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A B S T R A C T   

Background: Impaired lung function is predictive of mortality and is a key component of chronic obstructive 
pulmonary disease. Lung function has a strong genetic component but is also affected by environmental factors 
such as increased exposure to air pollution, but the effect of their interactions is not well understood. 
Objectives: To identify interactions between genetic variants and air pollution measures which affect COPD risk 
and lung function. Additionally, to determine whether previously identified lung function genetic association 
signals showed evidence of interaction with air pollution, considering both individual effects and combined 
effects using a genetic risk score (GRS). 
Methods: We conducted a genome-wide gene-air pollution interaction analysis of spirometry measures with three 
measures of air pollution at home address: particulate matter (PM2.5 & PM10) and nitrogen dioxide (NO2), in 
approximately 300,000 unrelated European individuals from UK Biobank. We explored air pollution interactions 
with previously identified lung function signals and determined their combined interaction effect using a GRS. 
Results: We identified seven new genome-wide interaction signals (P < 5× 10− 8), and a further ten suggestive 
interaction signals (P < 5× 10− 7). Additionally, we found statistical evidence of interaction for FEV1/FVC 
between PM2.5 and previously identified lung function signal, rs10841302, near AEBP2, suggesting increased 
susceptibility as copies of the G allele increased (but size of the impact was small - interaction beta: -0.363 
percentage points, 95% CI: -0.523, -0.203 per 5 µg/m3). There was no observed interaction between air pol
lutants and the weighted GRS. 
Discussion: We carried out the largest genome-wide gene-air pollution interaction study of lung function and 
identified potential effects of clinically relevant size and significance. We observed up to 440 ml lower lung 
function for certain genotypes when exposed to mean levels of outdoor air pollution, which is approximately 
equivalent to nine years of average normal loss of lung function in adults.   

1. Introduction 

Impaired lung function is predictive of mortality and is a key 
component in the diagnosis of chronic obstructive pulmonary disease 
(COPD). Smoking is the biggest risk factor for COPD, which is thought to 
have caused as many as 2.9 million deaths worldwide in 2016 (GBD 
2016 Causes of Death Collaborators, 2017) although other sources of 
indoor air pollution are also associated with COPD risk (Rabe & Watz, 
2017; Agustí & Hogg, 2019). Furthermore, increased exposure to air 

pollution is associated with lower lung function (Doiron, et al., 2019). 
Lung function and COPD risk is also influenced by genetic factors and 

we and others have discovered over 300 genetic association signals for 
COPD risk and/or lung function measures (Sakornsakolpat et al., 2019; 
Shrine et al., 2019). Combining these signals into a single genetic risk 
score, we have previously shown that individuals in the highest decile of 
genetic risk have an almost 5-fold increased risk of COPD compared to 
those in the lowest decile (Shrine et al., 2019). However, collectively, 
these variants only explain up to around 13% of the heritability of lung 
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function. 
We hypothesised that there could be interactions between genetic 

variants and air pollution measures which affect COPD risk and lung 
function. Detection of such effects could enable identification of high- 
risk subgroups of the population and provide new biological insight 
into the mechanisms whereby air pollution affects respiratory health. 

To test this hypothesis, we carried out the largest genome-wide gene- 
air pollution interaction study of lung function in ~ 300,000 individuals 
from UK Biobank, using particulate matter (PM) and nitrogen dioxide 
(NO2) concentrations as measures of air pollution exposure. 

2. Methods 

2.1. Study participants 

We used spirometry, anthropometric, questionnaire and genetic data 
for individuals in UK Biobank, collected at baseline (upon recruitment) 
between 2006 and 2010. UK Biobank is a large-scale research database, 
containing both genetic and health information for a national cohort of 
over 500,000 individuals aged between 40 and 69 years. 

2.2. Selection of individuals with lung function data 

We selected unrelated European individuals from UK Biobank as 
previously described (Shrine et al., 2019). In summary, we selected in
dividuals that had complete lung function data and passed our previ
ously outlined quality control filters (N = 348,936) for forced expiratory 
volume in 1 second (FEV1), forced vital capacity (FVC) and the ratio 
(FEV1/FVC). From this we then selected a subsample of unrelated in
dividuals (N = 303,320) of genetically determined European ancestry 
(KING kinship coefficient < 0.0884 corresponding to below 2nd degree 
kinship (Manichaikul et al., 2010)). All individuals had complete data 
for sex, age, height and ever smoking status (ever vs never). 

2.3. Air pollution data 

Air pollution concentrations at place of residence of UK Biobank 
participants at recruitment (at time of pulmonary function testing) were 
estimated using European Study of Cohorts and Air Pollution Effects 
(ESCAPE) land use regression models (Eeftens et al., 2012; Beelen et al., 
2013). In these analyses, we explored associations with fine particles 
with average diameter < 2.5 µm (PM2.5), particulate matter with 
average aerodynamic diameter < 10 µm (PM10) and annual average 
concentrations of nitrogen dioxide (NO2). 

ESCAPE model predictions were compared to the UK’s Automative 
Urban and Rural Network (AURN) data (Gulliver & Hoogh, 2015) to 
evaluate air pollution model estimates. NO2 concentrations were pre
dicted reasonably well throughout the country (R2 = 0.67). PM10 con
centrations were moderately well estimated for central and southern UK 
areas (R2 = 0.53) but less so for nothern England or Scotland (R2 < 0.5) 
as models were not robust > 400 km from Greater London. The PM 
analyses therefore did not include participants from northern England 
and Scotland [see (Doiron et al., 2017) for more details on air pollution 
concentration modelling]. 

2.4. Genome-wide interaction analysis 

FEV1, FVC and FEV1/FVC were adjusted for sex, age, age2, height and 
ever smoking. Residuals were then inverse normal transformed. 

Individuals were genotyped using the Affymetrix Axiom UK BiLEVE 
and Affymetrix Axiom UK Biobank arrays (Bycroft et al., 2018) with 
imputation undertaken using the Haplotype Reference Consortium 
(HRC) (McCarthy et al., 2016) and combined UK10K + 1000 genomes 
(Huang et al., 2015) reference panels. Multiallelic variants were 
removed and variants imputed with low confidence were excluded 
(imputation quality r2 < 0.5 for all SNPs and r2 < 0.8 for rare SNPs with 

minor allele frequency (MAF) < 1%). Variants with MAF < 0.5% were 
removed. 

Each transformed lung function trait was used as the outcome in a 
multiple regression model which included the first 15 principal 
component terms for ancestry, genotyping array, SNP term (using an 
additive genetic model), air pollution variable and an interaction term 
for the interaction between SNP and air pollution: 

Phenotypei = β0 + β1Gi + β2Ai + β3GiAi +PC1i⋯PC15i + Arrayi + εi 

where Gi is the genotype for individual i, Ai is the air pollution value, 
PC1i⋯PC15i represent principal component values and Arrayi is the ge
notype array value (coded 0 and 1 for UK Biobank array and UK BiLEVE 
array respectively). The p-value returned for the β3 estimate corresponds 
to the interaction effect between SNP and air pollution value (GiAi). 
Multiple regression was performed using PLINK2 (Chang et al., 2015). 

Air pollution measures PM2.5 and PM10 were transformed into 
standard z-scores due to observed collinearity issues as a result of strong 
correlation between the air pollution variable (Ai) and interaction (GiAi) 
in the regression model (observed due to small variances for air pollu
tion measures PM2.5 and PM10, Supplementary Fig. 1). Air pollution 
measure NO2 was analysed untransformed. 

2.5. Signal selection and signal refinement 

To define association signals and their sentinel variants, all variants 
were ranked by p-value and the SNP with the lowest p-value was 
selected as the first signal sentinel. All SNPs +/− 1 megabase (Mb) either 
side of this first sentinel were then excluded and the process repeated for 
the next most significant SNP until all 2 Mb regions containing a sentinel 
SNP with P < 5 × 10− 8 had been identified (genome-wide signals). 
The process was repeated to define a set of signals with sentinel SNPs at 
threshold of P < 5 × 10− 7 (suggestive signals). Conditional analysis 
was used to identify additional independent genome-wide and sugges
tive signals by including the sentinel interaction term in the model, re- 
analysing all SNPs within each 2 Mb region and determining whether 
any SNPs remained below the pre-specified threshold. Region plots for 
each signal were created using LocusZoom (Pruim et al., 2010). 

To aid the interpretation of interaction effects for genome-wide 
significant interaction signals, we presented the association between 
lung function trait and air pollution variable stratified by genotype 
group. To do this, dosages were converted to direct genotype calls by 
rounding to the nearest genotype group. 

Using a Bayesian method (Wakefield, 2007) we refined each signal to 
a credible set of SNPs (the set of SNPs 95% likely to contain the causal 
SNP, under the assumption that the causal SNP was analysed). 

2.6. Identification of putative causal genes 

Credible set SNPs including the sentinel SNP were annotated using 
Annovar (Wang, et al., 2010) to identify coding variants with a putative 
functional effect (for example, missense). To identify whether any of the 
signals were independently associated with gene expression, we 
searched the GTEx (GTEx Consortium, 2013) and blood eQTLgen 
(Westra et al., 2013) eQTL catalogues. To identify a potential shared 
causal variant between the SNP-air pollution interaction signals and the 
eQTL gene expression signals, colocalisation was undertaken using 
COLOC (Giambartolomei et al., 2014) where full summary data was 
available in GTEx and eQTLgen databases (Võsa et al., 2021). An 
observed probability > 0.8 for a shared causal variant was used as the 
threshold to conclude colocalisation of SNP-air pollution and gene 
expression signals. We queried the sentinel SNPs in Open Target Ge
netics (Ghoussaini et al., 2021) for eQTL associations (which in addition 
to GTEx includes a further 14 consortia with eQTL expression associa
tion results) and to identify associations with protein expression (pQTL) 
and overlap with regions known to interact with gene promoters 
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(promotor capture HiC). 

2.7. Association with other phenotypes 

The SNP with the highest posterior probability for causality in each 
credible set was queried in PhenoScanner (Staley et al., 2016) and Open 
Targets Genetics (Ghoussaini et al., 2021) resources to identify shared 
associations with other phenotypes at a threshold of P < 1× 10− 3. 

2.8. Tissue-specificity of interaction signals 

To identify whether there was enrichment of SNP-air pollution 
interaction signals within regulatory regions of the genome (for 
example, DNase I Hypersensitive Sites (DHS)) in specific cell or tissue 
types we used GARFIELD (Iotchkova et al., 2019). The software de
termines whether signals are enriched for DHS across 55 tissues (with an 
adjusted significant enrichment threshold for 540 effective annotations 
of  P < 9.26× 10− 5). We investigated the functional impact of SNPs 
(potential chromatin effects) which were highly probable to be the 
drivers of each signal (i.e. SNPs with posterior probability > 0.9 in 
credible sets) using DeepSEA (Zhou & Troyanskaya, 2015). To define a 
significant functional impact we used an E-value < 0.05 (the proportion 
of 1000 Genomes SNPs predicted to have a higher magnitude for chro
matin effect compared to the chosen SNP being investigated) and an 
absolute probability difference > 0.1 between alternative and reference 
allele (the threshold defined for ‘high confidence’). 

2.9. Sensitivity analyses 

2.9.1. Effect of Socio-Economic status 
Socio-economic status (SES) of an individual is a plausible moderator 

of lung function, with observed modification of air pollution effects 
(Doiron et al., 2019), however adjusting for SES in our analyses would 
have led to a reduction of approximately 13% in the discovery sample 
size due to missing data. We accounted for any effects of SES on genome- 
wide interaction signals in two ways. Firstly, we undertook a sensitivity 
analysis for the top signals adjusting for educational status and income 
status using a complete-case analysis (after inverse normalisation of 
lung function traits). Secondly, we present interaction effects for 
genome-wide signals across categorised groups for income and educa
tional status to visualise any difference in effect (akin to a three-way 
interaction between SNP, air pollutant and education/income). In
come status was categorised using the definition in UK Biobank of “less 
than £18,000”, “£18,000 to £30,999”, “£31,000 to £51,999”, “£52,000 
to 100,000” and “> 100,000”. Educational status was dichotomised as 
“lower vocational qualification or less” vs “higher vocational qualifica
tion or more”, grouping A-level (2), O-level (3), CSEs (4), and “None of 
the above” (− 7) under “low education”, and College/University (1), 
NVQ (5) and Other professional qualifications (6) under “high educa
tion”. Individuals who selected “Do not know” (− 1), “Prefer not to 
answer” (− 3) or have missing data were excluded from subsequent 
analyses. 

2.9.2. Exposure misspecification 
Misspecification of a continuous exposure in statistical models, such 

as incorrectly modelling non-linear effects as linear, has been shown to 
inflate type I error rates when studying gene-environment interactions 
leading to identification of false-positives (Tchetgen Tchetgen & Kraft, 
2011; Sun, et al., 2018). To determine whether this affected our con
clusions (estimates and statistical significance), we re-calculated inter
action effects for genome-wide gene-air pollution interaction signals 
using the same statistical model as before with inclusion of non-linear 
terms (quadratic and cubic to model the air pollution effect). 

2.10. Previously reported lung function and COPD association signals 

We performed a look-up in the genome-wide gene-air pollution 
interaction analyses (for all three air pollution measures and all three 
lung function measures), for the 304 signals previously reported for 
association with lung function and COPD (279 lung function signals 
from Shrine et al. 2019 (Shrine et al., 2019) and 25 signals from 
Sakornsakolpat et al. 2019 (Sakornsakolpat et al., 2019)). As these in
dependent signals have a priori evidence for association with lung 
function or COPD, we applied a Bonferroni corrected threshold for 304 
tests to define a significant air pollution interaction effect (P < 1.6×

10− 4). As before, to aid interpretation of the interaction effect for any 
statistically significant signal, we present the association between lung 
function trait and air pollution stratified by genotype group. 

2.11. Weighted genetic risk score interaction analysis 

We used a weighted genetic risk score (GRS) to explore whether the 
combined effect of previously reported lung function signals showed an 
interaction with air pollution measures (i.e. whether the phenotypic 
effects of the SNPs were modified by exposure to air pollution). Each 
individual’s trait specific risk score was calculated using the effect sizes 
of the 279 SNPs reported in Shrine et al. 2019 (Shrine et al., 2019) on 
FEV1, FVC and FEV1/FVC (using the lung function reducing allele as the 
coded allele). Multiple regression was performed using the same model 
above, using the weighted GRS for each lung function trait in place of the 
genotype. As all three lung function traits are correlated, interaction 
terms (i.e. GRS × Air pollution measure) with P < 0.05 were defined as 
statistically significant. 

2.12. Antioxidant genes and their interaction with air pollution 

Genetic variation within antioxidant genes may contribute to sus
ceptibility of adverse effects of air pollution on respiratory health 
(Fuertes et al., 2020). We have provided look-ups for the most 
commonly evaluated antioxidant genes (for which a SNP was reported) 
and for SNPs evaluated in previous antioxidant-gene-air pollution 
interaction studies, both of which are reviewed in Fuertes et al. (Fuertes 
et al., 2020). A Bonferroni adjusted threshold of P < 3.85 × 10− 3 (for 
13 variants) was used to determine statistical significance. 

3. Results 

The association between lung function and air pollutants PM10, 
PM2.5 and NO2 in UK Biobank has previously been published in (Doiron 
et al., 2019), and we provide those associations in supplementary 
Table 1. 

3.1. Genome-wide interaction analysis 

Genome-wide interaction analysis was undertaken in 277,597 Eu
ropean individuals from UK Biobank for air pollution variables PM10/ 
PM2.5, (Supplementary Table 2) and a total of 10,848,082 SNPs 
(Supplementary Fig. 2). For the NO2 analysis, there were 299,015 
European individuals and 10,846,777 SNPs. Manhattan plots are pre
sented in Fig. 1 and QQ plots in supplementary Fig. 3. 

We identified seven signals with an interaction effect reaching 
genome-wide statistical significance (P < 5× 10− 8) for at least one 
lung function trait and air pollution variable (Table 1, Supplementary 
Table 3 and Supplementary Fig. 4). Four signals were identified for an 
interaction with PM10. There were two for FEV1 (in 4q35.2 [near 
LINC02374] and in 19q12 [near LOC100420587]), one for FVC (in 
1p36.33 [near LINC01342]) and one for FEV1/FVC (in 6p25.1 [in LY86- 
AS1]). Two signals were identified for an interaction with PM2.5; one for 
FEV1 (in 7q31.33 [near GRM8]) and one for FVC (in 5q31.2 [in KDM3B]. 
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One signal was identified for air pollutant NO2 for both lung function 
traits FEV1 and FVC (in 21q21.1 [near MIR548XHG]). Of the seven 
identified SNPs, three were common (MAF > 5%) two were low fre
quency, (1% < MAF < 5%) and two were rare (MAF < 1%). Conditional 

analysis did not identify any additional signals in each region. 
To aid with the interpretation of statistically significant interaction 

effects, we have presented the association between air pollution and 
lung function stratified by genotype group (number of copies of coded 

Fig. 1. Manhattan plots for the gene-air 
pollution interaction GWAS (A) FEV1- 
PM10 (B) FEV1-PM2.5 (C) FEV1-NO2 (D) 
FVC-PM10 (E) FVC-PM2.5 (F) FVC-NO2 (G) 
FEV1/FVC-PM10 (H) FEV1/FVC-PM2.5 (I) 
FEV1/FVC-NO2. The red line represents a p- 
value threshold of 5× 10− 8. The blue line 
represents a p-value threshold of 5× 10− 7. 
Each genome-wide signal is annotated by 
nearest gene. (For interpretation of the 
references to colour in this figure legend, 
the reader is referred to the web version of 
this article.)   
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allele) for each of the seven genome-wide interaction signals (Fig. 2) and 
interaction plots of predicted lung function against air pollution for each 
genotype group (Supplementary Fig. 5). In some instances, statistically 
significant association between lung function and air pollutant is 
observed in all genotype groups. For others, the association only reaches 
statistical significance for certain genotype groups. 

Signals were deemed suggestively statistically significant using the 
same signal selection procedure with a threshold of P < 5 × 10− 7 

(Supplementary Table 4 and Supplementary Fig. 6). Region plots 
after conditional analysis suggested only one signal per 2 Mb region. Ten 
suggestive signals were identified that were independent of the seven 
genome-wide significant signals, all were either intergenic or mapped to 
the intronic region of the mapped gene. Eight were represented by 
common SNPs, and two by low frequency SNPs. 

3.2. Credible sets and causal genes 

To identify the gene (or genes) via which the SNPs (for genome-wide 
and suggestively significant signals) might be exerting their effects on 
lung function, we used a Bayesian method to refine our signal to define 
the 95% credible set of causal SNPs (assuming the causal SNP was 
included in the analysis, Supplementary Table 5). We then investi
gated whether credible set and sentinel SNPs were associated with 
changes in gene expression in GTEx, Blood eQTL and Open Target Ge
netics databases (Supplementary Table 6). Genome-wide significant 
signal, rs74048016, whose C allele had a larger deleterious effect on 
lung function as the measurement of PM10 increased, was associated 
with decreased expression of HES4 and increased expression of C1orf159 
and RP11-465B22.3 in blood. However, there was no statistical support 
(using COLOC (Giambartolomei et al., 2014) and the eQTLgen database 
(Võsa et al., 2021) that the interaction signal and gene expression as
sociation signals originated from the same SNPs. Credible set SNPs for 
suggestive signals rs769937512, rs111552599, rs139556451, 
rs200460259 and rs10082259 were associated in various tissues for 
genes AL445991.1, FRAS1, PNMA2/DPYSL, MUC4/MUC20 and UROD 
respectively (Supplementary Table 6). These signals did not colocalise, 
suggesting again that the observed gene expression and interaction 
signals were not driven by the same SNPs. There was no association with 
protein expression and no overlap with regions that had strong evidence 
for interaction with gene promoters. 

3.3. Association with other phenotypes 

The sentinel SNPs for the 17 genome-wide and suggestively signifi
cant signals were queried in PhenoScanner and Open Targets Genetics 
resources (Supplementary Table 7), to explore their association with 
related phenotypes e.g. asthma that might support a causal interpreta
tion. Five signals were found to be associated with at least one trait at 
P < 1× 10− 3, three genome-wide signals (rs28666788, rs192415220 
and rs138235384) and two suggestive signals (rs10082259/rs6661026 
and rs769937512), but none of the associations had reached genome- 
wide significance (P < 5× 10− 8). For the genome-wide signals 
rs28666788, rs192415220 and rs138235384 the strongest associations 
(at P < 5× 10− 6) were with alcohol consumption, self-reported cer
vical polyps and sexual dysfunction respectively. 

3.4. Tissue-specificity of interaction signals 

When looking for evidence that the interaction signals were over- 
represented in tissue-specific functionally active regions of the genome 
(DNase I hypersensitive sites (DHS) indicative of open chromatin) using 
GARFIELD or responsible for chromatin effects using DeepSEA, only 
SNPs showing SNP-NO2 interaction effects on lung function phenotype 
FVC were enriched in various tissues including fetal lung, using a 
threshold of P < 5 × 10− 5 to select contributing SNPs Ta
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(Supplementary Fig. 7 and Supplementary Table 8). 

3.5. Sensitivity analyses 

3.5.1. Effects of Socio-Economic status 
When adjusting for socio-economic status variables educational 

status and income status, sample sizes were reduced to 259,130 and 
240,202 for the NO2 and PM10/PM2.5 analyses respectively. Effect sizes 
were largely consistent with the primary analysis with minimal re
ductions in effect size for rs74048016 and rs192415220 (Supplemen
tary Table 9 and Supplementary Fig. 8), suggesting that the 
interactions identified were not due to confounding by SES factors. 

Interaction effects were generally larger in magnitude (but not signifi
cantly due to overlapping confidence intervals) for those in the lower 
educational group (Supplementary Fig. 9). When stratifying by income 
group (Supplementary Fig. 10), overlapping confidence intervals again 
suggested no significant effect of income status on air pollution and lung 
function association across genotype groups. A slight inverse correlation 
between magnitude of interaction effect and income group was observed 
for rs2825255 for both lung function traits (higher income group, 
smaller interaction effect magnitude) with a positive correlation 
observed for rs762101031 (higher income group, larger interaction ef
fect magnitude). 

3.5.2. Exposure misspecification 
There was very little effect on effect estimates and statistical signif

icance for identified genome-wide interaction signals when modelling a 
non-linear effect of air pollution on lung function (Supplementary 
Table 10). 

3.6. Lung function associated signals 

To determine whether any signals previously shown to be associated 
with lung function produced an interaction effect with air pollution 
variables, we performed a look up of the 304 variants (279 lung function 
signals from Shrine et al. (Shrine et al., 2019) and 24 COPD signals from 
Sakornsakolpat et al. (Sakornsakolpat et al., 2019)) in our genome-wide 
analysis. Of the 304 signals, one signal, rs10841302, near AEBP2, for 
which the G allele is associated with lower values of FEV1/FVC, met a 
Bonferroni threshold of P < 1.6 × 10− 4 for an interaction with PM2.5 for 
FEV1/FVC (interaction β: -0.0569; 95% CI: − 0.0826, -0.0312; interac
tion P = 9.65x10-6) (Supplementary Table 11), suggesting a larger 
deleterious effect of PM2.5 on FEV1/FVC as copies of the G allele 
increased (Fig. 3). This is equivalent to an FEV1/FVC effect of − 0.363 
percentage points (CI: − 0.529, -0.200) per 5μ g/m3 increase in PM2.5. 
The interaction can also be interpreted by air pollution and lung func
tion association stratified by genotype group. For genotype groups CC, 
CG and GG for SNP rs10841302, a 5μ g/m3 increase in PM2.5 resulted in 
a reduction of FEV1/FVC by 0.16 (95% CI: 0.13–0.19;  P = 1.21×

10− 22), 0.17 (95% CI: 0.14–0.200; P = 5.52× 10− 39) and 0.28 (95% 
CI: 0.24–0.32;  P = 2.43× 10− 43) standard deviations. This equates to 
direct FEV1/FVC effects of 1.024 (95% CI: 0.83–1.22.), 1.08 (95% CI: 
0.90–1.28.) and 1.79 (95% CI: 1.54–2.04) percentage points respec
tively per 5μ g/m3 of PM2.5. 

We tested the interaction between a weighted GRS for lung function 
(based on the effect sizes of 279 lung function signals reported in Shrine 
et al. (Shrine et al., 2019) and each air pollution measure on FEV1, FVC 
and FEV1/FVC (Supplementary Table 12). None of the interaction ef
fects were statistically significant (all P > 0.05). 

3.7. Antioxidant genes and their interaction with air pollution 

We performed a look up of the 13 variants corresponding to seven 
commonly evaluated antioxidant genes and/or those analysed in pre
vious studies of antioxidant gene-air pollution interaction analyses, as 
reviewed by Fuertes et al. (Fuertes et al., 2020) (Supplementary 
Table 13). None of the SNPs reached the Bonferroni significant adjusted 
threshold used to determine statistical significance ( P < 3.85× 10− 3). 
One SNP, rs1001179 in CAT approached this threshold (P = 0.009) for 
an interaction with NO2 for FEV1/FVC. 

4. Discussion 

We carried out the largest genome-wide gene-air pollution interac
tion study of lung function and identified seven genome-wide statisti
cally significant signals, as well as identifying a small interaction with 
air pollution for one previously identified lung function signal. 

Fig. 2. Association between lung function trait and air pollutant (effect size and 
confidence intervals) for the seven genome-wide signals. Note: For SNPs 
rs138235384 and rs192415220 the effect size for 0 copies and 2 copies of the 
effect allele respectively are not presented due to the low minor allele frequency 
and small sample size. Effect sizes will not be exactly consistent with Table 1 
due to rounding error when converting from dosage to direct genotypes. Units 
are per 5 µg/m3 for PM10 / PM2.5 and per 10 µg/m3 for NO2. 
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Independent replication is required to confirm these results. There were 
no interactions detected between air pollution and a weighted genetic 
risk score for lung function (using previously identified lung function 
signals), nor with seven commonly evaluated antioxidant genes. 
Further, we did not see convincing evidence of effect modification by 
social class. 

For the signals identified, ascribing the biological mechanisms 
proves a challenge and further biological studies of gene function for 
those implicated are needed. For genome-wide SNP rs74048016, as the 
number of copies of the coded allele increases the effect of air pollutant 
PM10 on FVC becomes more negative, suggesting that those with two 
copies of the effect allele are at increased susceptibility of air pollution 
effects. The coded allele is associated with decreased expression of HES4 
and increased expression of C1orf159 in blood in Open Targets Genetics. 
The signals for genome-wide association and gene expression signals did 
not colocalise (there was insufficient evidence of a shared causal variant 
between the two analyses) in this genomic region (using data from 
eQTLgen). Expression of HES4 (hes family bHLH transcription factor 4) 
has been implicated in poor outcomes for patients with Triple Negative 
Breast Cancer (TNBC) (Stoeck et al., 2014) and both HES4 and C1orf159 
(chromosome 1 open reading frame 159) have been implicated via 
functional annotation (nearest gene) of other genome-wide significant 

loci for several traits and diseases, including peak expiratory flow (PEF) 
(Ghoussaini et al., 2021; Neale Lab, 2021). There is also evidence of 
colocalisation between gene expression and genome-wide analyses for 
these genes in certain tissues for height phenotypes (standing and 
sitting) (Ghoussaini et al., 2021; Neale Lab, 2021). 

We identified a further ten signals (independent of the primary 
genome-wide signals) at suggestive statistical significance, which would 
be important to take forward in future replication analyses. Genes 
implicated include PNMA2, DPYSL2 and BNIP3L, all via functional 
annotation of other genome-wide significant loci for height, and addi
tionally for educational attainment phenotypes (Kichaev et al., 2019; 
Lee et al., 2018). There was however no attenuation of suggestive signal 
rs139556451 (which implicated the aforementioned genes in our anal
ysis) when re-analysing with adjustment for education and income sta
tus (in the subset for which this data was available). BNIP3L expression 
has also been linked with lung cancer (Sun, et al., 2004). Additionally, 
gene FRAS1 identified by eQTL associations for SNPs in the 
rs111552599 suggestive signal credible set has been implicated by other 
genome-wide signals for lung function, specifically for trait FEV1/FVC 
(Kichaev et al., 2019; Shrine et al., 2019) and mutations in FRAS1 have 
been observed amongst individuals with Fraser syndrome, which can 
cause airway abnormalities (Pitera et al., 2008; van Haelst et al., 2007). 

Fig. 3. Interaction plot of FEV1/FVC predicted values against PM2.5 values across genotype groups (with coded allele G) for the previously identified lung function 
signal rs10841302. 
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MUC4 (identified by credible set eQTL associations for rs200460259), 
which encodes airway mucins (Copin et al., 2000) is associated with 
severity of lung disease in cystic fibrosis (through functional annotation 
of another genome-wide signal) (Corvol et al., 2015) and risk of lung 
cancer (association with variants in the gene) (Zhang et al., 2013). We 
were however unable to determine whether the association signal for 
the genes described here were driven by the same causal variant as the 
interaction signal. 

We identified an interaction effect between SNP rs10841302 (a 
previously identified lung function signal associated with FEV1/FVC) 
and PM2.5 for lung function trait FEV1/FVC. Previous work has shown 
that the rs10841302 G-allele is associated with a deleterious effect on 
FEV1/FVC. We found that this deleterious effect increased in magnitude 
as the exposure to PM2.5 increased. A causative gene for the association 
between rs10841302 and lung function has not been determined. The 
SNP is near AEBP2 (AE Binding Protein 2), a transcriptional repressor 
with a possible contribution to histone methylation and the G allele is 
associated with increased expression of both RP11-405A12.2 (in 
pancreas and subcutaneous adipose tissues) and RP11-664H17.1 (in 
pancreas and tibial nerve tissues) in GTEx (GTEx Consortium, 2013). 
There was no evidence of an interaction between air pollution measures 
and a combined effect from all previously identified lung function sig
nals represented by a genetic risk score. 

A particular strength of this study is the discovery sample size 
available for the interaction analysis, despite resulting in relatively few 
findings. This is likely indicative of the fact that several environmental 
and other exposures are at interplay across an individual’s life course, 
and these are not addressed in our analysis. Moreover, interactions are 
challenging to identify due to the requirement of much larger sample 
sizes than GWAS efforts exploring the marginal effects of genetic vari
ants (Thomas, 2010). This strength is however unfortunately a 
contributor to its biggest limitation, which is identifying suitable inde
pendent datasets of sufficient sample size with lung function data in 
European ancestry populations to replicate discovery interaction sig
nals. We calculated that sample sizes to replicate three of our novel 
genome-wide interaction signals when considering the reported inter
action effect, main genetic effect and air pollution variable effect (cho
sen from each MAF frequency group of common, low frequency and 
rare), signals rs28666788 (MAF = 10%), rs74048016 (MAF = 2%) and 
rs192415220 (MAF = 0.6%) would be ~ 72 k, ~ 71 k and ~ 66 k 
respectively to detect the effect at 80% power. However, these sample 
sizes are indeed sensitive to any observed error in interaction effect 
estimates, such that when using lower and upper confidence interval 
effect estimates, sample sizes required could range from ~ 35 k to ~ 194 
k. 

The discovery of gene-air pollution interactions which affect lung 
function susceptibility is limited, likely due to the aforementioned dif
ficulty in identifying suitable sample sizes to provide adequate power for 
replication studies, which is a limitation of our present analysis. Previ
ous genome-wide interaction studies are either attributed to related 
phenotypes, such as asthma (Gref et al., 2017) or have focussed on 
candidate genes, such as those with a role in oxidative stress, where 
conclusions drawn are often inconsistent with respect to direction of 
effect or presence of interaction (Minelli et al., 2011; Romieu et al., 
2010). Previous studies of interactions between genes and smoking 
behaviour, the largest risk factor for poor lung function and COPD, have 
also been largely unsuccessful in identifying interaction signals. This has 
been of interest as not all smokers develop restrictive lung problems. 
Candidate gene-smoking interactions have been identified, however 
utilising small sample sizes with absence of replication (Sadeghnejad 
et al., 2007; Hunninghake et al., 2009; He et al., 2004) and none of the 
previously identified lung function signals produced an interaction with 
smoking behaviour (Shrine et al., 2019). Genome-wide interaction 
analysis efforts have also been considered for lung function (Hancock 
et al., 2012) however with little success, and although a recent study of 
gene-smoking interaction effects for COPD found a genome-wide 

significant interaction at 15q25.1 (Kim et al., 2020), this is likely driven 
by the strong association between this locus and smoking behaviour 
(Thorgeirsson et al., 2010; Liu et al., 2010; The Tobacco and Genetics 
Consortium, 2010). There has however been some evidence of interac
tion between smoking behaviour and genetic risk scores, when 
combining the effects of SNPs associated with lung function (Aschard 
et al., 2017; Shrine et al., 2019). To the best of our knowledge, no 
genome-wide significant smoking interaction signals for lung function 
have been identified, highlighting the impact of identifying novel 
genome-wide gene-air pollution interaction signals. 

Should the interaction effects be replicated in future analyses, the 
magnitude of effects observed here suggest potential for clinically 
relevant impacts on those with certain genotypes. Results (Table 1, 
Fig. 2) are expressed per 5 µg/m3 for air pollutants PM10 and PM2.5 and 
per 10 µg/m3 for NO2. For context, average annual concentrations of 
PM10 in 2018 were 14.7 µg/m3 in 2018 at urban background air quality 
monitoring sites (likely to represent where most of the UK population 
live) (GOV.UK, 2021). Corresponding concentrations for PM2.5 and NO2 
was 10.0 µg/m3 and 20.1 µg/m3 respectively. Taking genome-wide 
signal rs28666788 as an example, (with coded allele G frequency of 
0.096), effects on FEV1 per 5 µg/m3 increase in PM10 were statistically 
significant for all genotype groups. For those with zero, one and two 
copies of the effect allele, lung function effects of approximately − 40 ml, 
− 87.5 ml and − 150 ml were observed per 5 µg/m3 PM10 respectively 
(Fig. 2). Therefore, when subjected to the average concentrations of 
14.7 µg/m3 of PM10, this equates to respective reductions of approxi
mately 118 ml, 260 ml and 440 ml. Average declines in FEV1 per year 
could be up to 46 ml for individuals aged 30 onwards (Quanjer et al., 
2012), so these effects are approximately equivalent to nine years of 
normal loss of lung function for those with two copies of the coded allele 
(4 and 7 more than those with one and zero copies respectively). For 
other SNPs, such as rs2825255, with coded allele (T) frequency of 0.83, 
association between lung function and air pollutant is observed for 
certain genotype groups. Using the average NO2 measure, those with 
one and two copies of the effect allele could be subject to reductions in 
FEV1 of approximately 35 ml and 75 ml (approximately equivalent to 
0.75 and 1.5 years of normal lung function decline respectively), as 
opposed to those with zero copies, where there was no observed sta
tistically significant effect of air pollutant on FEV1 (confidence interval 
overlaps 0). 

There were approximately 40,000 individuals with clean lung 
function data with missing data for education and income status. We 
expect that those with higher SES and higher income are more likely to 
have complete data thus the data is not missing at random. We did not 
carry out imputation as it is difficult to know which might introduce 
more bias, imputation or exclusion and thus carried out a complete-case 
analysis. Further studies are required in this respect. Previous studies 
have reported modification of air pollution effects on lung function 
when considering SES (Doiron et al., 2017; Wheeler & Ben-Shlomo, 
2005; Forastiere et al., 2007; Doiron et al., 2019) possibly due to dif
ferences in housing conditions, indoor air quality, nutrition and occu
pation (Forastiere et al., 2007). Adjusting for SES and presenting 
interaction effects across educational and income groups did not pro
duce a notable modification of interaction effects in our analyses, sug
gesting that observed differences in the effect of air pollution across 
genotype groups are not mediated or confounded by socio-economic 
status. 

There are other limitations with this study. We only had air pollution 
data at baseline with some limitations in the availability and did not 
have follow-up data. An analysis of a German cohort of 601 elderly 
women (mainly non-smokers) with three follow-ups from 1985 to 2013 
suggested that changes in air pollution over time was associated with 
improvements in lung function, modified by genetic factors (Hüls et al., 
2019). In addition, there are limitations with the ESCAPE models (Eef
tens et al., 2012; Beelen et al., 2013). Exposure estimates are based on 
place of residence so will not capture variability in exposure related to 
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work and leisure activities outside the home, which may have led to 
exposure misclassification bias making it harder to detect effects. 
Furthermore, it must be noted that our analysis includes imputed genetic 
dosages alongside directly genotyped data and we only considered an 
additive genetic model for our analysis. Previous studies for certain 
antioxidant gene SNPs such as rs1695 in GSTP1 have also considered the 
suitability of alternative genetic models (Wang, et al., 2019; Song et al., 
2016). 

In conclusion, we have identified genetic variants whose effect on 
lung function is dependent on air pollution exposure levels. This could 
help identify high-risk genetic subgroups whose lung function could be 
more susceptible to the effects of outdoor air pollution. While this is the 
largest study of this type to date, we highlight the need for replication in 
independent datasets with recorded lung function, for which availability 
is currently limited. We hope that future replication and further bio
logical studies of gene function will help to establish the genes and 
biological pathways involved. 
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