to
increase the predictive capacity of compartmentalmod-
els. This is relevant from the point of view that the pro-
posed strategies can be extended to other data sets and
compartmental models. Especially in the context of the
epidemiological modeling of COVID-19, approaches
of this type can be useful, taking into account the wide
range of existing compartmental models and the fact
that the data analyzed here are similar to others regard-
ing noise.

This study has gone someway toward enhancing our
understanding of the influence of noise on the estima-
tion of parameters of compartmental models. The work
has revealed that the regularization of data by means
of GPR is effective to mitigate the effect of noise in
a given parameter calibration. We analyzed the gain
of data regularization in parameter estimation proce-
dures in the scope of compartmental models. There-
fore, we estimated 136 sets of parameters, using both
original and regularized data, increasing the amount of
training data by one. We have shown that simulations
with estimated parameters using regularized data have
more agreement with test data in general. Furthermore,
NRMSE values obtained with simulations computed
using parameters estimated with regularized data were
below the corresponding results with original data in
most cases. Another relevant contribution is the smaller
variability of the set of optimal parameters obtained in
successive calibrations when regularized data are used.
Since this procedure must not be repeatedly applied, in
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the context to which it is proposed, the computational
cost of the GPR can be considered irrelevant.

Our research also suggests that it may be useful to
use time-varying parameters, to the detriment of the
usual approach that adopts constant parameters. We
have defined a functional form for the mortality rate
of the compartmental model based on the set of opti-
mal parameters obtained through successive calibra-
tions considering the parameter in each calibration con-
stant. Through the analysis of the NRMSE values, we
have noticed that the descriptive capacity of the model
has increased when the time-varying parameter was
adopted, causing the variability of the simulations to
be reduced and, therefore, increasing the agreement
between the simulations and the test data. It incorpo-
rates additional degrees of freedom into the model, in
order to provide more flexibility to describe the behav-
ior of the analyzed data. The choice of such a function
depends on several factors, as for example the physical
meaning of the parameter and the additional parame-
ters inherent to the function. This analysis can be con-
ducted for any model and, clearly, the gain is related
to the appropriate choice of the function, especially if
many parameters to be estimated are included.

The proposed GPR regularization can be used as
an accessory approach in problems of engineering and
sciences, whenever noisy data can compromise or pre-
clude the desired analysis. We are currently using data
regularization through GP, together with a compart-
mental model with a time-varying parameter, to ana-
lyze the effect of vaccination on the population of the
state of Rio de Janeiro, under various aspects, such as
any delays in the start of vaccination, peoplewho refuse
to get vaccinated (or refuse to receive the second dose),
and the burden of slow vaccination. In other research,
we use GPs to regularize spatial data from susceptible,
exposed, and infected individuals, in order to take such
values as initial conditions ofmodelswith temporal and
spatial dependence.
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