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Abstract

Background: Alcohol use disorder (AUD) and schizophrenia (SCZ) frequently co-occur, 

and large-scale genome-wide association studies (GWAS) have identified significant genetic 

correlations between them.

Methods: We used the largest published GWAS for AUD (total cases = 77,822) and SCZ (total 

cases = 46,827) to identify genetic variants that influence both disorders (with either the same or 

opposite direction of effect) and those that are disorder specific.

Results: We identified 55 independent genome-wide significant SNPs with the same direction of 

effect on AUD and SCZ, 8 with robust effects in opposite directions, and 98 with disorder-specific 

effects. We also found evidence for 12 genes whose pleiotropic associations with AUD and SCZ 

are consistent with mediation via gene expression in the prefrontal cortex. The genetic covariance 

between AUD and SCZ was concentrated in genomic regions functional in brain tissues (p = 

0.001).

Conclusions: Our findings provide further evidence that SCZ shares meaningful genetic overlap 

with AUD.

Introduction

Schizophrenia (SCZ) and alcohol dependence or abuse (hereafter referred to as alcohol 

use disorder, AUD) are serious psychiatric disorders(Whiteford et al., 2013). AUD is more 

common in individuals with SCZ (prevalence of 20–30%(Castillo-Carniglia, Keyes, Hasin, 

& Cerdá, 2019; Hunt, Large, Cleary, Lai, & Saunders, 2018), compared to ~6% in the 

general population(SAMHSA, 2019)) and a diagnosis of both is associated with greater 

psychiatric comorbidity(Brady, Killeen, & Jarrell, 1993), more clinical complications(Duke, 

Pantelis, & Barnes, 1994), and a lower likelihood of sustained medication adherence(Drake 

& Wallach, 1989) than either disorder alone. Both SCZ and AUD are moderately to highly 

heritable (twin-h2 for SCZ = 81%(PF, KS, & MC, 2003), AUD = 49%(Verhulst, Neale, 

& Kendler, 2015)), and genome-wide association studies (GWAS) have consistently found 

positive genetic correlations of AUD with SCZ (e.g., rg = 0.34, p = 3.7e-21)(Kranzler 

et al., 2019), suggesting that common genetic influences may potentially contribute to 

their co-occurrence (although environmental factors undoubtedly play a large role). Further, 

polygenic risk scores (PRS) for AUD are significantly associated with SCZ risk(Kranzler et 

al., 2019) and vice versa(Reginsson et al., 2017). In contrast, the genetic correlation between 

SCZ and measures of typical alcohol consumption is weak (e.g., drinks/week: rg = 0.01, p 

= 0.67)(Liu et al., 2019), suggesting that SCZ might share substantial genetic liability only 
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with the psychopathological aspects of disordered drinking(Sanchez-Roige et al., 2018) and 

not alcohol consumption per se.

Despite the substantial genetic correlation between AUD and SCZ, there is little known 

regarding the underlying pleiotropic mechanisms in terms of the specific risk alleles, genes, 

and molecular pathways involved. Although recent studies have begun to elucidate the 

contributions of pleiotropic loci to shared genetic variance amongst disorders and complex 

traits(Lam et al., 2019; Lee et al., 2019), these efforts have not included AUD, one of the 

most common psychiatric disorders; until recently, GWAS of AUD were not well-powered. 

In addition to loci with a similar direction of effect on both disorders, modern cross-disorder 

GWAS methods can also identify divergent variants, i.e., those that are pleiotropic for 

two disorders but whose effect alleles operate in opposite directions, conferring risk for 

one disorder and protective effects for the other (e.g., potassium ion response genes that 

distinguish SCZ from bipolar disorder(Ruderfer et al., 2018)). The identification of such 

variants is fundamental to identifying the pathways that contribute to diagnostic boundaries.

The current study outlines the nature of the shared genetic underpinnings of AUD and SCZ 

by conducting cross-disorder analyses of large genome-wide datasets of both European- and 

African-ancestry individuals (see Figure 1 for overview). We conducted ancestry-specific 

cross-disorder meta-analyses to systematically identify pleiotropic loci with significant 

convergent and divergent effects on both SCZ and AUD, and loci specific to each disorder. 

We also linked pleiotropic variants to gene expression data from the frontal cortex in an 

effort to prioritize the genes that are more likely to be causal. Because the extent to which 

the correlation between AUD and SCZ is attributable to salient functional categories remains 

unknown, we partitioned the genetic covariance between AUD and SCZ into relevant 

annotations.

Methods and Materials

Samples

Alcohol Use Disorder—For the European-ancestry subset, we meta-analyzed a subset of 

the GWAS data from the largest available AUD meta-analysis(Zhou, Sealock, et al., 2020) 

(N = 313,959; Ncases = 57,564): we meta-analyzed two GWAS of alcohol dependence and 

abuse (MVP + PGC), and did not include the GWAS of the problem subscale of the Alcohol 

Use Disorders Identification Test in the UK Biobank. In the Million Veteran Program 

(MVP), case status was derived from International Classification of Diseases (ICD) codes 

of alcohol dependence and abuse in electronic health records (EHR). In the Psychiatric 

Genomics Consortium (PGC) alcohol dependence GWAS(Walters et al., 2018), cases were 

defined by DSM-IV diagnoses.

We also meta-analyzed two published GWAS to create the African-ancestry subset: the 

MVP Phase 1 GWAS of AUD(Kranzler et al., 2019) (N = 56,648; Ncases = 17,267), and 

the PGC GWAS of alcohol dependence(Walters et al., 2018) (N = 5,799; Ncases = 2,991). 

We used METAL(Willer, Li, & Abecasis, 2010) (which combines genome-wide summary 

statistics across multiple samples) to generate the African-ancestry summary statistics by 

meta-analyzing the GWAS data from the MVP Phase 1 AUD and PGC alcohol dependence 
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GWAS using an inverse variance-weighted fixed-effects model, excluding SNPs with INFO 

score < 0.8 and/or minor allele frequency < 0.01 within each sample.

Schizophrenia—For the European-ancestry sample, we used the PGC Phase 2 + 

CLOZUK (a sample of individuals with schizophrenia who were treated with clozapine) 

SCZ GWAS meta-analysis(Pardiñas et al., 2018) (total N = 105,318; Ncases = 40,675). 

We used the summary statistics from the Genomic Psychiatry Cohort (GPC) SCZ 

GWAS(Bigdeli et al., 2019) (N = 10,070; Ncases = 6,152) for the African-ancestry cross-

disorder analysis.

Analysis

Cross-disorder association analysis—We used “Association analysis based on 

SubSETs” (ASSET)(Bhattacharjee et al., 2012) to combine the genome-wide association 

data for AUD and SCZ (separately by ancestry), using the two-tailed meta-analysis approach 

to obtain a single cross-disorder association statistic, correcting for sample overlap. Unlike 

traditional meta-analysis approaches, ASSET takes into account SNPs with significant 

effects on multiple disorders even if the effects on the traits are in opposite directions. 

Default parameters were applied using the “h.traits” function, and we used LD Score 

Regression(B. Bulik-Sullivan et al., 2015; B. K. Bulik-Sullivan et al., 2015) (LDSC) to 

obtain a rough estimate of sample overlap, which we accounted for in the additional 

covariance term. We then separated the ASSET results into four subsets: a “convergent” 

subset (effect allele with the same direction of effect for both disorders), a “divergent” subset 

(effect allele with opposite directions of effect on the disorders), a subset of SNPs with 

AUD-specific effects, and a subset of SNPs with effects only on SCZ (Supplemental Figure 

1).

In the European-ancestry sample, we then uploaded the subset results (i.e., 

convergent, divergent, AUD-only, and SCZ-only SNPs from ASSET output) to FUMA 

v1.3.6a(Watanabe, Taskesen, van Bochoven, & Posthuma, 2017) for annotation and 

identification of genome-wide significant risk loci and independent lead SNPs. We further 

subset these convergent and divergent loci to exclude top lead SNPs with p > 0.05 in either 

individual disorder GWAS, to create a more conservative set of cross-disorder variants with 

at least nominal significance in both disorders (although the full subsets were used for 

gene-set and pathway analyses).

In the African-ancestry samples, which were smaller and accordingly lacked power for more 

extensive analyses, we focused on the overall set of pleiotropic cross-disorder variants, 

rather than parsing the pleiotropic variants into subsets with convergent and divergent 

effects.

To examine specificity of genetic overlap, we also examined the effect sizes and p-

values of the top pleiotropic loci identified for AUD and SCZ in GWAS of attention 

deficit hyperactivity disorder (ADHD)(Demontis et al., 2019), bipolar disorder(Stahl et al., 

2019), depression(Howard et al., 2019), cigarettes per day(Liu et al., 2019), cannabis use 

disorder(Johnson et al., 2020), and opioid use disorder(Zhou, Rentsch, et al., 2020).

Johnson et al. Page 4

Psychol Med. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Gene, gene-set, and pathway analyses—In both the European-ancestry and African-

ancestry samples, gene-based analyses in MAGMA (v1.08)(de Leeuw, Mooij, Heskes, & 

Posthuma, 2015) were conducted on the subset results (i.e., convergent and divergent 

SNPs from ASSET output) via the FUMA(Watanabe et al., 2017) platform. These analyses 

included gene-set analyses using curated gene sets and GO terms from MsigDB(Liberzon 

et al., 2011) (an online collection of annotated gene-sets) and gene-property analyses based 

on tissue expression data from GTEx(Aguet et al., 2017) v8 (a repository of expression data 

by brain region from autopsies of 960 donors) and brain samples at different developmental 

stages and specific ages from BrainSpan(Miller et al., 2014) (more details in Supplemental 

Materials).

Summary data-based eQTL analyses—To examine whether the effects of pleiotropic 

variants with convergent effects on AUD and SCZ may be mediated by gene expression 

patterns, we conducted a summary data-based Mendelian randomization(Zhu et al., 

2016) (SMR) analysis on a set of expression quantitative trait loci (eQTL) data in the 

prefrontal cortex (meta-analyzed to combine data from ROSMAP(De Jager et al., 2018), 

PsychENCODE(Akbarian et al., 2015), and COGA-INIA datasets(Kapoor et al., 2019); 

total N = 1,986). SMR is a Mendelian randomization-based analysis that integrates GWAS 

summary statistics with eQTL data to test whether the effect size of a SNP on the phenotype 

of interest is mediated by gene expression. SMR does not require raw eQTL data to build 

the weights. We excluded variants with pleiotropic effects significantly different from what 

would be expected under a causal model using the HEIDI-outlier method(Zhu et al., 2018) 

(excluding SNPs with HEIDI-outlier p < 0.05).

Differential gene expression analyses using AUD and SCZ post-mortem 
samples—We also examined whether genes mapped to pleiotropic loci by MAGMA (with 

p < 0.05) were significantly enriched for genes showing differential expression (p < 0.05) 

in the prefrontal cortex using two comparisons in independent samples: we compared gene 

expression in 65 individuals with alcohol dependence and 73 healthy controls(Kapoor et 

al., 2019), and 258 individuals with SCZ and 279 controls(Fromer et al., 2016) (details in 

Supplemental Note) using Fisher’s exact test(Fisher, 1934).

Genetic correlations and partitioned covariance—We used LDSC(B. Bulik-Sullivan 

et al., 2015; B. K. Bulik-Sullivan et al., 2015) to estimate the genetic correlations (rg) 

between AUD, SCZ, and two negative control traits (height and chronic ischemic heart 

disease). We compared the genetic correlations between AUD and SCZ, and DPW and SCZ 

using a block jackknife method implemented through LDSC to test the null hypothesis that 

rg(AUD, SCZ) minus rg(DPW, SCZ) = 0.

We also used LDSC applied to Specifically Expressed Genes (LDSC-SEG(Finucane et 

al., 2018)) to estimate the enrichment of AUD and SCZ across 13 specific brain regions 

(annotations defined using GTEx(Lonsdale et al., 2013) gene expression data).

We used GeNetic cOVariance Analyzer (GNOVA)(Lu, Li, et al., 2017) to partition the 

genetic covariance (ρg) between AUD and SCZ into salient annotation categories. These 

included 1) functional vs. non-functional areas of the genome (GenoCanyon(Lu et al., 
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2015) annotations, defined by integrating genomic conservation measures and biochemical 

annotation data to generate a functional potential score for each genetic variant), 2) tissue- 

and regional-specific functionality (GenoSkyline(Lu, Powles, et al., 2017; Lu, Powles, 

Wang, He, & Zhao, 2016) annotations, which are tissue-specific functional regions defined 

by integrating high-throughput epigenetic annotations, 3) GTEx v6(Lonsdale et al., 2013) 

brain region annotations (adapted from LDSC cell-type specific analyses), and 4) minor 

allele frequency quartiles. We excluded the MHC region (chr6:26000885 - chr6:33999991) 

from both the LDSC-SEG and GNOVA analyses due to the long-range and complex LD in 

this region.

In sensitivity analyses conducted on individuals of European ancestry in the UK Biobank 

(from the Neale lab GWAS: https://www.nealelab.is/uk-biobank), we calculated the genetic 

correlation and partitioned genetic covariance between AUD, SCZ, and two negative control 

traits: height (N = 360,388) and chronic ischemic heart disease (CHD; N = 361,194; Ncases = 

12,769).

Results

Identifying pleiotropic variants, genes, and pathways in individuals of European ancestry

The cross-disorder analysis of AUD and SCZ in European-ancestry individuals identified 

numerous pleiotropic loci: after genome-wide clumping via FUMA(Watanabe et al., 2017), 

there were 55 independent risk loci (with 60 lead SNPs) with convergent effects and 44 

risk loci (56 lead SNPs) with divergent effects (i.e., effect allele with opposite effects 

on AUD and SCZ; Supplemental Figure 1, Supplemental Tables 1–3). We also identified 

disorder-specific loci through ASSET: 90 with SCZ-only effects, and 8 with AUD-only 

effects (Supplemental Tables 4–5). MAGMA gene-based analyses identified 119 significant 

genes from the convergent subset and 105 genes from the divergent subset (Supplemental 

Figure 2, Supplemental Tables 6–7).

As ASSET(Bhattacharjee et al., 2012) searches for and determines the most likely subset 

for each SNP (i.e., classifying SNPs as having an effect only on AUD, only on SCZ, or on 

both disorders), some of the pleiotropic SNPs identified by ASSET were only significant in 

one of the single-disorder GWAS. For a more conservative description of pleiotropic loci 

of divergent effect, we further considered only the 8 loci where the top lead SNPs had 

opposite effects but p < 0.05 for both AUD and SCZ (Supplemental Table 3; the convergent 

lead SNPs already had p < 0.05 for both disorders). In the convergent subset, the strongest 

association was on chromosome 11 (lead SNP rs6589386, cross-disorder p = 5.7e-18; AUD 

p = 7.1e-12, SCZ p = 1.6e-8). The strongest divergent signal was on chromosome 4 (lead 

SNP rs13135092, cross-disorder p = 2.9e-31; AUD p = 4.9e-18, SCZ p = 7.9e-16), located 

in an intron of SLC39A8; the effect allele (A) increases risk for AUD and decreases risk 
(i.e., is protective) for SCZ.

MAGMA competitive gene-set analyses identified 2 significant GO terms in the convergent 

subset of variants, one related to DNA binding (GO: 0043565, p = 1.3e-6) and one related 

to neuronal differentiation (GO: 0045664, p = 1.9e-6; Supplemental Table 8). There were no 

significant gene-sets identified for the divergent subset (Supplemental Table 9).
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Both the convergent and divergent subsets of variants showed enrichment in all 13 

brain tissues in MAGMA gene-property analyses, and the divergent subset also showed 

enrichment in pituitary tissues. (Supplemental Figure 3). The convergent subset of variants 

showed enrichment for the early-mid prenatal general developmental stage in the BrainSpan 

data, but did not show any significant enrichments in the 29 more specific age samples 

(Supplemental Figure 3). The divergent subset did not show enrichment in any of the 

specific ages or developmental stages.

Cross-disorder variants, genes, and pathways in African ancestry individuals

In the African-ancestry cross-disorder analysis, there was limited power to identify 

pleiotropic loci, with results appearing to be primarily driven by the larger AUD GWAS 

(e.g., the one genome-wide significant SNP (rs150627184) that ASSET identified as 

being pleiotropic had p > 0.05 for SCZ; Supplemental Table 10). There were three 

significant genes (ADH4, ADH1B, and EIF4E) identified in the MAGMA gene-based 

analysis (Supplemental Figure 4 and Supplemental Table 11). No gene-sets passed 

Bonferroni correction in the competitive gene-set analysis (Supplemental Table 12), 

and gene-property analyses did not reveal significant enrichment for any tissues or 

developmental stages (Supplemental Figure 5). While neither of the two specific gene-sets 

identified in the European-ancestry cross-disorder analysis (related to DNA binding and 

neuron differentiation) were significant in the African ancestry analysis after multiple testing 

corrections, a gene-set related to the regulation of dopaminergic neuron differentiation had p 

= 0.003.

Overlap of top loci with other psychiatric and substance use GWAS

To assess the specificity of the identified divergent and convergent loci, we examined the 

effect sizes of these loci in several European-ancestry psychiatric and substance use GWAS 

(Supplemental Tables 13 & 14): ADHD, bipolar disorder, depression, cigarettes per day, 

cannabis use disorder, and opioid use disorder. Of the top lead SNPs at the 55 convergent 

loci, 22 showed statistically significant effects (Bonferroni corrected for the 55 SNPs tested: 

α = 0.0009) across one or more of the six phenotypes tested. Depression shared the most 

convergent SNPs with AUD and SCZ, with 10 of the 55 lead SNPs having p < 0.0009 in the 

depression GWAS. In the subset of 8 divergent SNPs with p < 0.05 in both AUD and SCZ, 3 

were significantly associated (α = 0.00625) in one or more of the other GWAS. In particular, 

cigarettes per day showed a strong association (p = 1.2e-123) with rs8042374, an intronic 

variant in the CHRNA3 gene which exerts an effect in the same direction for both the AUD 

and cigarettes per day GWAS and in the opposite direction of effect for the SCZ GWAS.

Genetically regulated gene expression analyses

Of the 22 genes that survived Bonferroni correction (for the number of genes tested; pSMR < 

1.16e-5), SMR analyses in the European ancestry sample identified 12 convergent genes 

whose cross-disorder associations with AUD and SCZ were consistent with mediation 

via gene expression in the prefrontal cortex (PFC; the remaining 10 genes with pSMR < 

1.16e-5 had pHEIDI < 0.05, indicating pleiotropy outlier status; Figure 2; significant results 

in Supplemental Table 15; full results in Supplemental Table 16).
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Differential gene expression enrichment analyses

Neither the convergent nor divergent genes identified in the European ancestry sample were 

enriched in differential gene expression analyses of postmortem PFC tissue of individuals 

with SCZ (Ncases = 258) vs. controls or of AUD (Ncases = 65) vs. controls.

Genetic covariance and correlation

There were significant positive genetic correlations (rg) between AUD and SCZ (rg = 0.392, 

p = 1.2e-42). In sensitivity tests, the negative control measure of chronic ischemic heart 

disease was not significantly correlated with AUD but height showed a small negative 

correlation (rg = −0.093, SE = 0.021, p = 7.54e-6). SCZ showed a nominal genetic 

correlation with heart disease (rg = −0.063, SE = 0.029, p = 0.032), but none with height.

LDSC-SEG(Finucane et al., 2018) analyses that partitioned heritability enrichment by 

tissue-specific gene expression revealed significant enrichment for SCZ in three of 13 brain 

regions: the cortex, frontal cortex, and anterior cingulate cortex (FDR q-values < 2e-5), and 

for AUD in the anterior cingulate cortex (FDR q-value = 0.007; Supplemental Figure 6).

The genetic covariance (ρg) of AUD and SCZ was significantly attributable both to 

functional regions of the genome (p = 1.0e-8), including those specifically functional in 

brain tissues (p = 0.001; see Figure 3a, Supplemental Table 17) and non-functional regions 

(p = 1.5e-19; Supplemental Table 18), as well as all minor allele frequency quartiles except 

the lowest frequency quartile (p = 2.9e-5 – 3.9e-9; Supplemental Table 19). While the 

point estimate of genetic covariance was highest in genes functional in immune tissues 

(ρg = 0.017), this estimate had a relatively large standard error (0.007) and did not reach 

significance after multiple testing corrections. There were no significant findings when 

partitioning the genetic covariance between AUD and height or SCZ and heart disease into 

tissue-specific categories with GNOVA.

Because the genetic covariance of AUD and SCZ was significantly concentrated in brain 

tissues, we partitioned it further into 13 specific brain regions. We found significant 

concentrations of genetic covariance in all 13 brain regions tested, with the greatest 

concentrations in the anterior cingulate cortex (p = 7.6e-12), frontal cortex (p = 3.3e-9), 

cortex (p = 1.2e-7), and amygdala (p = 3.1e-9; Supplemental Table 20, Figure 3b).

Discussion

The prevalence of AUD is elevated in those with SCZ, relative to the general population. 

Although environmental factors likely play a large role in this comorbidity, there is some 

evidence that shared genetic influences may also contribute, with recent large GWAS of 

AUD documenting robust genetic correlations between AUD and SCZ(Zhou, Sealock, et 

al., 2020). Utilizing a subset-based meta-analytic approach, our cross-disorder analysis of 

AUD and SCZ identified 55 convergent loci with the same direction of effect on AUD 

and SCZ and 8 divergent loci with opposite directions of effect that had lead SNPs with 

p < 0.05 in both individual disorders. The genetic covariance between AUD and SCZ was 

concentrated in genes functional in the brain, and eQTL analyses of the convergent subset 
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of variants identified 12 genes whose association with AUD and SCZ may be mediated via 

gene expression in brain tissues.

In contrast to the robust genetic correlation between AUD and SCZ, prior studies have found 

that SCZ is uncorrelated with measures of typical alcohol consumption (e.g., with drinks/

week, rg = 0.01, p = 0.67(Liu et al., 2019)) or frequency of use(Marees et al., 2019). Genetic 

correlations with indices that encompass heavy episodic drinking, such as the consumption 

sub-scale of the Alcohol Use Disorders Identification Test (AUDIT-C), are also lower (rg 

= −0.0003 −0.04)(Kranzler et al., 2019; Sanchez-Roige et al., 2018) than those noted for 

AUD. A recent study suggests that indices of socioeconomic status may influence genetic 

correlations between measures of substance use and psychopathology(Marees et al., 2020); 

however, even after co-varying for SES, the genetic correlation between alcohol frequency 

and SCZ remained non-significant. The genetic correlation between drinks per week and 

SCZ remained significant and relatively unchanged (rg = 0.14–0.16), but markedly lower 

than the AUD-SCZ genetic correlation. This suggests that SCZ shares genetic variation 

primarily with the psychopathological aspects of problem drinking and AUD. Future studies 

that employ symptom-level GWAS, or GWAS of clinically relevant phenotypes (e.g., 

negative symptoms of SCZ), may yield further insights into whether this genetic overlap 

is specific to certain symptoms or aspects of these psychiatric disorders.

The top divergent SNP, rs13135092, in an intron of SLC39A8, was strongly associated with 

both AUD (p = 4.9e-18) and SCZ (p = 7.9e-16), with the A allele exerting a risk-increasing 

effect on AUD and a protective effect on SCZ. Comparison of summary statistics for over 

4,756 traits(Watanabe et al., 2019) indicated that the A allele was also associated with 

greater alcohol consumption, greater risk-taking, higher waist-hip ratio, lower bioelectrical 

impedance (i.e., greater adiposity) and higher systolic blood pressure, consistent with 

the direction of genetic association between these measures and AUD. However, the A 

allele was also associated with increasing cognitive performance, higher intelligence and 

with higher educational attainment – while the direction of these effects is consistent 

with the “protective” effect of the A allele on risk for SCZ, it contradicts prior research 

showing an inverse genetic correlation between educational attainment and AUD. Given the 

convergent direction of associations with AUD and alcohol consumption, risk-taking, and 

cardio-metabolic traits, but divergent direction of associations with SCZ and cognition, we 

speculate that the A allele of rs13135092 may be related to milder AUD, typified by positive 

reward-related drinking and impulsivity that is effectively regulated by enhanced cognitive 

functioning.

Our top convergent SNP, rs6589386, is intergenic and is an eQTL for DRD2 in 

cerebellar hemisphere tissue; DRD2 has been implicated in both AUD(Kranzler et al., 

2019) and SCZ(Consortium, 2014) GWAS. In addition to AUD and SCZ, this variant 

has been implicated in GWAS of neuroticism(Baselmans et al., 2019), subjective well-

being(Baselmans et al., 2019), alcohol consumption(Liu et al., 2019), and cigarette 

smoking(Liu et al., 2019).

Consistent with recent reports demonstrating broad levels of pleiotropy amongst psychiatric 

disorders(Lee et al., 2019), including substance use disorders(Hatoum et al., 2021), we 
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found that 22 of the 55 top convergent SNPs and 3 of the 8 divergent SNPs showed at least 

nominal significance across one or more of the six psychiatric disorders and substance use 

traits that we assessed. Depression showed the greatest extent of overlap with the convergent 

SNPs, with 10 of the 55 convergent SNPs having p < 0.0009 in the depression GWAS and 

only one of those exerting a different direction of effect relative to AUD and SCZ. Of the 

8 top SNPs in the divergent subset, both cigarettes per day and opioid use disorder were 

significantly (p < 0.00625) associated with two of those SNPs, with both variants showing 

the same direction of effect as for AUD (and opposite direction of effect from SCZ), again 

consistent with the pleiotropy observed among different substance use traits. While there 

may be individual loci and pathways that contribute uniquely to AUD and SCZ, it is evident 

that much of this genetic overlap may also be shared with other psychiatric disorders and 

substance use traits.

SMR eQTL analyses suggest that the effects of pleiotropic variants on AUD and SCZ may 

be mediated by expression levels of several genes in the prefrontal cortex (PFC; Figure 

2). Several of the identified genes were previously implicated in GWAS of metabolic 

traits (including NAT8, TRPS1 (up-regulated), BAG5, PPP1R13B (down-regulated)), 

immunological traits (e.g., RERE, TRPS1, both up-regulated) and psychiatric phenotypes 

(e.g., up-regulated: LRP8, down-regulated: PPP1R13B). The data currently available do not 

permit examination of whether these findings extend to other brain regions.

We found no evidence for enrichment of genes pleiotropically associated with both AUD 

and SCZ when considering genes differentially expressed in the brains of individuals with 

AUD or SCZ (compared to respective controls). Unlike the SMR eQTL analysis described 

above, which reflects the genetically regulated portion of gene expression, the differential 

gene expression measured in autopsy samples likely reflects pathological consequences of 

the disorders (AUD and SCZ) and their treatments. However, our lack of findings could 

be due to limited statistical power in the RNAseq whole-genome transcriptome datasets, 

especially the post-mortem sample of individuals with AUD (Ncases = 65).

There are several limitations of the current study. First, nearly all GWAS, gene expression 

reference datasets, and other bioinformatic resources are based on European-ancestry 

samples. Our African-ancestry GWAS samples were under-powered relative to the 

European-ancestry samples, and the SCZ sample more so than the AUD sample. Likely 

due to the statistical power differential, the African-ancestry results appeared to be driven 

almost entirely by the larger AUD GWAS. One of our motivations for conducting this 

cross-disorder analysis is to reduce inequity in downstream analyses of non-European 

populations; the genome-wide summary statistics from our cross-disorder GWAS could 

be used to generate polygenic risk scores in independent cohorts of African-ancestry 

participants. Our findings underscore the need for vastly larger African-ancestry samples 

for studies of severe psychiatric conditions. Second, given the available data, we were 

limited to studying common genetic variation (minor allele frequencies > 1%); thus, there 

may be rare variants of importance underlying the comorbidity between AUD and SCZ 

that are outside the scope of the current study. Third, in our sensitivity analysis, we found 

a significant negative genetic correlation between AUD and height (rg = −0.093, SE = 

0.021, p = 7.54e-6), which is likely driven in part by the large sample sizes and polygenic 
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nature of both traits, though there is some evidence for this relationship in the literature. 

One previous study found a negative genetic correlation between alcohol consumption and 

childhood height in males(Clarke et al., 2017) (rg = −0.23, p = 0.002) and another study 

found a negative correlation between problematic alcohol use and comparative height at age 

10 (rg = −0.09, p = 7.3e-5), though this was not significant when a Bonferroni correction 

was applied for the 715 traits tested(Zhou, Sealock, et al., 2020). Another limitation of our 

cross-sectional design is that we are unable to establish whether shared genetic influences, 

as identified in this and previous studies, are causal factors for the comorbidity of AUD and 

SCZ. While we focused exclusively on genetic factors that influence the risk of AUD and 

SCZ, social and environmental factors are likely to play at least as large a role as genetic 

ones in the development and co-occurrence of these disorders, and our findings should 

be interpreted in light of this. Finally, while most of the AUD samples were screened for 

SCZ, some individuals among the SCZ samples very likely also had AUD. These potential 

cases of unknown comorbidity could have biased our estimates of genetic correlation and 

pleiotropic loci. Unfortunately, there are no data currently available on which SCZ samples 

were screened for substance use disorders to permit an estimation of such a bias.

While prior cross-disorder studies have provided foundational results for common 

psychiatric disorders, ours is amongst the first studies to focus on identifying pleiotropic 

loci for a substance use disorder, AUD, and SCZ. To understand the shared biology between 

substance use disorders and other psychiatric disorders, future efforts must include large 

numbers of individuals with AUD or problematic alcohol use rather than simple measures of 

consumption.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Conceptual overview of cross-disorder analysis of alcohol use disorder and schizophrenia.

Johnson et al. Page 16

Psychol Med. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Genes in the convergent subset whose association with AUD and SCZ may be mediated 
by gene expression in the prefrontal cortex, analyzed using Summary data-based Mendelian 
Randomization (SMR).
Genes in red show up-regulated gene expression, and genes in blue show down-regulated 

gene expression. The 12 labeled genes are significant after Bonferroni corrections and were 

not excluded as pleiotropic outliers (HEIDI-outlier method p > 0.05)
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Figure 3. Stratified genetic covariance between AUD and SCZ.
a: stratified by broad tissue type. Tissue annotations were defined using the GenoSkyline-

Plus annotations. Significant tissues are starred. CV = cardiovascular; GI = gastrointestinal. 

b: stratified by 13 brain regions, defined using GTEx v6 gene expression data.
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