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Background: Prostate tumor volume predicts biochemical recurrence, metastases, and tumor proliferation. A 
recent study showed that prostate tumor eccentricity (elongation or roundness) correlated with Gleason score. 
No studies examined the relationship among the prostate tumor’s shape, volume, and potential aggressiveness. 
Methods: Of the 26 patients that were analyzed, 18 had volumes >1 cc for the histology-based study, and 25 
took up contrast material for the MRI portion of this study. This retrospective study quantitatively compared 
tumor eccentricity and volume measurements from pathology assessment sectioned wholemount prostates 
and multi-parametric MRI to Gleason scores. Multi-parametric MRI (T1, T2, diffusion, dynamic contrast-
enhanced images) were resized, translated, and stitched to form spatially registered multi-parametric cubes. 
Multi-parametric signatures that characterize prostate tumors were inserted into a target detection algorithm 
(Adaptive Cosine Estimator, ACE). Various detection thresholds were applied to discriminate tumor from 
normal tissue. Pixel-based blobbing, and labeling were applied to digitized pathology slides and threshold 
ACE images. Tumor volumes were measured by counting voxels within the blob. Eccentricity calculation 
used moments of inertia from the blobs. 
Results: From wholemount prostatectomy slides, fitting two sets of independent variables, prostate tumor 
eccentricity (largest blob eccentricity, weighted eccentricity, filtered weighted eccentricity) and tumor volume 
(largest blob volume, average blob volume, filtered average blob volume) to Gleason score in a multivariate 
analysis, yields correlation coefficient R=0.798 to 0.879 with P<0.01. The eccentricity t-statistic exceeded 
the volume t-statistic. Fitting histology-based total prostate tumor volume against Gleason score yields 
R=0.498, P=0.0098. From multi-parametric MRI, the correlation coefficient R between the Gleason score 
and the largest blob eccentricity for varying thresholds (0.30 to 0.55) ranged from −0.51 to −0.672 (P<0.01). 
For varying thresholds (0.60 to 0.80) for MRI detection, the R between the largest blob volume eccentricity 
against the Gleason score ranged from 0.46 to 0.50 (P<0.03). Combining tumor eccentricity and tumor 
volume in multivariate analysis failed to increase Gleason score prediction. 
Conclusions: Prostate tumor eccentricity, determined by histology or MRI, more accurately predicted 
Gleason score than prostate tumor volume. Combining tumor eccentricity with volume from histology-
based analysis enhanced Gleason score prediction, unlike MRI.
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Introduction

The high prevalence and varying natural history of prostate 
cancer (PCa) motivates the need to distinguish indolent 
from potentially lethal PCa. Patient management for PCa 
requires accurate identification at the time of PCa diagnosis 
for whom treatment is indicated and to predict cancer 
progression. Traditionally, clinical factors (1) stratify PCa 
patients and guide the assessed risk of cancer progression and 
need for treatment. More recently, molecular markers (2)  
in tumors and circulation have influenced disease 
management. Noninvasive diagnostic imaging (3), especially 
MRI and magnetic resonance spectroscopic imaging, 
has improved in recent years and is gaining widespread 
acceptance for aiding PCa diagnosis, tumor localization, 
staging, assessment of tumor aggressiveness, and treatment 
planning. Investigators have used nomogram and neural 
network modeling to predict organ-confined PCa (4), 
clinically significant disease (5), and risk of biochemical 
recurrence after radical prostatectomy (6).

The Gleason score grading system, first described in 
the 1960s, characterizes prostate tumor architecture and 
morphology. Currently a standard metric for assessing 
PCa, Gleason score is also the strongest clinical predictor 
of PCa progression (7). In addition, studies (8-12) show 
that prostate tumor volume correlates with Gleason Score 
grade, stage, disease progression and biochemical-free 
survival after radical prostatectomy, probability of vascular 
invasion, involvement of seminal vesicles, and development 
of distant metastasis. For example, small tumors (<0.5 cm3) 
display limited evidence of tumor aggressiveness. However, 
metastasis is highly likely when tumor volume exceeds 12 cm3  
but less likely for smaller tumor volumes (<4 cm3) (12). 
Others reported that tumor size is related to the risk of 
relapse following radical prostatectomy (13) and prostate-
specific antigen (PSA) progression (14). 

Tumor shape, whether spherical or elongated into an 
ellipsoid and quantified by a metric called eccentricity (15),  
is not usually measured nor currently considered in staging 
for PCa, unlike breast (16,17), lung (18,19), and skin 
(20,21) cancers. Recently, however, a study (15) showed 
that spherical prostate adenocarcinoma shape, rather than 
elongated, shows a propensity for higher Gleason score and 
presumed greater aggressiveness. This important finding 
follows the behavior of lung and breast adenocarcinomas 
but markedly differs from other primary tumor types.

Conventional cancer staging and scoring through 
biopsies (22,23) suffer from significant inter-observer 

variability and/or potential for sampling errors (24) that 
can lead to false negatives or underestimate the severity 
of the disease. Moreover, the quality of MRI radiological 
interpretations can depend on the skill and experience of 
the reader. For example, the PI-RADS (25) assessment of 
tumor aggressiveness requires experienced and specially 
trained radiologists.

This manuscript describes the relationship between 
Gleason score, an indicator for patient outcome for this 
study, and tumor volume (Vol) and tumor eccentricity 
(Ecc). This study examined the individual correlation and 
the combined correlation of Vol and Ecc with Gleason 
score. Due to relative dearth of information regarding 
tumor eccentricity and Gleason score, a part of this study 
examined pathology assessment of histology slices to 
provide baseline information. Future studies may find the 
added input from histology, alone, may benefit clinical 
management. However, this study focused on non-invasive 
MP-MRI. Three metrics (Vol, Ecc, Gleason score) may 
be inferred non-invasively (15,26,27) by assessing spatially 
registered multi-parametric (MP-MRI) hypercubes with 
minimal involvement of clinical evaluation and intervention 
of radiologists, reduced patient discomfort, and more 
reliable assessment of patient conditions. However, in this 
study, Gleason score derived from histology is treated as 
the standard reference and is the dependent variable in the 
univariate and multivariate fittings.

We present the following article in accordance with the 
MDAR checklist (available at https://dx.doi.org/10.21037/
qims-21-466). 

Methods

Overall description of histology and MP-MRI 
determination

This study followed two tracks (Figure 1) (15,27) to 
determine the relationship between prostate tumor 
morphology (eccentricity), tumor volume, and Gleason 
score. One track examined tumors outlined on histology 
slides derived from wholemount prostatectomy from 
tumors delineated by a pathologist. The other track 
computed eccentricity and tumor volume from Adaptive 
Cosine Estimator (ACE) applied to spatially registered 
multi-parametric MRI. The analysis studied 25 of  
26 consecutive patients who previously underwent radical 
prostatectomy, Gleason score grading by pathologists 
and denoted as the dependent variable (solid red arrow in  
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Figure 1). One of the 26 patients did not display contrast 
uptake in the MRI dynamic contrast enhancement images 
and was not analyzed. The calculated eccentricity (15) in 
both tracks were derived from computing the moment of 
inertia for all pixels residing in the blob. The tumor volume 
(27) in both tracks were determined by summing the voxels 
in each blob. The tumor eccentricity and tumor volume 
were then compared (striped arrows in Figure 1) to the 
Gleason score of the tumor.

Study design and population

Patient data from prostate tumor MRI and histology from 
wholemount prostatectomy specimens were collected and 
stored with The Cancer Imaging Archive (TCIA) (28,29) 
affiliated with The National Institutes of Health (NIH). The 

study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). This retrospectively 
designed, single institution study was approved by the NIH 
Institutional Review Board, and was compliant with the 
Health Insurance Portability and Accountability Act. And 
individual consent for this retrospective analysis was waived. 
A total of 26 consecutive patients enrolled in the study 
between July 2008 and July 2009. All patients had biopsy 
proven adenocarcinoma of the prostate. Median patient 
age was 60 years (range, 49–75 years). Median PSA was  
5.8 ng/mL (range, 2.3–23.7 ng/mL). Median Gleason score 
was 7 (range, 6–9). Eighteen of the 26 patients had tumor 
size >1 cc. No restrictions were placed on tumor location 
within the prostate. A robotic assisted radical prostatectomy 
was performed with a median time of 60 days (range,  
3–180 days) after the MRI without any intervening treatment. 

Figure 1 Schematic showing the overall procedure for generating tumor eccentricity and tumor volume from blobs derived from histology 
of wholemount prostatectomy specimens and ACE processing applied to multi-parametric MRI. Blob eccentricity and volumes compared to 
Gleason scoring from histology (striped arrow). ACE, Adaptive Cosine Estimator.
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Whole mount prostatectomy and histology

Three dimensional (3D) models of each prostate (30,31) 
were generated by segmenting the prostate capsule on  
in vivo triplane T2W MRI, and extracting from the high-
resolution 3D surfaces. Each mold was designed using 
commercially available 3D computer aided design software. 
The design incorporated the deformation of the endorectal 
coil. A 3D printer (Dimension Elite 3D printer, Stratasys, 
Inc.) deposited styrene to fabricate each mold. Following 
radical prostatectomy, the specimen was fixed at room 
temperature in formalin for 2 to 24 hours. The specimen 
was then placed in the customized 3D mold and sliced in 
sections with a separation of 6 mm. in the axial direction. 
The whole mount histopathology patient specimens were 
sectioned in the customized mold for histopathology that 
corresponded to the axial plane of the MRI sections. Two 
experienced pathologists independently, and blinded from 
MRI analysis, mapped the slides for individual tumor foci, 
dimensions, and Gleason scores. 

The determination of a tumor’s morphology is 
taken from histology slides of sectioned wholemount 
prostatectomy. A pathologist marks the tumor and the 
marked tumors are digitally traced. The eccentricity and 
volume for the blobs are computed using Eqs. [1-4].

MRI

The MRI collection is composed of Diffusion Weighted 
Images (DWI), Dynamic Contrast Enhanced (DCE), and 
structural (T1, T2) images. The pulse sequences were 
described in earlier studies (30-32). These studies (30-32) 
were performed using a combination of an endorectal coil 
(BPX-30, Medrad) tuned to 127.8 MHz and a 16-channel 
cardiac coil (SENSE, Philips Medical Systems). The 
MRI used a 3 Tesla (T) magnet (Achieva, Philips Medical 
Systems). Prior bowel preparation was not needed. Standard 
methods were used to insert the endorectal coil. The MRI 
protocol included triplanar T2W turbo spin echo, DW MRI, 
3DMR point resolved spectroscopy, and axial pre-contrast 
T1-weighted axial 3D fast field echo DCE MRI sequences, 
and their detailed sequence parameters were defined in a 
prior study (32). The mean interval between MRI and radical 
prostatectomy was 60 days (range, 3–180 days).

Image processing, pre-analysis

Lesions are distinguished from normal tissues by the 

presence of elevated vasculature that feeds the rapidly 
growing tumor. DCE are time series images that display the 
time evolution of contrast material over several hundred 
seconds after its injection and shows uptake in the tissues. 
The vasculature is porous to contrast material that enters 
the tumor’s extravascular space (but not the cells). The 
vasculature of prostate tumors can fill and empty of MRI 
contrast material more quickly than the normal prostate 
organ. By analyzing the DCE and exploiting the unique 
tumor physiology, a portion of tumors maybe identified. 
A simple two compartment model (33,34) describes the 
tracer concentration in the tissue that supplies and empties 
through the tumor vasculature. The model is used to create 
the washout kep image.

The MRI images were digitally resized (15,26,27) to  
1 mm resolution in the transverse direction. In the superior-
inferior direction, the slices were resized to 6 mm spacing 
based on the patient’s table position. Fine-tuned rigid 
registration (minor transverse translation, resizing) was 
applied between the structural, diffusion, and DCE due 
to the short time intervals between scans (<20 minutes). 
Individual slices scaled, translated, resliced and spatially 
were thereby registered at the pixel level to create a “cube”. 
Multiple axial cubes in three dimensions were “stitched” 
together by sequentially connecting them together into a 
narrow three-dimensional image. Four dimensions (three-
dimensional body volume plus the fourth dimension 
composed of MRI modalities) object is re-expressed as a 
three-dimensional mosaicked cube. Each voxel is treated 
as a vector composed of MRI modality rather than a scalar 
value. Multispectral MRI data contain 7-components 
(15,26,27) (T1 (pre contrast), T1 (maximum contrast), T2, 
ADC, DWI-High B (B=1,000 s/mm2), Washout or kep from 
DCE).

ACE

The multispectral Supervised Target Detection (STDA) 
methods (35-37), specifically the ACE (Eq. [1]), were 
transferred to this medical application (15,26,27) and 
applied to spatially registered MP-MRI. The algorithm 
(ACE) uses in-scene multispectral tumor signatures (for 
tumor). S the target (tumor) signature is a 7-component 
vectors [DWI, T1, T2, ADC, DCE for this study 
(15,26,27)]. S, the in-scene tumor signature, is selected 
from yellow voxels in a three-color display of the spatially-
registered MP-MRI (red is Washout, green is DWI, high-B, 
blue is ADC) (15,26,27). S vector, with component Sq, is the 
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mean of T target vector-voxels xp,q summed over p target 
voxels (identified as yellow) (Eq. [1]). m is the background 
(normal prostate) 7 component vector. CM is the covariance 
(7×7) matrix for the background. The background voxels 
needed for m and CM were taken from digitally outlining 
the prostate on the spatially-registered MP-MRI (15,26,27).
ACE in Eq. [1] is a matrix multilplication with the 
superscript −1 is a matrix inversion and T is the transpose.
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ACE(xi) is the cosine between the “whitened” test vector 
xi for voxel i and the “whitened” target signature S (Eq. [1]) 
in the “whitened space” (26,37). To compute the background 
statistics, the prostate image is manually outlined for all slices 
to generate an image mask and restrict computations to the 
prostate volume. The signature S is substituted into the 
ACE algorithm or to classify each voxel (15,26,37) whether 
it is tumor or normal prostate tissue. ACE uses the conical 
hyperspace decision surface to evaluate whether a voxel is 
background (large angle, small cosine) or target (small angle 
or large cosine). ACE scores range from −1.0 to 1.0. The 
identification of the voxel depends on the detection threshold 
set by the user based on previously examined data, such as 
optimal correlation with a standard. 

Tumor volume measurements, supervised target detection

Tumor volume from histology determination was derived 
directly from tumors outlined by a pathologist on slides (27). 
Tumor volume was given by digitally tracing the tumor 
for all slices, summing the number of voxels within the 
pathologists outline and converting the number of voxels to 
volume form knowing the image resolution (300 dots per 
inch) and the histology slice separation (6 mm).

The procedure for estimating the tumor volume using 
the supervised target detection algorithm or ACE has been 
previously described (27) for spatially-registered MP-
MRI. Detection scoring by computing ACE using in-scene 
signatures has been described in Section F (15,26,27), and 
summarized through Eq. [1]. A threshold is applied to the 
ACE map with tumor exceeding the threshold and normal 
tissue assigned to ACE scores residing below the threshold. 
The chosen threshold in this study was from 0.40 to 0.85 
assessed in 0.05 increments. The number of tumor voxels 
are converted to volume using the MRI spatial resolution 

(1 mm × 1 mm) and slice thickness (6 mm) to compute the 
single voxel volume (0.006 cm3). The correlation coefficient 
between tumor volume and Gleason scores, derived from 
histology (15,26,27) were computed. ACE threshold was 
chosen based on the highest correlation with Gleason 
scores.

Labeling and blob generation

Blobbing and labeling (15) in computer vision aggregate 
neighboring pixels. The blobbing is applied to a binary 
image following application of a threshold to the primary 
image. Blobbing is based on whether the pixels form an 
8-pixel connected neighborhood. In this study, binary tumor 
masks are generated from histology slides and from images 
showing the pixels that exceed a threshold of ACE target 
detection applied to MP-MRI hypercubes. Specifically, the 
value of 1(0) or “True” (“False”) is associated with tumor 
(background) in each masked image. Each “True” pixel 
peruses pixels within a given neighborhood (1 pixel away) 
to see if they are also “True” and are, therefore, connected, 
collected, and labeled as a member of a blob. Blobs smaller 
than <0.175 cc are filtered out.

Eccentricity calculation

Eccentricity and volume [15] were computed for every 
labeled blob using custom software coded in Python 3. To 
compute the eccentricity, the largest axis Lk and transverse 
moments Sk are eigenvalues from the moment of inertia 
matrix I for the kth blob, where I
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and the standard defined matrix components Ixx, Iyy, Ixy, and 
Iyx. The eccentricity Ek for the kth blob with a major axis Lk 
and minor axis Sk is given by
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Eccentricity values Ek range from 0 to 1. A spherical 
shape has an eccentricity Ek of 0 while a line has an 
eccentricity Ek of 1. Assuming density of unity, each Blob’s 
volume Vk is given by the image resolution r and the 
number of pixels within each blob.
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and r is the total volumetric resolution (6 mm3 per voxel 
for MP-MRI and 0.00270 mm3 per voxel for the histology 
slices in this study). 

The weighted eccentricity W is sum over B blobs, given 
by
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Statistics and univariate and multivariate fitting

The Gleason score derived from the pathological assessment 
of histology slides from prostatectomy were fitted 
individually through linear regression with eccentricity 
(Ecc) or volume (Vol). The dependent variable, Gleason 
score, is univariately linearly related to the independent 
measurements Ecc and Vol i.e.,

*const EccGS b b Ecc ε= + +  [6]

*const VolGS b b Vol ε= + +  [7]

Optimal coefficients bconst, bEcc and bVol or constant, 
eccentricity coefficient, and volume coefficients respectively, 
were chosen by minimizing the error ε through the least-
squares formulation. In this study, Ecc includes Eccentricity 
from the largest blob, eccentricity of the weighted average, 
and a filtered weighted average. The analysis filters out 
contributions from blobs smaller than 0.175 cm3 due to 
spatial registration errors inducing spurious detections. Vol 
or Volume includes the total tumor or blob Volume, average 
blob volume, and a filtered average blob volume that 
removes contributions from blobs smaller than 0.175 cm3. 
The Pearson correlation coefficient R, R squared (rsquared), 
adjusted correlation coefficient, t value, P value, that assess 
the fitness and probability that the fit departs from null fit, 
were computed. In addition (38-41), the quality of fit was 
assessed by computing the F value and affiliated P value, 
Akaike Information Criterion (AIC), Bayes Information 
Criterion (BIC). 

The conditional number computed for the independent 
variables, eccentricity and volume measurements, found 
them to be independent. Testing to evaluate if the data 
follows normal distribution was assessed by computing the 
skewness and kurtosis of the distribution, Jarque-Bera (JB) 
metric and its affiliated probability. Correlation among 

the residuals in the regression were assessed through the 
Durbin-Watson metric. Due to the relatively small sample 
size of 25, the fits were also assessed using the Leave One 
Out Coefficient (LOOC).

Many of the metrics discussed in the previous paragraph 
describe similar and overlapping assessments of the fitting 
and therefore yield similar results. To simplify the discussion 
without sacrificing a proper and meaningful evaluation of 
the fits, only a selected metrics will be mentioned in this 
manuscript. Specifically, the data tables only cite the fitted 
coefficients b with the associated computed standard error, 
the t-statistic and associated P value, Pearson R, P value, 
R2, adjusted correlation coefficient, F value and affiliated P 
value.

In addition to univariate fits, a multivariate fit (Eq. [8]) 
was applied to the Gleason score, eccentricity, and volume 
measurements i.e., 

* *const Ecc VolGS b b Ecc b Vol ε= + + +  [8]

Results

Histology analysis

Figure 2A plots the histology-based eccentricity of the 
largest blob and the weighted eccentricity against Gleason 
score (Eq. [6]) for the 18 tumor volumes exceeding 1 cc. 
The correlation coefficient R and corresponding P value for 
both the largest blob and a weighted average was R=0.70, 
P=0.0005 and R=0.68, P=0.001, respectively. For all tumor 
volumes, the correlation coefficient R and corresponding 
P value for both the largest blob and a weighted average 
was R=0.22, P=0.28 and R=0.19, P=0.36, respectively, 
demonstrating the importance of filtering out spurious 
blobs. Figure 2B plots histology-based total volume and 
volume of largest blob against Gleason score (Eq. [7]). For 
tumor volumes exceeding 1 cc, the correlation coefficient 
R and corresponding P value for both the average and a 
total volumes was R=0.63, P=0.0028 and R=0.65, P=0.0019, 
respectively. For tumor volumes exceeding 1 cc, Figure 2C  
plots Gleason score data against the multivariate fit  
(Eq. [8]) that uses the histology-based eccentricity from 
the largest blob plus the histology-based total volumes for 
Gleason score. A univariate fit between the Gleason score 
data and multivariate fit to the Gleason score results in the 
correlation coefficient and corresponding P value (R=0.879, 
P<1E-05), respectively.

Table 1 summarizes metrics for assessing the multivariate 
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Figure 2 Scatterplots and show correlation coefficients, P values 
for histology-based Gleason score against histology-derived 
eccentricity, volume, and multivariable fits for 18 patients. (A) Plots 
histology eccentricity of largest blob and weighted eccentricity 
against Gleason score; (B) plots histology total volume and volume 
of largest blob against Gleason score; (C) plots multivariate fit for 
Gleason score against data for Gleason score. T
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fits (Eq. [8]) for histology-based eccentricity and 
volume measurements to Gleason score. The two sets 
of independent variables use combinations of prostate 
tumor eccentricity and volume. Options for bEcc include the 
eccentricity for the largest blob, weighted average for the 
eccentricity and filtered version of the weighted eccentricity 
that exclude blob volumes smaller than 0.175 cm3. Options 
for bVol include the average blob volume, the filtered average 
blob volume, total volume, and filtered total volume. The 
fitted coefficients for the eccentricity and volume bEcc and bVol 
are shown along with the standard error for each parameter 
associated with the fit. The bEcc is negative, demonstrating 
that larger Gleason score is associated with smaller and 
more spherical tumors. The bVol is positive, confirming that 
larger tumors are associated with greater Gleason score. 
The t statistics for eccentricity tEcc and volume and tVol along 
with P values are displayed in Table 1. The magnitude of 
the t value tEcc always exceeds t value tVol for all pairs of 
independent variables. A specific example taken from Table 1:  
eccentricity (maximum blob volume) yields tEcc=−4.16 and 
Average Blob Volume tVol=3.441.

Correlation coefficient R, R2, adjusted R2, F statistic and 
P value summarize the overall multivariate fit for histology-
based measurements to Gleason score (Eq. [8]). 

In Table 1, analysis of histology slides from wholemount 
prostatectomy specimens finds the correlation coefficient 
R and P value from fitting two sets of independent variates 
in a multivariate analysis (Eq. [8]) for Gleason score ranged 
from R 0.798 to 0.879 and P value 0.000018 to <0.00001, 
respectively. The t-statistic for the eccentricity exceeded those 
from volume measurements. This histology analysis processed 
18 patients whose total tumor volume exceeded 1.0 cc.

The correlation coefficient and P value from fitting total 
prostate tumor volume derived from histology slides and 
Gleason score are R=0.498 and P=0.0098 (Eq. [7]).

B.MP-MRI analysis

From analysis of spatially registered multi-parametric MRI, 
the correlation coefficient R and P value for univariate fits 
between the eccentricity for the largest blob for varying 
thresholds (0.30 to 0.55) for ACE detection against the 
Gleason score (Eq. [6]) ranged from R −0.51 to −0.672 and 
P value from 0.0096 to 0.00023 for all 25 patients with 
positive Dynamic Contrast Enhancement-MRI scans and 
summarized in Table 2. Like the histology measurements in 
Table 1 and Reference 15, bEcc, tEcc, and R are negative using 
ACE/MP-MRI and implying that a more spherical tumor is 
more aggressive.

Metrics for assessing univariate fits to Gleason Score 
using the largest blob volume (Eq. [7]) following the 
application of thresholds 0.60 to 0.80 to ACE/MP-MRI are 
shown in Table 3. Specifically, the fitted coefficient (with 
its standard error), t-statistic (with the null-probability), R, 
R2 (with adjusted R2), F statistic (with null probability) are 
shown in Table 3. The correlation coefficients and t values 
are lower for ACE/MP-MRI volume measurements (Eq. [7])  
than from ACE/MP-MRI eccentricity measurements  
(Eq. [6]) (Table 2), supporting the findings for the histology-
based t-statistic magnitude of the eccentricity exceeds the 
volume t-statistic as shown in Table 1. Specifically, the t 
value tEcc in Table 2 ranges from −2.823 to −4.368 and the t 
value tVol in Table 3 ranges from 2.807 to 2.468.

The correlation coefficient for univariate fits between the 
largest blob volume for varying thresholds (0.60 to 0.80) for 
ACE detection against the Gleason score (Eq. [7]) ranged 
from R 0.46 to 0.50 and P value 0.021 to 0.011 for all 25 
patients with positive Dynamic Contrast Enhancement-
MRI scans. Figure 3A plots the volumes of the largest blobs 
derived from different detection thresholds applied to ACE 
scores from MP-MRI against the total volume derived 

Table 2 Metrics for univariate fits to Gleason Score using MP-MRI largest blob eccentricity ACE thresholds 0.35 to 0.55

Statistic
0.35 ACE max blob 

eccentricity
0.40 ACE max blob 

eccentricity
0.45 ACE max blob 

eccentricity
0.50 ACE max blob 

eccentricity
0.55 ACE max blob 

eccentricity

bEcc (P value) −2.628 (0.736) −2.949 (0.704) −2.494 (0.632) −2.491 (0.649) −2.614 (0.6)

tEcc (P value) −2.823 (0.00964) −3.568 (0.00163) −4.191 (0.00035) −3.947 (0.00064) −4.358 (0.00023)

R −0.507 −0.597 −0.658 −0.636 −0.672

R2 (R2 adjusted) 0.257 (0.225) 0.356 (0.328) 0.433 (0.408) 0.404 (0.378) 0.452 (0.429)

F statistic (F prob) 7.97 (0.00964) 12.731 (0.00163) 17.567 (0.00035) 15.58 (0.00064) 18.995 (0.00023)

ACE, algorithm; bEcc, coefficient for eccentricity; Std Err, standard error; tEcc, t value for eccentricity; R, correlation coefficient; ACE max 
blob eccentricity, eccentricity for largest blob; R2, squared correlation coefficient; R2 adjusted, adjusted square correlation coefficient.



1104 Mayer et al. Relationship prostate tumor eccentricity, volume, Gleason from MP-MRI 

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(2):1096-1108 | https://dx.doi.org/10.21037/qims-21-466

from histology. The high correlation coefficients R range 
from 0.796 to 0.801, validating volume measurements 
using ACE/MP-MRI and reconfirming the results from 
Reference (27). Figure 3B plots the volumes of the largest 
blobs derived from different detection thresholds applied to 
ACE scores from MP-MRI against Gleason score (Eq. [7]).  
Lower correlation coefficients R (0.478 to 0.492) are 
calculated between the ACE/MP-MRI derived tumor 
volume and Gleason score (Eq. [7]) than the correlation 
coefficients computed for fits for curves in Figures 2B,3A.

Figure 4 plots the multivariate fit (Eq. [8]) using ACE/
MP-MRI (eccentricity for the largest blob with a 0.45 
threshold plus volume for the largest blob with a 0.75 
threshold) against data for Gleason score. The fit resulted in 

correlation coefficient of R=0.640, lower than the univariate 
fit using only the eccentricity component (Eq. [6]).

Discussion

PCa management depends on reliable predictors of disease 
progression. Gleason score (7) is currently the most accurate 
independent variable for predicting PCa risk of biochemical 
recurrence, metastases, lymph node involvement, and 
seminal vesicle invasion following prostatectomy. Other 
independent variables such as tumor volume enhance 
prediction of disease progression through incorporation 
into nomograms of patient outcome. Due to its previous 
well researched history, Gleason score is used as a surrogate 

Table 3 Metrics for univariate fits to Gleason score using MP-MRI largest blob volume, thresholds 0.60 to 0.80

Statistic Histology volume
0.60 ACE max 
blob volume

0.65 ACE max 
blob volume

0.70 ACE max 
blob volume

0.75 ACE max 
blob volume

0.80 ACE max 
blob volume

bVol (Std Err) 0.089 (0.032) 0.348 (0.141) 0.399 (0.153) 0.427 (0.162) 0.485 (0.179) 0.557 (0.2)

tVol (P value) 2.807 (0.00976) 2.468 (0.02144) 2.612 (0.01559) 2.627 (0.01506) 2.708 (0.01255) 2.783 (0.01058)

R 0.498 0.457 0.479 0.481 0.492 0.501

R2 (R2 adjusted) 0.2479 (0.216) 0.209 (0.175) 0.229 (0.195) 0.231 (0.197) 0.242 (0.209) 0.252 (0.219)

F Statistic (F prob) 7.881 (0.00976) 6.092 (0.02144) 6.822 (0.01559) 6.902 (0.01505) 7.332 (0.01255) 7.743 (0.01058)

bVol, coefficient for volume; Std Err, standard error; tVol, t value for volume; R, correlation coefficient; ACE max blob volume, volume of 
largest blob; R2, squared correlation coefficient; R2 adjusted, adjusted square correlation coefficient; ; F prob, probability for F statistic.

Figure 3 Scatterplots, correlation coefficients, and P values for fits of MP-MRI-based tumor volumes for 25 patients. (A) Plots the volumes 
of the largest blobs derived from different detection thresholds applied to ACE scores from MP-MRI against the total volume derived 
from histology; (B) plots the volumes of the largest blobs derived from different detection thresholds applied to ACE scores from MP-MRI 
against Gleason score.
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for disease progression for this effort. A significant result of 
this study, prostate tumor eccentricity, even better than the 
conventional tumor volume, correlates with Gleason score 
when measured using histology sections from prostatectomy 
and MP-MRI, and these findings support additional 
investigation to definitely establish the merits of tumor 
eccentricity as a standard factor for predicting outcome. 

In fact, the relative magnitude of the t-statistic shows 
that eccentricity contributes more significantly for fitting 
the Gleason score than tumor volume. The magnitude of 
the t-statistics for eccentricity always exceeded the t-statistic 
for tumor volume in histology and MP-MRI multivariate 
fits. Conventionally, tumor volume is used to help stage 
PCa. However, this study suggests that eccentricity may 
play a more significant role in disease assessment, and as 
such could be considered for future revisions of the existing 
PCa staging system. 

Tumor eccentricity derived from histology and MP-MRI 
correlated well with Gleason score. Tumor volume derived 
from histology correlated well with Gleason score and 
with volumes generated from MP-MRI. However, volumes 
derived from MP-MRI did not correlate well with Gleason 
score and added little to multivariate fits, unlike volumes 
taken from histology. The lack of improvement in fitting 
from multivariate fits using volumes from MP-MRI may 
result from the substantial difference in the better fitting 
using eccentricity from MP-MRI.  

A note is added regarding MP-MRI-determined 

tumor volume and eccentricity measurements. The ACE 
detection thresholds for tumor volume were 0.60 to 0.80 
and for eccentricity 0.30 to 0.55. These thresholds were 
optimized to maximize the correlation of the independent 
variables (volume, eccentricity) to the dependent variable 
(Gleason scoring). Dynamic Contrast Enhancement forms 
a component of the target signature and, therefore, MP-
MRI generated tumor volume and eccentricity captures 
the angiogenic but not the poorly vascularized regions 
of tumors. As noted in earlier efforts (27), the MP-MRI 
tumor volume only captures one-third to half of the volume 
determined through histology but nevertheless correlates 
with the histology determined volume. Future work that 
excludes the DCE component may permit studies of tumor 
margins and its effect on clinical outcomes. 

This study examined both histology specimens taken 
from prostatectomy and processed images derived from 
MP-MRI. Although analysis of prostatectomy specimens is 
often incorporated into disease projection models, a non-
invasive prediction of disease outcome such as MRI would 
improve patient comfort and simplify and improve disease 
management. Nevertheless, tumor eccentricity and tumor 
volume measured through both methods may enhance 
currently limited prognostic information for patients and 
further guide early interventions to prevent or treat post-
prostatectomy recurrences. 

Conventionally, Gleason score, PSA, tumor volume, 
lymph node involvement, and presence and location of 
metastases all contribute to predicting clinical outcomes, 
such as biochemical recurrence, for PCa. Adding tumor 
eccentricity, like other types of solid tumor cancers, may 
bolster PCa management. 

There are a number of limitations for this study. While 
consecutive patients of a well-established dataset were 
used, the overall number of patient samples is limited, and 
all patients were assessed from a single institution. Future 
efforts should perform correlation studies and testing 
these algorithms with greater number of patient samples 
and across multiple institutions to increase clinical setting 
diversity and generalizability of our findings. 

Conclusions

Prostate tumor eccentricity, determined either by histology 
or MP-MRI, more accurately predicted Gleason score 
than conventional prostate tumor volume from analysis of 
histology and MP-MRI. Combining tumor eccentricity 
and volume measurements derived from histology analysis 

Figure 4 Plots the multivariate fit for Gleason score using MP-
MRI (0.45 ACE threshold, maximum blob eccentricity plus 0.75 
ACE threshold, maximum blob volume) against data for Gleason 
score.
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further enhanced Gleason score prediction but was less 
successful using MP-MRI.

Acknowledgments

Funding: None.

Footnote

Reporting Checklist: The authors have completed the MDAR 
checklist. Available at https://dx.doi.org/10.21037/qims-21-
466

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at https://dx.doi.
org/10.21037/qims-21-466). The authors have no conflicts 
of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). This retrospectively designed, single 
institution study was approved by the NIH Institutional 
Review Board, and was compliant with the Health Insurance 
Portability and Accountability Act. And individual consent 
for this retrospective analysis was waived.

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and 
the original work is properly cited (including links to both 
the formal publication through the relevant DOI and the 
license). See: https://creativecommons.org/licenses/by-nc-
nd/4.0/.

References

1. Shariat SF, Karakiewicz PI, Roehrborn CG, Kattan MW. 
An updated catalog of prostate cancer predictive tools. 
Cancer 2008;113:3075-99.

2. Martin NE, Mucci LA, Loda M, Depinho RA. Prognostic 
determinants in prostate cancer. Cancer J 2011;17:429-37.

3. Ho R, Siddiqui MM, George AK, Frye T, Kilchevsky 

A, Fascelli M, Shakir NA, Chelluri R, Abboud SF, 
Walton-Diaz A, Sankineni S, Merino MJ, Turkbey 
B, Choyke PL, Wood BJ, Pinto PA. Preoperative 
Multiparametric Magnetic Resonance Imaging Predicts 
Biochemical Recurrence in Prostate Cancer after Radical 
Prostatectomy. PLoS One 2016;11:e0157313.

4. Wang L, Hricak H, Kattan MW, Chen HN, Kuroiwa 
K, Eisenberg HF, Scardino PT. Prediction of seminal 
vesicle invasion in prostate cancer: incremental value of 
adding endorectal MR imaging to the Kattan nomogram. 
Radiology 2007;242:182-8.

5. Shukla-Dave A, Hricak H, Kattan MW, Pucar D, Kuroiwa 
K, Chen HN, Spector J, Koutcher JA, Zakian KL, 
Scardino PT. The utility of magnetic resonance imaging 
and spectroscopy for predicting insignificant prostate 
cancer: an initial analysis. BJU Int 2007;99:786-93.

6. Poulakis V, Witzsch U, de Vries R, Emmerlich V, Meves 
M, Altmannsberger HM, Becht E. Preoperative neural 
network using combined magnetic resonance imaging 
variables, prostate-specific antigen, and gleason score for 
predicting prostate cancer biochemical recurrence after 
radical prostatectomy. Urology 2004;64:1165-70.

7. Gleason DF, Mellinger GT. Prediction of prognosis 
for prostatic adenocarcinoma by combined histological 
grading and clinical staging. J Urol 1974;111:58-64.

8. McNeal JE. Cancer volume and site of origin of 
adenocarcinoma in the prostate: relationship to local and 
distant spread. Hum Pathol 1992;23:258-66.

9. Villers AA, McNeal JE, Redwine EA, Freiha FS, Stamey 
TA. Pathogenesis and biological significance of seminal 
vesicle invasion in prostatic adenocarcinoma. J Urol 
1990;143:1183-7.

10. Friedersdorff F, Groß B, Maxeiner A, Jung K, Miller 
K, Stephan C, Busch J, Kilic E. Does the Prostate 
Health Index Depend on Tumor Volume?-A Study on 
196 Patients after Radical Prostatectomy. Int J Mol Sci 
2017;18:488.

11. May M, Siegsmund M, Hammermann F, Loy V, Gunia S. 
Visual estimation of the tumor volume in prostate cancer: 
a useful means for predicting biochemical-free survival 
after radical prostatectomy? Prostate Cancer Prostatic Dis 
2007;10:66-71.

12. McNeal JE, Villers AA, Redwine EA, Freiha FS, Stamey 
TA. Histologic differentiation, cancer volume, and pelvic 
lymph node metastasis in adenocarcinoma of the prostate. 
Cancer 1990;66:1225-33.

13. Epstein JI, Carmichael M, Partin AW, Walsh PC. Is tumor 
volume an independent predictor of progression following 

https://dx.doi.org/10.21037/qims-21-466
https://dx.doi.org/10.21037/qims-21-466
https://dx.doi.org/10.21037/qims-21-466
https://dx.doi.org/10.21037/qims-21-466
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


1107Quantitative Imaging in Medicine and Surgery, Vol 12, No 2 February 2022

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(2):1096-1108 | https://dx.doi.org/10.21037/qims-21-466

radical prostatectomy? A multivariate analysis of 185 
clinical stage B adenocarcinomas of the prostate with 5 
years of followup. J Urol 1993;149:1478-81.

14. Kikuchi E, Scardino PT, Wheeler TM, Slawin KM, 
Ohori M. Is tumor volume an independent prognostic 
factor in clinically localized prostate cancer? J Urol 
2004;172:508-11.

15. Mayer R, Simone CB 2nd, Turkbey B, Choyke P. 
Correlation of prostate tumor eccentricity and Gleason 
scoring from prostatectomy and multi-parametric-
magnetic resonance imaging. Quant Imaging Med Surg 
2021;11:4235-44.

16. Moon HG, Kim N, Jeong S, Lee M, Moon H, Kim J, 
Yoo TK, Lee HB, Kim J, Noh DY, Han W. The Clinical 
Significance and Molecular Features of the Spatial Tumor 
Shapes in Breast Cancers. PLoS One 2015;10:e0143811.

17. Bae MS, Seo M, Kim KG, Park IA, Moon WK. 
Quantitative MRI morphology of invasive breast cancer: 
correlation with immunohistochemical biomarkers and 
subtypes. Acta Radiol 2015;56:269-75.

18. Yoon HJ, Park H, Lee HY, Sohn I, Ahn J, Lee SH. 
Prediction of tumor doubling time of lung adenocarcinoma 
using radiomic margin characteristics. Thorac Cancer 
2020;11:2600-9.

19. Baba T, Uramoto H, Takenaka M, Oka S, Shigematsu Y, 
Shimokawa H, Hanagiri T, Tanaka F. The tumour shape 
of lung adenocarcinoma is related to the postoperative 
prognosis. Interact Cardiovasc Thorac Surg 2012;15:73-6.

20. Daniel Jensen J, Elewski BE. The ABCDEF Rule: 
Combining the "ABCDE Rule" and the "Ugly Duckling 
Sign" in an Effort to Improve Patient Self-Screening 
Examinations. J Clin Aesthet Dermatol 2015;8:15.

21. Ali AH, Li J, Yang G. Automating the ABCD Rule 
for Melanoma Detection: A Survey. IEEE Access 
2020;8:83333-46.

22. King CR, Long JP. Prostate biopsy grading errors: a 
sampling problem? Int J Cancer 2000;90:326-30.

23. Epstein JI, Feng Z, Trock BJ, Pierorazio PM. Upgrading 
and downgrading of prostate cancer from biopsy to radical 
prostatectomy: incidence and predictive factors using the 
modified Gleason grading system and factoring in tertiary 
grades. Eur Urol 2012;61:1019-24.

24. Berglund RK, Masterson TA, Vora KC, Eggener SE, 
Eastham JA, Guillonneau BD. Pathological upgrading 
and up staging with immediate repeat biopsy in patients 
eligible for active surveillance. J Urol 2008;180:1964-7; 
discussion 1967-8.

25. Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider 

MA, Macura KJ, Margolis D, Schnall MD, Shtern F, 
Tempany CM, Thoeny HC, Verma S. PI-RADS Prostate 
Imaging - Reporting and Data System: 2015, Version 2. 
Eur Urol 2016;69:16-40.

26. Mayer R, Simone CB 2nd, Skinner W, Turkbey B, 
Choykey P. Pilot study for supervised target detection 
applied to spatially registered multiparametric MRI in 
order to non-invasively score prostate cancer. Comput Biol 
Med 2018;94:65-73.

27. Mayer R, Simone CB 2nd, Turkbey B, Choyke P. 
Algorithms applied to spatially registered multi-parametric 
MRI for prostate tumor volume measurement. Quant 
Imaging Med Surg 2021;11:119-32.

28. Choyke P, Turkbey B, Pinto P, Merino M, Wood B, Data 
From PROSTATE-MRI. The Cancer Imaging Archive. 
2016. Available onlne: http://doi.org/10.7937/K9/
TCIA.2016.6046GUDv

29. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, 
Moore S, Phillips S, Maffitt D, Pringle M, Tarbox L, Prior 
F. The Cancer Imaging Archive (TCIA): maintaining and 
operating a public information repository. J Digit Imaging 
2013;26:1045-57.

30. Shah V, Pohida T, Turkbey B, Mani H, Merino M, Pinto 
PA, Choyke P, Bernardo M. A method for correlating 
in vivo prostate magnetic resonance imaging and 
histopathology using individualized magnetic resonance-
based molds. Rev Sci Instrum 2009;80:104301.

31. Turkbey B, Mani H, Shah V, Rastinehad AR, Bernardo 
M, Pohida T, Pang Y, Daar D, Benjamin C, McKinney 
YL, Trivedi H, Chua C, Bratslavsky G, Shih JH, Linehan 
WM, Merino MJ, Choyke PL, Pinto PA. Multiparametric 
3T prostate magnetic resonance imaging to detect 
cancer: histopathological correlation using prostatectomy 
specimens processed in customized magnetic resonance 
imaging based molds. J Urol 2011;186:1818-24.

32. Turkbey B, Pinto PA, Mani H, Bernardo M, Pang Y, 
McKinney YL, Khurana K, Ravizzini GC, Albert PS, 
Merino MJ, Choyke PL. Prostate cancer: value of 
multiparametric MR imaging at 3 T for detection--
histopathologic correlation. Radiology 2010;255:89-99.

33. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson 
E, Knopp MV, Larsson HB, Lee TY, Mayr NA, Parker 
GJ, Port RE, Taylor J, Weisskoff RM. Estimating 
kinetic parameters from dynamic contrast-enhanced 
T(1)-weighted MRI of a diffusable tracer: standardized 
quantities and symbols. J Magn Reson Imaging 
1999;10:223-32.

34. Tofts PS, T1-weighted DCE Imaging Concepts: 



1108 Mayer et al. Relationship prostate tumor eccentricity, volume, Gleason from MP-MRI 

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(2):1096-1108 | https://dx.doi.org/10.21037/qims-21-466

Modelling, Acquisition and Analysis. MAGNETOM Flash 
2010;3:30-5.

35. Jain AK. Fundamentals of Digital Image Processing. 
Upper Saddle River, NJ: Prentice Hall; 1989.

36. Richards JA, Jia X. Remote Sensing Digital Image 
Analysis, New York: Springer-Verlag; 1999.

37. Manolakis D, Shaw G. Detection algorithms for 
hyperspectral imaging applications. IEEE Signal Process 
Mag 2002;19:29-43.

38. Mardia KV, Kent JT, Bibby JM. Multivariate Analysis. 
Academic Press; 1979.

39. Jan K. Elements of Econometrics. 2nd ed. New York: 
Macmillan; 1986. 

40. Walpole RE, Myers RH, Myers SL, Ye K, Yee K. 
Probability & statistics for engineers & scientists. Myers, 
H. Raymond. 7th ed. Prentice Hall College Div; 2002. 

41. Chatterjee S, Simonoff J. Handbook of Regression 
Analysis. John Wiley Sons; 2013. 

Cite this article as: Mayer R, Simone CB 2nd, Turkbey B, 
Choyke P. Prostate tumor eccentricity predicts Gleason score 
better than prostate tumor volume. Quant Imaging Med Surg 
2022;12(2):1096-1108. doi: 10.21037/qims-21-466


