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Abstract
Background: By combining up-to-date medical knowledge 
and steadily increasing patient data, a new level of medical 
care can emerge. Summary and Key Messages: Clinical deci-
sion support systems (CDSSs) are an arising solution to han-
dling rich data and providing them to health care providers 
in order to improve diagnosis and treatment. However, de-
spite promising examples in many areas, substantial evi-
dence for a thorough benefit of these support solutions is 
lacking. This may be due to a lack of general frameworks and 
diverse health systems around the globe. We therefore sum-
marize the current status of CDSSs in medicine but also dis-
cuss potential limitations that need to be overcome in order 
to further foster future development and acceptance.

© 2021 S. Karger AG, Basel

Background

The application and benefits of clinical decision sup-
port systems (CDSSs) are diverse. In the last few years, the 
amount of collected and documented patient data has in-
creased continuously, be it through the continuous, elec-
tronic recording of vital parameters, laboratory parame-
ters increasingly available in bulk, or teleradiological 
ubiquitous imaging. At the same time, we have also wit-

nessed significant improvements in knowledge resources 
in the medical field. Bringing this medical knowledge and 
various patient data together, a new level of medical care 
can emerge. CDSSs can play a key role in merging and 
managing these diverse pieces of information.

Available Systems: Knowledge Based versus AI/
Machine Learning Based

In principle, knowledge-based and artificial intelli-
gence-based systems are available to support clinical deci-
sion. Knowledge-based systems use predefined rules that 
have to be created beforehand, for example, digital imple-
mentation of guidelines. Defined rules can be literature 
based, practice related, or patient related. Depending on 
the patient specifics, the respective rules are then called 
up in order to issue appropriate therapy recommenda-
tions [1–3]. The disadvantage of these knowledge-based 
CDSSs is mostly relatively rigid algorithms that allow 
only limited individualized tailoring.

Nonknowledge-based systems require a sufficient data 
source in order to use machine learning and statistical 
pattern recognition, which currently drive a strong artifi-
cial intelligence movement, to develop recommendations 
[4–6]. These algorithms have the great advantage that, as 
learning systems, they can improve their recommenda-
tions as the volume of data increases. It is very important 
that an understanding is developed of how and with what 
these algorithms work in order to avoid a “black box” and 
to be able to critically appraise recommendations given 
by the CDSSs [7–9].
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Support in Diagnosis

Early on, the idea of supporting diagnostic processes 
was appealing to be supported by CDSSs [10, 11]. Enter-
ing symptoms into a data repository and querying poten-
tial diagnosis may certainly be helpful in difficult but also 
rare cases. However, the quality of the diagnosis clearly 
depends on the quality and standardization of the record-
ed symptoms and patient information.

With the increasing amount of data and medical lit-
erature available as well as (electronic) patient informa-
tion, we have seen a rapid increase in the amount of data 
in the last few decades [12, 13]. Outside of the increas-
ingly small specialty of many health care providers, this is 
quickly confusing and very difficult to keep up to date, in 
particular with regard to a critical discussion of the avail-
able literature and data from latest meetings of specific 
disciplines. A major advantage of the diagnostic support 
provided by a CDSS can be the inclusion of rare diseases 
in the differential diagnostic considerations. In addition, 
CDSS can suggest complementary and alternative tests 
that further confirm or rule out rare diseases. This can 
significantly reduce the possibility of a rare disease being 
overlooked in routine diagnostics [14, 15].

Another prominent example of a high benefit from 
CDSS is molecular tumor boards, for which the introduc-
tion of high-throughput analysis has opened up com-
pletely new perspectives. With the flood of information 
from genome-wide sequencing but also high-throughput 
drug screening, IT support for the preselection of suitable 
substances, studies, and therapeutic options has become 
indispensable [16]. Examples of databases that hold struc-
tured genomic information and knowledge about various 
cancers are the COSMIC database [17] or OncoKB [18] 
also offering links to potential therapeutic options. Re-
cently, a European expert group reported the develop-
ment of the Molecular Tumor Board Portal, a CDSS that 
unifies the analysis of sequencing results across 7 Euro-
pean comprehensive cancer centers under the umbrella 
of the Cancer Core Europe (CCE) network [19]. The por-
tal may be used to select candidates for clinical studies 
with active recruitment across CCE sites. Even if these 
databases are currently still set up as standalone solutions, 
they already offer considerable help in the selection of es-
sential mutations and their possible therapeutic options.

Interesting options in diagnostics are increasingly 
emerging in the area of imaging, be it radiological or en-
doscopic. However, CDSSs supporting medical imaging 
are mostly driven by deep learning as a very successful 
class of artificial intelligence approaches. For example, 
those deep learning strategies are regularly applied in en-
doscopy. Additional use of AI technology significantly in-
creased the adenoma detection rate and the average num-
ber of adenomas found per patient [20]. This may par-

ticularly help with smaller adenomas. Furthermore, 
accuracy of polyp detection was estimated to be as high as 
96.4% in other reports [21]. However, larger multicenter 
randomized studies are still needed.

With respect to tumor pathology, Kather et al. [22] il-
lustrated that artificial neural network approaches may be 
used to determine the instability of microsatellites just 
from conventional histology of a tumor, which is impor-
tant with respect to (immuno-)therapeutic options. Fi-
nally, for the visual assessment of radiological images, AI 
may help to objectify the qualitative assessment and re-
duce the intra-/interobserver variability [23–25].

In addition to this improvement in diagnostics within 
the hospital, support from a CDSS knowledge base can 
also be used to support remote diagnostics and, if neces-
sary, to monitor continuously or at least regularly. One of 
the examples is smartphone APPs that evaluate skin le-
sions and identify possible malignant changes. Even if the 
possible additional use of these APPs is currently still 
controversial, a further development in this field and the 
associated opportunities and increasing autonomy are 
certainly foreseeable [26].

Last, even training of health care providers could ben-
efit from CDSSs. Various studies have shown that a larg-
er proportion of residents were overconfident with regard 
to their diagnosis and did not seek any further help in 
making the diagnosis. From this aspect, too, regular in-
teraction of the training assistants working in a clinic with 
a CDSS would be helpful and would increase the quality 
of the diagnostics [27].

Those advantages outlined above were mostly based 
on knowledge-based CDSSs. A successful development 
and implementation of efficient AI algorithms and sub-
sequent integration in CDSS models can result in even 
further improvement in diagnostics. For example, AI 
models for evaluating and weighting diverse combina-
tions of serum markers, blood tests, and clinical param-
eters would certainly be extremely helpful for making a 
diagnosis. Those systems could also help to point out 
missing pieces of the diagnostic puzzle, which are crucial 
for a definite (differential) diagnosis [28].

Finally, CDSSs can be very helpful in getting the diag-
nosis a personalized interpretation of the test and refer-
ence range in terms of age, gender, or disease entity. For 
example, Wilson’s disease mostly diagnosed before the 
age of 40, a fact that could be included in a ranking of the 
probability in the differential diagnostic of, for example, 
elevated liver values [29]. In summary, a CDSS-supported 
diagnosis can be very helpful in many areas, especially the 
processing of big data, the automated detection of patho-
logical changes, a future possible autonomous point-of-
care remote diagnosis, the training, but also the combina-
tion of complex digital and analog markers (Fig. 1).
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Improving Clinical Care

An improvement in clinical care through CDSSs can 
already be efficiently implemented with the available 
technologies. One of the essential aspects is the accumula-
tion and retention of medical knowledge, as it is stored in 
clinical practice guidelines in particular. Continuous 
training for health care providers outside of their increas-
ingly narrow specialist area is absolutely necessary but 
can for most health care providers not be taken for grant-
ed – even if this would be desirable. In visceral medicine, 
there are a number of very diverse subspecializations such 
as hepatology, chronic inflammatory bowel diseases, GI 
oncology, or transplant medicine. These develop in short-
term time intervals, and, especially, after large, interna-
tional congresses, there is an extensive amount of new 
clinical and basic scientific data that must be evaluated 
and entered into the existing algorithms. A claim to be up 
to date in all areas is very difficult to meet in day-to-day 
practice. As a result, continuous consultation of the 
guideline recommendations is very difficult to imple-
ment in clinical routine.

However, the evolution of supporting CDSSs is also 
difficult. A major issue certainly is that developed CDSSs 
fulfill different tasks and lack a general CDSS framework. 
Thus, the outline of CDSSs may be very diverse and are 
currently mostly set up as standalone solutions depen-
dent on a local health care framework, clinical recom-
mendations, but also insurance issues. This hinders the 
validation and/or comparison of these systems. Thus, de-
fining the goal of a respective CDSS application seems to 
be extremely important.

A recent publication by Pawloski et al. [38] on the ef-
ficiency of CDSSs in clinical oncology summarized 24 
studies and tools on this issue. CDSSs improved adher-
ence to clinical treatment guidelines [30–37] but (in indi-
vidual cases) were also associated with an improved out-
come and reduced hospital stay [33]. Key features that 
seem to be associated with a positive outcome were the 
conveyance of real-time information and point-of-care 
action. However, the authors cannot bring themselves to 
a clear, advantageous presentation of the benefits of 
CDSSs and refer to the necessity of a rigorous evaluation 
and validation of the CDSSs used. Furthermore, there was 
no significant difference between electronic CDSSs and 
traditional paper-based decision aids [32].

An obvious benefit is patient follow-up screening for 
enrollment opportunities and reminder functions, for ex-
ample, the identification of necessary follow-up examina-
tions and treatments such as pneumococcal, Haemophi-
lus influenza, or meningococcus vaccination after a sple-
nectomy. Despite being extremely important, respective 
vaccinations were not documented in 71% of the patient 
files [39] but can be remedied by automated reminder 
functions [40].

With regard to the recommended standard vaccina-
tions, such as HPV vaccination, individual publications 
have shown an improvement in adherence. Although 
most health care providers themselves were of the opin-
ion that they had not significantly changed their behavior 
with regard to awareness and prescribing if supported by 
an appropriate alarm system, the vaccination rates in the 
study by Dickson et al. [41] increased. In contrast to this, 
however, other studies that specifically examined re-
minder functions for the necessary second and third HPV 
vaccination did not report a statistically significant im-
provement in the rate of second and third vaccinations 
against HPV [40]. In addition to this, a study on influ-
enza vaccination with already high vaccination levels also 
showed no further improvement using CDSSs [42].

Minimizing Medication Errors

Another important and effective topic that can be sup-
ported by CDSSs is the recording and avoidance of med-
ication errors. These are fairly common. An Institute of 
Medicine report estimated that 44,000–98,000 people die 
in US hospitals each year from errors [43]. Medication 
errors can in principle occur in every phase of the pre-
scription and medication process [44, 45]. A frequent 
source of error is the conversion of the home medication 
to a supposedly identical inpatient medication if a patient 
is referred to a hospital. Such medication errors are as-
sumed to be rather common and occur in up to 65% of 
inpatients [46]. However, the correct dosage of the cor-

Fig. 1. Fully developed CDSS may have key roles in data integra-
tion but also supporting physicians and patients in selecting the 
best possible treatment options. CDSS, clinical decision support 
system.
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responding (alternative) medication also harbors consid-
erable sources of error. Bates et al. [6, 43] found that al-
most a third of the ADEs were in principle preventable 
[44].

Here, CDSSs can provide significant support in avoid-
ing medication errors. This applies to the area of prescrib-
ing, dispensing, and taking drugs as well as avoiding 
drug-drug interactions with potentially adverse effects 
[47]. Finally, certain protective measures, for example, 
important safety information, can be stored in CDSS, in-
formation that is often not permanently available to many 
colleagues.

A positive example is the study by Pruszydlo et al. [48], 
investigating the switch of medication when patients are 
hospitalized. Support by CDSSs achieved implementa-
tion without errors in over 90% of medications [48], 
which should go hand in hand with supposedly improved 
security and reduced workload and probably also re-
duced costs.

Further development stages of such CDSSs are in prin-
ciple conceivable and in development. Automated dis-
pensing systems for medication and barcodes using 
point-of-care systems for processing medication could 
certainly achieve significant improvements. This could be 
further developed up to a closed loop system in which 
administered medication and identifying by means of 
barcodes and cross-checking with the available patient 
information on the prescription is linked [49].

Despite such promising examples, there is little hard 
evidence for effectiveness with regard to patient outcome. 
In a review of the available literature, Jia et al. [44] showed 
that warnings or reminders regarding the medication 
lead to an improvement in the corresponding processes, 
but that these changes are only “most likely” to have an 
influence on the survival of the patients. Translated, there 
is currently no clear evidence of survival benefits from 
CDSSs [44]. This may particularly be due to the fact that 
only a small proportion of the studies on medication and 
CDSSs had safety and outcome as endpoints for the pa-
tients. The majority of the studies are also small and/or 
the follow-up period is too short. Finally, practically no 
studies describe any other potentially negative effects or 
problems of a CDSS with regard to drug prescription.

Improving Cost Efficiency

CDSS can make a significant contribution to cost sav-
ings in hospitals and practices. For example, cheaper al-
ternative drugs can be suggested. An intelligent switch 
algorithm for the switch of medications in which a CDSS 
exercises a control function with regard to the changeover 
can also be very helpful, since side effects may require 
further treatments or longer hospital stays, which in turn 

cost money. Without CDSSs, it is assumed that 1 in 5 
changes is incorrect, whereas with CDSSs, the substitu-
tion is adequate in over 90% of patients [48]. Organiza-
tion and timing of examinations, procedures, and at the 
same time a reduction in duplicate examinations can also 
lead to considerable savings. This has been shown repeat-
edly, for example, by limiting blood counts, serology, and 
diagnostic laboratory panels, which have led to consider-
able savings without increasing the length of stay or mor-
tality. Shortening the inpatient length of stay and optimal 
documentation considering billing-relevant aspects for 
the health insurance companies can also be significantly 
supported by a CDSS. Last but not least, administrative 
tasks can then be prepared and processed automatically, 
for example, the clinical and diagnostic ordering of orga-
nizational orders, such as laboratory diagnostics. The 
care algorithms of an inpatient process and the associated 
optimization of the billing-relevant ICD codes and billing 
modalities can also improve the accuracy of billing, which 
in turn can offer financial advantages. An increased speed 
of the encryption of patient files is certainly also given 
here [50, 51].

As a positive example, the work of Algaze et al. [52] 
from a pediatric intensive care unit in the USA can be 
cited, where a CDSS was used to control certain labora-
tory values, in particular blood counts, serological results, 
or coagulation parameters, every 24 h. The authors re-
ported a considerable cost savings of USD 717,538 per 
year without worsening the hospital stay or the mortality 
of the patients [52].

A study by Anchala et al. [53] examined the cost effec-
tiveness of EMR-based CDSS in adults with diabetes. Us-
ing a simulation cohort with over 1,000 patients with dia-
betes, the conclusion was that the widespread introduc-
tion of highly developed EMR-based CDSS has the 
potential to slightly improve the quality of care for pa-
tients with chronic diseases without significantly increas-
ing costs for the health system [54].

Cost-effective examples of CDSS use have also been 
published for the treatment of hypertension. A cost effi-
ciency ratio of USD 96.01 versus USD 36.57 per mm Hg 
systolic blood pressure reduction and thus good cost ef-
ficiency was found in a total of 1,628 patients [53].

In contrast, an intervention study in 511 patients 
found that CDSS-assisted therapy produced moderate 
improvements in long-term health outcomes. With re-
gard to the investment and costs per QALY, the authors 
concluded that the use of CDSSs must become consider-
ably more efficient or cheaper in order to support the 
treatment of patients with type 2 diabetes as a sensible, 
cost-effective option [55].

Also, in other medical areas such as the gynecological 
care in rural areas with supposedly poor medical infra-
structure in Tanzania or Ghana, an improvement of the 
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processes (by CDSS support) did not yet lead a higher cost 
efficiency [56, 57]. In summary, the current study situa-
tion is heterogeneous, and CDSS may not always be clear-
ly cost effective. Diseases to be diagnosed or treated and 
health policy framework conditions seem to have a con-
siderable influence on the assessment of cost efficiency.

Patient Engagement

The involvement of patients even within the frame-
work of CDSS-based decision-making processes appears 
to have a positive influence on them. The patients felt bet-
ter informed and felt clearer about their treatment wishes 
and goals, which probably results in a more active role in 
decision-making and a more precise risk perception [58]. 
However, whether this also applies to population groups 
with a lower level of education or even a lower level of 
literacy remains to be investigated [58]. In any case, pa-
tients with CDSS-supported therapy report a higher level 
of satisfaction [59].

Potential Disadvantages of CDSS

With regard to possible disadvantages of a CDSS, the 
disruption of clinical processes comes into question. A 
particular problem is that most of the solutions for the 
previously addressed support options are currently still 
implemented as standalone solutions and are not inte-
grated into the clinic information systems [60, 61]. For 
everyday clinical practice, this means that a regular 
change between the information systems is necessary, 
which on the one hand can be time consuming and on the 
other hand can lead to prioritization conflicts.

A very important problem when dealing with CDSSs 
is the rapid alarm fatigue. As is often the case in intensive 
care or monitoring wards, the alarms set for seriously ill 
patients are often so low that they trigger frequently. This 
leads to a low alarm threshold, which is why the alarms 
are increasingly disregarded over time. Up to 95% of the 
CDSS warnings are assessed as clinically irrelevant, which 
means that doctors often contradict the warnings or dis-
trust them, and in the medium term, this leads to the 
alarms being of poor value [62–64].

Nevertheless, in the medium term, the independence 
and critical faculties of the medical staff are maintained. 
An automatization as a result of which health care provid-
ers no longer master the basics of diagnostics and therapy 
but only rely on the algorithms needs to be avoided. 
Therefore, practitioners need technical competence, 
which is currently neither taught in medical school nor in 
further medical training [65].

A major problem is the continuous maintenance of a 
CDSS which is often neglected. However, the database 
foundation of the CDSSs is a crucial essence for the deci-
sion tree of the CSS. In particular, keeping the databases 
and knowledge algorithms regularly up to date is a lot of 
work and is often not included in the price when purchas-
ing the software. The quality control, especially of exter-
nal data sources, is also critical and has by no means been 
standardized to date. This leads to the fact that even the 
medical staff, if they do not trust the CDSS, establish 
workarounds, which are then associated with a deteriora-
tion in the benefit and can possibly also be identified as 
sources of danger [49].

For AI-based CDSS, the black box problem was re-
peatedly addressed. As the decision-making processes of 
an AI network may often remain opaque for different rea-
sons [66], system programmers and operators may often 
not be able to explain how the algorithms work [9]. How-
ever, although other things in medicine may also be ac-
cepted to be opaque, this raises significant issues for the 
role out of those technologies, generally referred to as the 
black box problem. Validation and (its) regulation may 
therefore be of high importance. A 3-step validation was 
suggested by Price [67], ensuring high quality develop-
ment (code and data), validation on an independently 
created data set, and a continued validation even after ap-
proval by continuous tracking ultimately leading to a 
learning health care system. An early deployment of a 
well-defined regulatory framework will also be necessary 
to guarantee technological standards for patients and de-
velopers [9, 66, 67].

In this context, a relevant problem for automated pro-
cessing of clinical data is the lack of categorized and an-
notated data but also language diversity. The increasing 
use of electronic health records may provide progress 
streamlining clinical documentation as discussed in a 
separate review in this issue of visceral medicine. Particu-
larly, standardization of clinical health terminologies, for 
example, using the SNOMED CT reference terminology, 
would resolve diverse problems associated with clinical 
data management [68]. The next step was recently initi-
ated by implementing clinical rules which would work 
across different electronic health record systems and in-
stitutions using the GASTON framework [69]. Finally, a 
major disadvantage of CDSS is often that they are very 
expensive to purchase, so clinics do without them, espe-
cially in difficult economic times.

Conclusion

CDSSs are available in many areas of diagnosis, imag-
ing, and medication. Despite promising examples in 
many areas, substantial evidence for a thorough benefit 
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of these support solutions is lacking. This may be due to 
a lack of general frameworks and diverse health systems 
around the globe. Missing integration of CDSS in clinical 
information systems and alarm fatigue need to be over-
come in order to increase efficacy and acceptance of 
CDSSs.
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