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The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by the novel severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) accelerates the discovery of prophylactic and therapeutic drugs for persons infected with the virus. Drug repurposing
for the COVID-19 pandemic has received particular attention. Increasing clinical data suggest that antidepressant use in early-stage
subjects with COVID-19 might be associated with a reduced risk of intubation or death. Among the antidepressants, fluvoxamine is
the most attractive drug for mild to moderate subjects with COVID-19. In this article, we review the mechanisms of action (i.e.,
serotonin transporter, sigma-1 receptor, and acid sphingomyelinase) of fluvoxamine for COVID-19. Furthermore, we discuss a
possible link between maternal COVID-19 infection and a risk for neuropsychiatric disorders (i.e., autism spectrum disorder and

schizophrenia) in offspring.
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INTRODUCTION

The coronavirus disease 2019 (COVID-19) is an acute respiratory
disease caused by the novel RNA virus severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). Since the first report of
SARS-CoV-2-infected patients in Wuhan, China, in December 2019,
the number of persons with COVID-19 has markedly increased
worldwide. As we approach 2022, we are experiencing a big wave
of COVID-19 caused by SARS-CoV-2 variants (i.e., delta, lambda,
mu, and omiclone). Approximately 80% of SARS-CoV-2-infected
subjects is mild to moderate (stage 1) (Fig. 1). The remaining 20%
may convert to severe clinical stages in about 1 week (stage Il).
Subsequently, a part of stage Il (~5% of total) may convert to
stage lll, ultimately resulting in intubation or death (Fig. 1) [1].
Furthermore, SARS-CoV-2 infection seems to cause detrimental
effects in the central nervous system (CNS), resulting in psychiatric
and neurological symptoms [2-5]. A nationwide longitudinal study
in China showed a long-term mental health impact in persons
with COVID-19 [6].

With the current COVID-19 pandemic, drug repurposing is an
important approach to discover promptly prophylactic or therapeu-
tic drugs for persons with COVID-19 [7-10]. A number of candidates
have been investigated in SARS-CoV-2-infected patients since early
2020 [11]. Studies using in vitro or in silico assays discovered a
number of candidates from approved inexpensive drugs. However,
most candidates have no beneficial effects in in vivo models [12]
or SARS-CoV-2-infected patients [13]. According to clinical trial
reports, some promising candidates, such as hydroxychloroquine,
lopinavir-ritonavir, and ivermectin, were ineffective in the treatment
of patients with COVID-19 [14-19].

Increasing clinical data suggest that the use of antidepressants,
such as selective serotonin reuptake inhibitor (SSRI) and serotonin-
norepinephrine reuptake inhibitor (SNRI), might be associated

with a reduced risk of clinical deterioration in SARS-CoV-2-infected
patients. In November 2020, Dr. Lenze et al. reported that the SSRI
fluvoxamine could prevent clinical deterioration in early-stage
COVID-19 outpatients [20]. Subsequently, Hoertel et al. reported
that the use of antidepressants, such as SSRIs and SNRIs, may be
associated with reduced risk of intubation or death in hospitalized
SARS-CoV-2-infected patients [21]. At present, the old SSRI
fluvoxamine may be new hope for the COVID-19 pandemic [22].

In this article, we review the mechanisms of action of
fluvoxamine and other antidepressants for COVID-19 and discuss
a possible link between maternal infection of SARS-CoV-2 and the
risk for neuropsychiatric disorders in offspring, since the number
of SARS-CoV-2-infected pregnant women has been increasing
worldwide.

THE USE OF ANTIDEPRESSANTS AND ANTIPSYCHOTICS IN
COVID-19 PATIENTS

Fluvoxamine

In November 2020, Dr. Lenze et al. reported that the SSRI
fluvoxamine could prevent clinical deterioration in adult out-
patients with COVID-19. In the study, clinical deterioration did
not occur in the fluvoxamine group (n = 80), but occurred in six
from the placebo group (n=72) [20]. This study’'s sample size
was small, hence, strongly encouraged further trials using a large
sample size.

In February 2021, Seftel and Boulware [23] reported a
prospective, non-randomized observational cohort study at the
Golden Gate Fields horse racing track in Berkeley, California.
Hospitalization incidence in the fluvoxamine-treated (n = 65) and
observation-alone (n=48) groups was 0 and 6, respectively.
Among the six patients of the observation-alone group, two were
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Fig. 1

The clinical course of COVID-19 and early intervention by fluvoxamine. The three escalating phases of COVID-19 progression, with

associated symptoms. Approximately 80% of SARS-CoV-2-infected subjects is mild to moderate (stage ). The remaining 20% may convert to
severe clinical stages in about 1 week (stage Il). Subsequently, the part of stage Il (~5% of total) may convert to stage lll, ultimately resulting in
intubation or death. Being a cheap antidepressant, fluvoxamine can be used in the early-stage of COVID-19. However, its use for COVID-19 was
not yet approved. ARDS acute respiratory distress syndrome, SIRS systemic inflammatory response syndrome. A slight modification with Fig. 1
in the reference [1]. Some materials of the figure have been designated using resources from www.irasutoya.com.

required to stay in the intensive care unit (ICU) with mechanical
ventilation, of which one died [23]. On April 23, 2021, fluvoxamine
was added to the US National Institutes of Health (NIH) COVID-19
Guidelines Panel, although evidence for fluvoxamine efficacy was
insufficient.

In October 2021, Reis et al. [24] reported a placebo-controlled,
randomized, adaptive, platform trial of fluvoxamine in unvacci-
nated and symptomatic SARS-CoV-2-infected Brazilian adult
patients. Patients enrolled in this trial have a known risk factor
for severe disease progression [24] and were randomly assigned
to either fluvoxamine (100 mg twice daily for 10 days) or a
placebo. The proportion of patients observed in an emergency
room for 6 h or hospitalized was lower for the fluvoxamine group
(n=741) compared to the placebo group (n =756) (relative risk
= 0.68, 95% Bayesian credible interval = 0.52-0.88) [24]. There was
one death in the fluvoxamine group and 12 in the placebo group.
There were no significant differences in the number of treatment-
emergent adverse events between the two groups [24]. This study
with a large sample size shows that the treatment with
fluvoxamine (100 mg twice daily for 10 days) among high-risk
outpatients with early-diagnosed COVID-19 could reduce the need
for extended emergency room observation or hospitalization. In
this TOGETHER study, other candidates, such as hydroxychlor-
oquine, lopinavir-ritonavir, metformin, and ivermectin, had no
beneficial effects for patients with COVID-19 [16, 24, 25]. A recent
open-label, prospective cohort study using ICU patients (n=51)
with COVID-19 showed that fluvoxamine (100 mg three times daily
for 15 days) significantly [hazard ratio (HR)=0.58, 95% Cl=
0.36-0.94, P=0.027] decreased the mortality compared to the
matched control group [26].

In November 2021, Oskotsky et al. [27] reported the results of
retrospective cohort study of COVID-19 patients treated with SSRIs
using electronic health records of 87 health care centers across the
US. This study included COVID-19 patients (n=470) receiving
fluoxetine only, COVID-19 patients (n = 481) receiving fluoxetine
or fluvoxamine, and COVID-19 patients (n = 2898) receiving other
SSRIs. Compared with matched untreated control COVID-19
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patients, relative risk of mortality was reduced among patients
treated with any SSRI (relative risk =0.92, 95% Cl=0.85-0.99,
adjusted P=0.03), fluoxetine (relative risk=0.72, 95% Cl=
0.54-0.97, adjusted P=0.03), and fluoxetine or fluvoxamine
(relative risk=0.74, 95% Cl=0.55-0.99, adjusted P=0.04). In
contrast, there was not significant (relative risk =0.92, 95% Cl =
0.84-1.00, adjusted P = 0.06) between SSRIs other than fluoxetine
or fluvoxamine and risk of death. Among SSRIs, fluoxetine and
fluvoxamine may be prophylactic SSRIs for COVID-19.

Collectively, fluvoxamine could likely be a prophylactic drug for
early-stage SARS-CoV-2-infected patients [7, 22]. However, further
multicenter randomized double-blind studies with a large sample
size are needed.

Other antidepressants
An observational multicenter retrospective cohort study in France
revealed a significant association between antidepressant use and
reduced risk of intubation or death (HR = 0.56, 95% Cl = 0.43-0.73, P
<0.001) in COVID-19 hospitalized patients [21]. There were
significant associations between the use of SSRIs (HR=0.51, 95%
C1=0.316-0.72, P<0.001) and non-SSRIs (HR=0.65 95% Cl=
0.45-0.93, P=0.018). Among SSRIs used in this study, the authors
showed the results of citalopram (n=21, HR=0.50, 95% Cl=
0.14-1.76, P=0.283), escitalopram (n =63, HR=0.46, 95% Cl=
0.27-0.79, P=0.005), fluoxetine (n=30, HR=0.26, 95%
Cl=0.09-0.75, P=0.013), paroxetine (n =63, HR=0.53, 95% Cl =
0.30-0.94, P=0.030), and sertraline (n=22, HR=0.75, 95% Cl=
0.29-1.95, P = 0.554). Only one subject treated with fluvoxamine was
included in this study since it was unpopular in France. Interestingly,
among the 577 patients admitted to the ICU, antidepressant use was
significantly associated with reduced risk of intubation or death.
In an Exploratory analysis, three SSRIs (escitalopram, fluoxetine, and
paroxetine) were significantly associated with reduced risk of
intubation or death [21].

Furthermore, in an observational study in Italy, hospitalized
COVID-19 patients (n=34) treated with antidepressants (i.e.,
sertraline, escitalopram, citalopram, paroxetine, venlafaxine, and
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Table 1.

Antidepressants Ki (nM) for sigma-1 receptor

Fluvoxamine (SSRI) 36° or 17.0°
Sertraline (SSRI) 57% or 31.6°
Fluoxetine (SSRI) 240° or 191.2°
Escitalopram (SSRI) 288.3°
Citalopram (SSRI) 2922 or 403.8°
Imipramine (TCA) 343°
Desipramine (TCA) 1,987°
Paroxetine (SSRI) 1,8932 or 2,041°
Duoxetine (SNRI) 3,533°
Venlafaxine (SNRI) >10,000°
Milnacipran (SNRI) >10,000°
Mirtazapine (NaSSA) >10,000°
Antipsychotics Ki (nM)
Haloperidol 4¢
Chlorpromazine 180°¢

A slight modification of the table of [7] and [92].

Affinity and pharmacology of the antidepressants and antipsychotics for sigma-1 receptor and action at ASM.

Action at sigma-1 receptor Functional inhibitor at ASM

Agonist Yes
Antagonist Yes
Agonist Yes
Agonist Yes
Agonist Yes
Agonist Yes
Yes
Yes
Yes
Yes
Yes
Action Functional inhibitor of ASM
Antagonist No
Antagonist Yes

SSRI selective serotonin reuptake inhibitor, SNRI serotonin noradrenaline reuptake inhibitor, TCA tricyclic antidepressant, NaSSA noradrenergic and specific

serotonergic antidepressant.
®Narita et al. [57].

PIshima et al. [63].

“Tam et al. [33].

duloxetine) before admission until discharge from the hospital
had a lower incidence of severe acute respiratory distress
syndrome (ARDS) than those (n =368) treated without antide-
pressant [28]. Interestingly, blood levels of interleukin-6 (IL-6) from
recovered patients of the antidepressant-treated group were
significantly lower than those of recovered patients of not-treated
group [28]. It suggests that modulation of IL-6 production by
antidepressant may play a role in the beneficial effects of the
antidepressant-treated group. These data strongly encourage
future randomized, double-blind trials using these SSRIs (or SNRIs)
for COVID-19.

In a recent systematic review and meta-analysis, any mental
disorder (i.e, psychotic, mood, and anxiety disorders) present in
COVID-19 patients was associated with an increased risk of mortality
(odds ratios =2.00, 95% Cl=1.58-2.54). Mortality was associated
with the use of antipsychotics (odds ratios=3.71, 95% Cl=
1.74-7.91), anxiolytics (odds ratios = 2.58, 95% Cl = 1.22-5.44), and
antidepressants (odds ratios =2.23, 95% Cl=1.06-4.71) [29]. In
contrast to antipsychotics and anxiolytics, mortality risk associated
with antidepressants was not increased after the adjustment for age,
sex, and other covariables. This study shows that antidepressant
exposure was not associated with COVID-19 mortality, whereas
antipsychotic and anxiolytic exposure was associated with COVID-19
mortality [29].

El-Battrawy et al. [30] reported a systematic analysis of
concomitant arterial hypertension in COVID-19 patients. The
mortality rate (29.6%) of patients with concomitant hypertension
(n=2850) was significantly higher than that (11.3%) of patients
without arterial hypertension (n = 2960), suggesting a risk factor
for mortality. By contrast, antidepressant use at admission (n=
746) might be a positive independent predictor of mortality (HR =
2.94, 95% Cl=1.60-5.43, P=0.001) [30], inconsistent with the
previous reports [21, 29]. The detailed information (i.e.,, SSRI or
SNRI) of the antidepressants used in this article was not disclosed.

Collectively, antidepressant use might seem to be associated
with reduced risk for a severe clinical course in COVID-19 patients.
Further randomized, double-blind study using a large sample size
is needed to identify specific antidepressants for COVID-19.

SPRINGER NATURE

Typical antipsychotic drugs: haloperidol and chlorpromazine
A multicenter observational study in France showed that
haloperidol use (n=39) was not associated (HR = 1.30, 95% Cl
=0.74-2.28, P=10.335) with the risk of intubation or death in
hospitalized COVID-19 adult patients (n =15,121) [31]. Further-
more, Hoertel et al. [32] reported an observational study of
chlorpromazine among COVID-19 hospitalized patients of (n=
14,340) [32]. The primary analysis showed no significant associa-
tion (HR =2.01, 95% Cl = 0.75-5.40, P = 0.163) between chlorpro-
mazine use (n =55) and mortality in hospitalized COVID-19 adult
patients. Collectively, these two reports suggest that the use of
antipsychotic drugs (haloperidol and chlorpromazine) might not
be associated with the reduced risk of intubation or death in
COVID-19 patients. As aforementioned, the use of antipsychotics
was associated with the mortality of COVID-19 patients [29].
Furthermore, the use of antipsychotic drugs could cause extra-
pyramidal side effects due to potent dopamine D, receptor
antagonism (Table 1) [7, 33]. It is, therefore, unlikely that the use of
antipsychotic drugs should be recommended for the treatment of
COVID-19 patients.

MECHANISMS OF ACTION OF FLUVOXAMINE AND OTHER
ANTIDEPRESSANTS

Inhibition of serotonin transporter

The primary action of all antidepressants, such as SSRIs and
SNRIs, is serotonin transporter inhibition in the brain, resulting in
increasing levels of serotonin in the synaptic cleft. The human
platelets have a high density of serotonin transporter [34-36].
Through serotonin transporter inhibition in the platelets by SSRIs
or SNRIs, these antidepressants could reduce platelet aggrega-
tion, contributing to their effects [37]. Preclinical and clinical
studies show that SSRIs or SNRIs have anti-inflammatory effects
in rodents and depressed patients [38-42]. Therefore, antide-
pressants can possibly have anti-inflammatory effects through
serotonin transporter inhibition (Fig. 2). It is also reported that
fluvoxamine attenuates inflammation on injured striatal neurons
by increasing anti-inflammatory cytokines while decreasing
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Fig.2 Proposed biological mechanisms of fluvoxamine in the treatment of COVID-19 patients. SARS-CoV-2 binds to ACE2 receptor on the
cells, resulting in acid sphingomyelinase (ASM) activation, converting sphingomyelin to ceramide. The ASM/ceramide system can facilitate
viral entry. Antidepressants, such as fluvoxamine, inhibit ASM and ceramide-enriched membrane domain formation, resulting in decreased
viral entry. Sigma-1 receptor plays a role in the SARS-CoV-2 replication. Through sigma-1 receptor chaperone activity, the sigma-1-receptor
agonist fluvoxamine may attenuate SARS-CoV-2 replication and SARS-CoV-2 replication-induced ER stress in cells, resulting in a blockade
against inflammatory events (i.e., cytokine storm). Moreover, fluvoxamine has anti-inflammatory effects by serotonin transporter inhibition in
the body. Thus, early intervention using fluvoxamine may block or delay clinical deterioration in COVID-19 patients. A slight modification with
Fig. 1 in the ref. [22]. Some materials of the figure have been designated using resources from Freepik.com.

pro-inflammatory cytokines in the brain of Parkinson’s disease
model [43]. Furthermore, fluvoxamine inhibits carrageenan-
induced inflammation in rat paw edema [44] and fluvoxamine
attenuated experimental autoimmune encephalomyelitis sever-
ity in a rat model of multiple sclerosis [45]. Collectively, it seems
that fluvoxamine has potent anti-inflammatory effects in vitro
and in vivo models.

The lung has a high expression of the serotonin transporter in
rodents and humans [46-48], suggesting that potent vasocon-
strictor serotonin bioavailability is predominantly regulated by the
serotonin transporter in the lung endothelium [49]. Therefore,
antidepressants, such as SSRIs and SNRIs, may influence COVID-19
patients’ lung function. However, further study is needed.

Although all antidepressants can block the body’s serotonin
transporter, they did not show similar beneficial effects for
COVID-19 patients. Therefore, it is unlikely that serotonin
transporter inhibition by fluvoxamine may play a major role in
its beneficial effects for COVID-19 patients. However, anti-
inflammatory effects of serotonin transporter inhibition may, in
part, play a role in its beneficial effects (Fig. 2). A recent
observational study showed that treatment with SSRIs such as
sertraline, paroxetine, fluvoxamine, and fluoxetine showed
antidepressant effects in patients (n = 60) with a post-COVID-
19 depression [50], suggesting the potential use of SSRIs in the
treatment of post-COVID-19 depression.

Sigma-1 receptor

Role of sigma-1 receptor in the replication of SARS-CoV-2. In 2013,
Friesland et al. [51] reported the endoplasmic reticulum (ER)
protein sigma-1 receptor discovery as a cellular factor, mediating
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the early steps of viral RNA replication. The sigma-1 receptor
expression is not rate-limiting for persistent hepatitis C virus (HCV)
RNA replication. However, it is rate-limiting for HCV RNA
replication without impairing primary translation [51]. Thus, the
sigma-1 receptor may be essential for virus replication at the early-
stage of virus infection [52].

A recent study using the SARS-CoV-2 human protein-protein
interaction map identified 332 high-confidence protein-protein
interactions between SARS-CoV-2 and human proteins [53]. A
number of compounds for sigma-1 and sigma-2 receptors were
identified as promising inhibitors for SARS-CoV-2 replication [53].
Subsequently, the same group revealed the sigma-1 receptor
(encoded by SIGMART) as a functional host dependency factor for
SARS-CoV-2. Knockout (KO) or SIGMART knockdown produced
robust reductions in SARS-CoV-2 replication, indicating the sigma-
1 receptor’'s key role in SARS-CoV-2 replication [54]. Sigma-1
receptor is known to be enriched in lipid rafts colocalized with
viral replicate proteins, such as non-structural protein 6 (NSP6).
Taken together, sigma-1 receptor might interfere with the early
steps of virus-induced host cell reprogramming [55]. Moreover,
through the chaperone activity, sigma-1 receptor agonists may
protect against mitochondrial damage and ER stress in response
to SARS-CoV-2 infection [56]. Therefore, sigma-1 receptor ligands
could likely be useful for an early intervention for COVID-19
patients [55, 56]. However, which pharmacological activity (i.e.,
agonist or antagonist) of sigma-1 receptor ligands is responsible
for the SARS-CoV-2 replication activity remains uncertain [7].

Sigma-1 receptor and antidepressants. In 1996, our group
reported the binding affinity of SSRIs for the sigma-1 receptor

SPRINGER NATURE
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(Table 1) [57]. Some SSRIs, such as fluvoxamine, sertraline,
fluoxetine, and citalopram, have a high to moderate affinity for
sigma-1 receptors in the rat brain (Table 1). In contrast, the SSRI
paroxetine, tricyclic antidepressants (imipramine and desipra-
mine), SNRIs (duloxetine, venlafaxine, and milnacipran), and
mirtazapine were very weak for the sigma-1 receptor (Table 1).
This study suggests that the sigma-1 receptor may play a role in
the mechanisms of action of some SSRIs, such as fluvoxamine,
with high affinity. The sigma-1 receptor cloned by Hanner et al.
[58] shared homology with fungal proteins involved in sterol
synthesis. Subsequently, Hayashi and Su [59] reported that it could
function as a novel ER molecular chaperone, regulating a variety
of cellular functions. Sigma-1 receptor agonists (i.e., fluvoxamine
and fluoxetine) promote the sigma-1 receptor dissociation
from another ER chaperone, binding immunoglobulin protein
(BiP)/GRP78 (glucose-regulated protein 78), resulting in sigma-1
receptor chaperone activity in the cells. In contrast, sigma-1
receptor antagonists (i.e, haloperidol, NE-100) reinforce the
association, blocking the action of sigma-1-receptor agonists
[59, 60]. Thus, sigma-1 receptor agonists can produce chaperone
activity, resulting in the protection against ER stress associated
with a number of diseases.

Subsequent studies suggest that fluvoxamine is a potent
agonist for sigma-1 receptor. In the assay, fluvoxamine, fluoxetine,
and escitalopram significantly potentiated nerve growth factor
(NGF)-induced neurite outgrowth in PC12 cells, and these SSRIs’
effects were antagonized by selective sigma-1 receptor antagonist
NE-100 (Table 1) [61-63]. Moreover, the effects of fluvoxamine and
fluoxetine on NGF-induced potentiation of neurite outgrowth
were antagonized by sertraline, suggesting that sertraline may be
a sigma-1 receptor antagonist (Table 1) [63]. A positron emission
tomography using [''CISA4503 study showed that fluvoxamine
binds to the sigma-1 receptor in the intact human brain at
therapeutic doses [64]. Collectively, fluvoxamine is a likely unique
SSRI with potent sigma-1 receptor agonism [65-68].

In 2019, Rosen et al. [69] demonstrated sigma-1 receptor’s
essential role in inflammation and sepsis mouse models. The
mortality (62%) of sigma-1 receptor KO mice post-injection of
lipopolysaccharide (LPS: 5 mg/kg) was significantly higher than
that (9%) of wild-type mice. Furthermore, serum levels of pro-
inflammatory cytokines [i.e., IL-6, tumor necrosis factor-a (TNF-
a)] in KO mice after LPS (5 mg/kg) injection were significantly
higher than those of wild-type mice [69]. The data suggest that
sigma-1 receptor plays a key role in systemic inflammation and
cytokine production. Interestingly, treatment with fluvoxamine
could protect against LPS (6 mg/kg)-induced lethal septic shock
[69]. Collectively, it is likely that the potent sigma-1 receptor
agonist fluvoxamine might ameliorate ER stress-associated
inflammatory events (i.e., cytokine storm) due to SARS-CoV-2
replication (Fig. 2) [7, 22].

As mentioned above, haloperidol or sertraline use may not be
associated with the risk of intubation or death in COVID-19
hospitalized adult patients, although the sample size is too small
[21, 31]. Since haloperidol and sertraline are sigma-1 receptor
antagonists (Table 1), sigma-1 receptor antagonists seem to not
have beneficial effects in COVID-19 patients. However, further
study is needed.

Given the key role of the chaperone activity by sigma-1
receptor agonist in SARS-CoV-2 replication, it is possible that the
SSRIs (i.e., fluvoxamine, fluoxetine, escitalopram) with sigma-1
receptor agonisms could be COVID-19 prophylactic drugs.
Current data of fluoxetine and escitalopram for COVID-19 are
from an observational study in France [21].

Interaction of steroids with sigma-1 receptor. Steroids are synthe-
sized from cholesterol in the CNS and peripheral nervous system.
Pregnenolone (PREG) synthesized from cholesterol is converted
into 17a-hydroxypregnenolone and then dehydroepiandrosterone

SPRINGER NATURE

(DHEA). Both PREG and DHEA are found, in part, as sulfate esters
(PREG-S and DHEA-S). DHEA is metabolized to testosterone, the key
male sex hormone, and PREG is converted into progesterone [70].
DEHA, the most abundant endogenous steroid, is a sigma-1 receptor
agonist with moderate affinity, whereas progesterone and testos-
terone are sigma-1 receptor antagonists.

It is well known that illness severity in male COVID-19 patients is
consistently higher than that of women [71, 72]. There are sex-
specific mechanisms, including hormone-related expression of
genes encoding for SARS-CoV-2 entry receptors (i.e, angiotensin-
converting enzyme 2 (ACE2) receptor) and immune responses to
SARS-CoV-2 [73]. Being known to regulate the immune system, sex
steroids, such as testosterone, estradiol, and progesterone, may play
a role in gender differences in clinical courses of SARS-CoV-2-
infected people.

A case-controlled study in ltaly showed that lower testosterone
levels in male COVID-19 patients (n = 286) were associated with a
higher risk of ICU admission and death outcomes [74]. Subsequently,
a single-center cohort study showed that lower testosterone levels
during hospitalization were associated with increased disease
severity and inflammation in men with severe COVID-19 (n = 66)
[75]. In this study, testosterone levels were inversely associated with
levels of IL-6, C-reactive protein (CRP), interleukin 1 receptor
antagonist, hepatocyte growth factor, and interferon y-inducible
protein 10. In contrast, estradiol and insulin-like growth factor 1 (IGF-
1) were not associated with the severity in men with COVID-19.
There were no changes in testosterone, estradiol, and IGF-1 in
women with and without severe COVID-19. Furthermore, male
COVID-19 patients with a severe course of infection had lower serum
testosterone levels [75], which were also associated with elevated
CRP and IL-6, lower cholesterol levels, and increased morbidity and
mortality [75]. Collectively, lower testosterone levels in men with
COVID-19 are linked to more advanced immune activation,
increasing the risk for ICU admission or death. The underlying
mechanisms for the association between low testosterone and
severe clinical course in male COVID-19 patients remain unknown.
Although testosterone is an antagonist with moderate affinity for
the sigma-1 receptor, whether sigma-1 receptor plays a role in the
action of testosterone for COVID-19 remains unclear.

Progesterone’s anti-inflammatory actions are well recognized. It
has various alleviating effects, from SARS-CoV-2 entry to recovery:
reversing hypoxia, stabilizing blood pressure, controlling thrombosis,
balancing electrolytes, reducing the viral load, immune response
regulation, damage repair, and debris clearance among others
[76, 77]. Hence, progesterone use for COVID-19 patients is
recommended [77]. A pilot randomized open-label controlled study
showed beneficial effects of progesterone (100 mg twice daily for up
to 5 days) in moderate to severe COVID-19 hospitalized male
patients [78]. Although progesterone is an antagonist with a high
affinity for the sigma-1 receptor, whether sigma-1 receptor plays a
role in the action of progesterone for COVID-19 remains unclear.

DHEA (or DHEA-S), a testosterone precursor, is a sigma-1 receptor
agonist [62, 79]. PREG (or PREG-S), a progesterone precursor, is also a
weak agonist for sigma-1 receptor. Therefore, it is of interest to
measure blood levels of these steroids in COVID-19 patients.

Acid sphingomyelinase (ASM)

The acid sphingomyelinase (ASM) and ceramide play key roles in
bacterial and viral infections. ASM is a glycoprotein that functions
as a lysosomal hydrolase, catalyzing sphingomyelin degradation
to phosphorylcholine and ceramide (Fig. 2) [80-82]. Ceramide is
also known to facilitate viral entry despite sphingosine’s blockage.
Thus, ASM is essential for ceramide generation. Its functional
inhibition can reduce virus entry into the epithelial cells. SARS-
CoV-2 activates the ASM/ceramide system, resulting in the
formation of ceramide-enriched membrane domains that serve
viral entry and infection of clustering ACE2, the cellular receptor of
SARS-CoV-2 [83].
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Fig. 3 The risk for neuropsychiatric disorders in offspring after maternal COVID-19 infection. Maternal infection by SARS-CoV-2 causes
inflammatory events in pregnant women, resulting in higher levels of inflammatory biomarkers (i.e., CRP, IL-6, and TNF-a) in the blood and
tissues. Given the role of maternal immune activation in the risk of neuropsychiatric disorders, such as ASD and schizophrenia in offspring, a
follow-up study of COVID-19-infected pregnant women and their children is needed. Furthermore, early intervention using nutrition with anti-
inflammatory actions may be needed to block the onset of neuropsychiatric disorders. A slight modification with Fig. 1 in the ref. [113]. Some
materials of the figure have been designated using resources from Freepik.com and www.irasutoya.com.

Many antidepressants, such as fluoxetine, sertraline, parox-
etine, and amitriptyline, are reported to inhibit ASM
activity, suggesting a possible role of ASM in the effects of
antidepressants [84-86]. Antidepressants (i.e., amitriptyline,
imipramine, fluoxetine, sertraline, and escitalopram) with
ASM inhibition prevented the infection of cultured cells or
freshly isolated human nasal epithelial cells with SARS-CoV-2
(Table 1) [87, 88]. Fluvoxamine is also known to be an inhibitor
of ASM [89].

A recent observational multicenter study (n=2846) showed
association (HR=0.71, 95% Cl =0.58-0.87, P<0.01) between the
use of functional inhibitors of ASM and reduced risk of intubation
or death among severe COVID-19 hospitalized patients (n =277)
[90]. Among the antidepressants, escitalopram use was signifi-
cantly associated with a reduced risk of severe clinical stage [90].
However, other antidepressants, including amitriptyline, clomipra-
mine, duloxetine, fluoxetine, paroxetine, and sertraline (Table 1),
did not reach statistical significance, possibly due to restricted
statistical power [90]. As mentioned above, fluvoxamine was not
included.

The typical antipsychotic drug chlorpromazine is an ASM
inhibitor (Table 1), and chlorpromazine blocked SARS-CoV-2
replication in human cells [91]. Hoertel et al. [32] reported an
observational study of typical antipsychotic drug chlorpromazine
in COVID-19 hospitalized patients (n = 14,340) [32]. In the primary
analysis, there was no significant association (HR =2.01, 95% Cl =
0.75-5.40, P=10.163) between chlorpromazine use (n=55) and
mortality in hospitalized COVID-19 adult patients. Since chlorpro-
mazine is an ASM functional inhibitor [32], ASM inhibition unlikely
plays a major role in the protective effects for the risk of death in
COVID-19 patients. Nonetheless, further randomized, double-blind
study using a large sample size is needed.
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Considering the role of sigma-1 receptor and ASM in biological
actions of SARS-CoV-2 in cells (Fig. 2) [92], escitalopram may be a
prophylactic or therapeutic drug for SARS-CoV-2-infected patients.
However, a further clinical study using a large sample size is
needed.

Other mechanisms

Melatonin. Melatonin is naturally synthesized in the pineal gland
and immune cells from the amino acid tryptophan. It may be a
potential drug for COVID-19, since it has anti-inflammatory,
immunomodulatory, and antioxidant mechanisms [93, 94]. It is
proposed that increased melatonin levels by cytochrome P450
enzyme CYP1A2 inhibition by fluvoxamine may play a role in the
anti-inflammatory effects of fluvoxamine [37, 95].

Phospholipidosis. The inhibition of phospholipid production is
suggested to be associated with the inhibition of coronavirus
replication [96]. Among the many candidates investigated, sertra-
line and chlorpromazine were examples of high phospholipidosis-
inducing drugs for SARS-CoV-2 in vitro [12]. Unfortunately, all
candidates, including sertraline, were not efficacious in in vivo
model. However, the only FDA-approved remdesivir showed
beneficial effects in the same model. These findings strongly
suggest that candidates discovered in in vitro assay do not
translate in vivo. In the observational studies in France, sertraline
or haloperidol use was not associated with reduced risk of
intubation or death [21, 31]. Collectively, it is unlikely that
phospholipid production-inhibiting compounds may be potential
prophylactic or therapeutic drugs for COVID-19.

Lysosomal trafficking. Other mechanisms include reduction in
decreased mast cell degranulation and modulation with lysosomal
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viral trafficking [37]. In a recent study, a sub-therapeutic
concentration (80 nM) of fluvoxamine results in a significant
rearrangement of membrane trafficking in a human cell line,
enhancing endocytic uptake of SARS-CoV-2 spike proteins [97].

In a new study, antidepressants (i.e., fluvoxamine, fluoxetine,
citalopram, paroxetine, venlafaxine, reboxetine, clomipramine, and
imipramine) had antiviral effects in SARS-CoV-2-infected cells [98].
However, the precise mechanisms underlying their antiviral effects
remain unknown.

PREGNANT WOMEN

Pregnant women infected with SARS-CoV-2 and mental health
in offspring

Epidemiological studies suggest that maternal immune activation
(MIA), such as maternal infection, might be associated with the risk
for neuropsychiatric disorders, such as autism spectrum disorder
(ASD) and schizophrenia in offspring [99-101]. For example, a
population-based birth cohort study (born in 1959-1966) showed
that the risk of schizophrenia was increased sevenfold for
influenza exposure during the first trimester, but not the second
or third trimester [102]. In a study using all children born in
Denmark in 1980-2005, hospital admission due to maternal viral
and maternal bacterial infections in the first and second
trimesters, respectively, were associated with the onset of ASD
in the offspring [103]. Collectively, maternal infection during the
first trimester is possibly a risk factor for ASD and schizophrenia in
offspring.

During the COVID-19 pandemic, the number of SARS-CoV-2-
infected pregnant women has been increasing worldwide. There
are several reports showing higher levels of inflammatory
biomarkers such as CRP in pregnant women with COVID-19
[104-106], suggesting MIA in pregnant women with COVID-19.
Considering the risk for maternal infection on neuropsychiatric
disorders in offspring, offspring follow-up after maternal infection
by SARS-CoV-2 is important (Fig. 3). It is of great interest to
compare the incidence of neuropsychiatric disorders in offspring
of pregnant women with or without COVID-19.

It is shown that pregnant and recently pregnant women are at
an increased risk for severe clinical course from COVID-19 than
nonpregnant women [107, 108]. In the multinational cohort study
of pregnant women (n=2130) in 18 countries, women with
COVID-19 were at higher risk for preeclampsia/eclampsia [relative
risk (RR) = 1.76; 95% Cl = 1.27-2.43], severe infections (RR = 3.38,
95% Cl=1.63-7.01), ICU admission (RR=5.04, 95% Cl=
3.13-8.10), maternal mortality (RR=223, 95% Cl=2.88-172),
preterm (RR=1.59, 95% Cl=1.30-1.94) and medically indicated
preterm births (RR=1.97, 95% Cl=1.56-2.51), severe neonatal
morbidity index (RR=2.66, 95% Cl=1.69-4.18), and severe
perinatal morbidity and mortality index (RR=2.14, 95% Cl=
1.66-2.75) [108]. More than one half of pregnant women with
COVID-19 are asymptomatic or mild. However, a part of them is
converted to severe stages. Therefore, vaccination for SARS-CoV-2
in pregnant women is important to prevent clinical deterioration
post-infection. Although the safety of the mRNA COVID-19 vaccine
in pregnant women was reported [109], maternal vaccination
effects on offspring remain unclear. Therefore, following up
their children postdelivery from mothers with COVID-19 is
important (Fig. 3).

Preclinical and clinical studies suggest that nutritional interven-
tion with anti-inflammatory compounds (i.e, sulforaphane,
omega-3 polyunsaturated fatty acids, choline, and vitamin D)
may prevent the onset of neuropsychiatric disorders in offspring
after MIA [110-116]. Collectively, we suggest that nutritional
intervention may be a useful approach for the prevention of
neuropsychiatric disorders in offspring after maternal SARS-CoV-2
infection (Fig. 3) [113].
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The use of antidepressants in pregnant women with COVID-19
Increasing evidence suggests that the use of antidepressants
during pregnancy might be associated with the risk of ASD in
offspring [117-119]. Conversely, in a recent systematic umbrella
review, maternal use of antidepressants appears to be safe for
psychiatric disorder treatment [120], although further study is
needed. A recent meta-analysis showed that neither psychiatric
control or discordant sibling designs supported the association
between prenatal antidepressant exposure and ASD [121].

A recent meta-analysis of pregnant women during the COVID-
19 pandemic showed high prevalence of depression and anxiety
in pregnant women [122]. According to the NIH COVID-19
Treatment Guideline, fluvoxamine is not thought to increase the
risk of congenital abnormalities. However, data on fluvoxamine
use during pregnancy are limited. The risk of fluvoxamine use
should be balanced with potential benefit. If pregnant women
with COVID-19 use antidepressants as a treatment for their mood
disorders or prophylactic treatment for the clinical deterioration of
COVID-19, a mental health follow-up for the offspring is also
important.

CONCLUSION

As we discussed in this article, the mechanisms of action of
fluvoxamine for COVID-19 are complex. Given the roles of sigma-1
receptor in the early-stage of virus replication and ASM in virus
entry, fluvoxamine would be a potential prophylactic drug,
reducing clinical deterioration in COVID-19 patients. Importantly,
it should be taken in persons with COVID-19 as quickly as possible
after SARS-CoV-2 infection confirmation.

From the limited clinical data, fluvoxamine may be the most
attractive candidate for early-stage COVID-19 patients. However,
further randomized, multicenter, double-blind study using a large
sample size is needed. Fluvoxamine has favorable safety profiles,
widespread availability, and is very low cost administered orally
and used for children and adolescents [22]. If fluvoxamine is used
in the treatment of pregnant women with COVID-19, follow-up for
the offspring is important. Several SARS-CoV-2-neutralizing mono-
clonal antibodies for mild to moderate symptoms in high-risk
COVID-19 patients were approved [123]. Recently, Merck Sharp and
Dohme reported that the novel oral antiviral drug molnupiravir
reduced the risk of admission to hospital or death by around 50%
in non-hospitalized adults [124]. It is possible that a combination of
fluvoxamine with neutralizing monoclonal antibodies or molnupir-
avir may be more effective [125], although further study is needed.
Finally, a cheap, widely available fluvoxamine would be a “game-
changer” for people with COVID-19.
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