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Abstract

As a natural environment for human-microbiota interactions, healthy mucus houses a remarkably 

stable and diverse microbial community. Maintaining this microbiota is essential to human health, 

both to support the commensal bacteria that perform a wide array of beneficial functions and to 

prevent the outgrowth of pathogens. However, how the host selects and maintains a specialized 

microbiota remains largely unknown. In this viewpoint, we propose several strategies by which 

mucus may regulate the composition and function of the human microbiota and discuss how 

compromised mucus barriers in disease can give rise to microbial dysbiosis.
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Introduction

The human body is estimated to host 38 trillion bacterial cells [1] in large and diverse 

microbial communities on external surfaces covered by skin and on internal surfaces 

lined with mucus. Although microbes in these complex communities encounter numerous 

potential competitors for nutrients and space, a healthy microbiota remains relatively stable 

[2,3] and diverse [4] (Fig. 1A). Commensal microbes promote human health in a variety 

of ways, including by resisting invasion by potential pathogens [5], metabolizing otherwise 

inaccessible carbohydrates [6], synthesizing vitamins [6], and priming the adaptive immune 

system [7]. On the other hand, shifts in microbiota composition and function cause an 

imbalance—dysbiosis—that is implicated in a wide range of inflammatory, cardiovascular, 

and autoimmune diseases [8–12] (Fig. 1B). It is therefore imperative that the host effectively 

manages its microbial inhabitants, but how the body selects and maintains complex 

microbial communities is not fully understood.
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The majority of the human microbiota resides in the mucus of the digestive tract, but mucus 

also harbors distinct microbial communities along the oral cavity and the respiratory and 

urogenital tracts. Mucus is a complex viscoelastic matrix containing water, gel-forming 

mucin glycoproteins, lipids, and many proteins, including antimicrobial immune factors 

[13]. Critical to the structural and biological activity of mucus are mucins, extraordinarily 

large glycoproteins (>2 MDa) consisting of approximately 50–80% carbohydrate by mass 

[13] (Fig. 2). The mucus barrier is dynamic, as mucins are constantly being synthesized, 

secreted, post-translationally modified, degraded, and cleared. The mucus gel varies in 

thickness, viscoelasticity, and composition to perform various protective functions across 

the body that is essential for health. For example, dysfunctional mucus barriers play 

major roles in ailments including cystic fibrosis (CF) [14], inflammatory bowel disease 

[15], Sjogren’s syndrome [16], and preterm delivery [17], which are also associated with 

microbial dysbiosis, underscoring the integral role of mucus in regulating the microbiota.

Considered the first line of defense against infection, the host employs mucus in several 

ways to protect the inner epithelia of the body from invading microbes. For example, mucus 

traps or aggregates bacteria, enabling their clearance from the body [18,19]; this function is 

critical in delicate tissues such as the lungs and oral cavity. Mucus also acts as a physical 

barrier between bacteria and the epithelial surface, as exemplified by the dense inner layer 

of mucus that lines the colon and is generally impenetrable to bacteria. While important, 

these classical models of mucus’ protective roles are incomplete, as they fail to explain 

how mucus accommodates trillions of commensal microbes and enables the coexistence of 

diverse community members.

To close this gap, we hypothesize that mucus is a bioactive environment that not only 

excludes intruders, but also selects for and stabilizes a healthy microbiota. Here, we 

consider three strategies by which mucus may organize microbiota: (1) by providing a rich 

nutrient source to select and retain specific microbes, (2) by spatially dispersing microbial 

communities, and (3) by providing a source of signals that can directly impact microbial 

gene expression and behavior. The focus of this Perspective is not the role of mucus 

as a physical barrier, which has been more thoroughly studied and evaluated elsewhere 

[18,20,21]. Instead, we highlight several mechanisms by which mucus may actively regulate 

the microbiota.

A feast for all: mucin glycoproteins support a metabolically diverse 

microbial community

Mucus provides nutrition for mucus-dwelling microbes and may contribute to the selection 

of various commensal microbes that make up our microbiota (Fig. 3A). This nutritive role 

largely stems from mucin glycoproteins, which are the major structural and functional units 

of the mucus barrier.

Several commensal species are known to degrade mucins [22–25]. For example, Bacteroides 
possess an extensive set of carbohydrate-utilization genes and have been shown to degrade 

mucins in vitro [24]. In turn, Bacteroides benefit the host by providing metabolic products 

that are readsorbed through the large intestine [26], which may modulate the host immune 
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system to more effectively manage inflammation [27]. Further, characterization of a model 

microbiota of 177 reference genomes present in the human gut revealed that bacteria may 

harbor > 9000 carbohydrate-degrading enzymes, although significant functional redundancy 

is expected [28]. For context, the human genome contains coding sequences for at most 

17 enzymes to digest glycans [28]. This complex set of mucin glycans may enable the 

host to support the growth of commensal microbes with different metabolic capabilities; in 

contrast, if only a few nutrients were provided by the host, aggressive microbial competition 

and eventual outgrowth could ensue. Host mucins may also buffer the microbial metabolic 

landscape against large variations in host diet.

Cooperation and cross-feeding between microbial strains are also important in a 

heterogeneous environment. Mucins present hundreds of unique glycan structures that 

require the action of linkage-specific glycosidases to be effectively broken down and 

utilized, which could require cooperation between strains (Fig. 3A). Different bacterial 

species often exhibit specialized functions, and their interactions can lead to biologically 

useful community dynamics and structures. Although the challenges of isolating natural 

mucin glycans [29] have limited experimental characterization of their bioactivity, there are 

several examples of how glycans in other contexts influence microbial community assembly, 

two of which we expand upon below.

A recent study found that polysaccharide composition can mediate community assembly of 

marine microbes specializing in distinct metabolic functions: Initial colonization on each 

substrate was achieved by specialized primary degraders, while successional dynamics were 

driven by metabolic cross-feeding interactions with a diverse group of broad-range taxa [30]. 

Extrapolating these principles of community assembly to the human microbiota suggests 

that mucin glycans may determine species composition by selecting for primary degraders 

and their associated broader communities. Ultimately, this strategy allows the host to bolster 

a beneficial and diverse microbiota; modulating mucin glycosylation levels and profiles 

could establish niche-specific communities.

Another example is found in human milk oligosaccharides (HMOs), which are thought to 

function as prebiotics, selectively cultivating a desirable gut microbiota [31]. HMOs present 

an analogous pool of hundreds of complex sugars which are similar in structure to mucin 

glycans and have fascinating bioactive properties. Because human infants lack the enzymatic 

capability to process HMOs [31], undigested oligosaccharides become the primary carbon 

source in the intestines [31]. As a result, bacterial strains involved in initial colonization 

of the gut must utilize HMOs. Accordingly, breastfed infants have higher proportions of 

Lactobacillus and Bifidobacterium [32], which are known to metabolize HMOs [33], than 

infants fed formula, which contains a lower abundance and diversity of oligosaccharides 

[34]. Similarly, early colonization of mucosal niches may be guided by a bacterial strain’s 

ability to forage mucin glycans, which include structures shared with HMOs as well as 

structures distinct from those in HMOs.

Do mucin glycans support microbial coexistence in ways other than as a source of nutrition? 

Recent work suggests that this is likely. Mucin glycans are not a preferred carbon source 

for many host commensals, including the well-studied Bacteroides thetaiotaomicron [35]. It 

Wang et al. Page 3

FEBS J. Author manuscript; available in PMC 2022 January 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



is now known that these commensals prefer to eat saccharides that are available through 

human consumption of food, as well as surface glycans on the sloughed-off surfaces 

of epithelial cells, and that they only turn to mucin glycans when these other carbon 

sources are depleted [36]. Therefore, while mucin glycans likely play an integral role in the 

initial establishment of diverse communities, their importance may decrease when dietary 

polysaccharides are abundant. Further, offering a wide array of nutrients does not uniquely 

support commensals—several bacterial pathogens have developed strategies to benefit from 

host glycan metabolism and to disrupt healthy microbial communities. For example, the 

opportunistic pathogen Pseudomonas aeruginosa can grow on short-chain fatty acids in the 

CF lung that are generated during the consumption of mucin glycans by host commensals 

[37]. Clostridium perfingens SM101, an opportunistic pathogen in the gut, has also been 

shown to grow on intestinal mucins [38]. Furthermore, a set of genes involved in mucus 

and sugar utilization was exclusively identified in a clade of Ruminococcus gnavus enriched 

in irritable bowel disease patients [39]. Since preventing the outgrowth of these potentially 

harmful bacteria is essential to maintaining a healthy microbiota, mucus environments likely 

contribute to the selection and maintenance of healthy microbes beyond serving as a food 

source.

I want my own space! How mucus spatially organizes bacterial populations

Another feature of mucus is its ability to spatially organize populations of microbes. 

Microbial ecologists have long postulated [40,41] that a variety of different bacteria can 

thrive when allowed to form individual niches protected from competition, and indeed, 

various theoretical and experimental models have demonstrated that heterogeneous spatial 

structure supports diverse bacterial populations [42,43]. The importance of spatial structure 

has been demonstrated in stabilizing in vitro bacterial communities [44], as well as 

maintaining diversity within different mucus layers of the gut [45]. Consequently, by 

providing a three-dimensional scaffold for colonization, mucus may play a pivotal role in 

shaping the microbiota.

Mucus networks of varying pore size and adhesiveness may mediate spatial organization 

of bacterial communities in a variety of ways (Fig. 3B). Bacterial adhesion to mucus 

has been shown to influence bacterial colonization [46,47], and in vitro mucin binding 

assays with commensals such as Bacteroides fragilis [48] and Lactobacillus fermentum [49] 

substantiate the hypothesis that adhesion to mucosal surfaces allows beneficial bacteria to 

protect the host from invasion by potential pathogens. This hypothesis has been further 

supported by simulations of bacterial communities in the host epithelium, which suggest that 

host modulation of bacterial adhesion can be an important positive selection strategy [50], 

as adherent cells better resist displacement by nonadherent cells that are otherwise more 

competitive. Bacteria that bind mucin directly can further shape the environment by acting 

as sites of attachment for other bacteria, as well as point sources and sinks for diffusible 

metabolites and other factors. For example, the complex community structure in dental 

plaque is thought to form through initial attachment of Streptococcus and Actinomyces 
to the salivary pellicle, followed by attachment by other species including Fusobacterium 
nucleatum, which physically binds early and late colonizers [51].
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In addition to binding directly to microbes, the spatial properties of mucus may also affect 

microbial group behaviors such as bacterial motility and aggregation [52]. For example, 

the heterogeneous glycan presentation of mucins may contribute to microbial movement, 

as glycans on mucins may act as chemoattractants to bacteria including P. aeruginosa [53] 

and Campylobacter jejuni [54]. Further, recent work has shown that mucins can prevent 

certain pathogens from aggregating and forming biofilms, and can also disperse cells from 

preformed aggregates and biofilms [55–58]. The inability of these pathogens to aggregate 

in mucus could affect microbial communication. For instance, cells in large aggregates have 

been reported to exhibit stronger quorum sensing activity than cells that are more uniformly 

distributed [59–61]. It is conceivable that this mucin-derived spatial separation could impact 

cell-cell communication among pathogens and perhaps even commensal species, although 

this hypothesis remains to be rigorously tested.

Mucins may also spatially distribute chemical signals that can influence the development of 

bacterial communities. The distribution of small molecules through mucus can be generally 

affected by bulk flow, as molecules are transported through advection [62]. This principle 

likely extends to microbially produced small molecules; for example, quorum sensing has 

been observed to change under different flow conditions, with a higher flow rate generally 

reducing quorum sensing [63–65]. In mucus, flow via mucociliary clearance is determined 

by coordinated ciliary activity and mucus viscosity [66]. Since mucins are the primary 

factor underlying mucus viscosity, alterations in mucin content can significantly impact 

flow [18,21]. These observations suggest that mucus may impact the advection of microbial 

signaling molecules and, consequently, the assembly of microbial communities.

Mucins could also affect the diffusion of small molecules through specific interactions. 

Selective transport of small molecules through mucus is a complex process influenced 

by electrostatic, hydrophobic, and specific binding interactions that together determine a 

particle’s adhesiveness to mucins [67]. Such interaction filtering may establish gradients in 

nutrients and other factors, which have been shown to shape the assembly of microbial 

communities [68]. Although there have yet to be systematic studies of the movement 

of many small molecules through mucus, mucin has empirically been shown to bind 

small-molecule drugs including polymyxin and fluoroquinolone antibiotics [69], protecting 

P. aeruginosa from killing by these antibiotics [70]. Oligopeptides have also exhibited 

modulated transport through mucus due to subtle differences in charge distribution [71], and 

mucins inhibit the diffusion of pyocyanin, a small molecule produced by P. aeruginosa [60]. 

As technical advances facilitate the measurement of small-molecule diffusion and binding 

to mucins, future studies may illuminate how mucins impact the distribution of diffusible 

molecules, thereby regulating microbial behavior.

Mucus can “talk” to microbes: Mucins present host-derived signals that 

can directly impact microbial gene expression and behavior

Thus far, we have discussed how mucin glycans can serve as food sources to support 

beneficial microbes, and we have highlighted how the spatial structure afforded by mucus 

can impact microbial communities. However, emerging evidence suggests that mucus can 
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contribute to microbial coexistence through a third mechanism: by providing a source of 

signals that can directly trigger changes in bacterial gene expression and phenotypes.

To date, the signaling potential of mucus has been primarily investigated in terms of its 

striking ability to attenuate virulence in a variety of pathogens. Despite the traditional view 

of mucus as a simple physical barrier, multiple studies from our laboratory suggest that 

mucins can directly suppress the virulence of potential pathogens by changing their identity 
from harmful pathogens to host-compatible commensals [55–58] (Fig. 3C). In turn, the 

virulence-attenuating properties of mucin may contribute to the coexistence of microbes in 

mucus environments.

The ability of mucins to suppress microbial virulence is remarkably broad, as various 

serotypes of mucins (MUC5AC, MUC5B, MUC2) in sites across the human body (mouth, 

lungs, gut) attenuate virulence in evolutionarily distant pathogens, including Gram-negative 

microbes like P. aeruginosa [58,72], Gram-positive bacteria like Streptococcus mutans 
[56], and fungal species like Candida albicans [57]. Notably, mucins suppress biofilm 

formation across all three of these species [56–58] and also promote the dispersal of 

pre-formed P. aeruginosa biofilms [58]. Further, mucins directly trigger changes in the 

expression of virulence genes. For example, RNA sequencing revealed that mucins globally 

downregulate virulence pathways in P. aeruginosa [72], including the type I, II, III, and VI 

secretion systems, quorum sensing, phenazine production, and iron acquisition. Similarly, 

incubation of C. albicans with mucin downregulated multiple virulence genes, including 

those involved in biofilm formation, proteinase secretion, and filamentation [73]. Mucin-

induced downregulation of virulence genes also prevents these pathogens from killing host 

cells and other microbes. For instance, P. aeruginosa and C. albicans were unable to kill 

human epithelial cells effectively in vitro in the presence of mucin [57,72], and P. aeruginosa 
was less virulent on an in vivo porcine burn wound model of infection when mucin was 

added [72]. Further, S. mutans was unable to outcompete the oral commensal Streptococcus 
sanguinis when incubated with mucin [74], while P. aeruginosa could not utilize its type 

VI secretion system (T6SS) to kill Escherichia coli or Burkholderia cepaciain the presence 

of mucin glycans [75]. As> 200 structures of mucin glycans have already been discovered 

[76], we propose that a “glycan code” differentially impacts virulence pathways in distinct 

pathogens (Fig. 3C).

By what mechanisms do mucin glycans serve as signaling molecules? Glycans can be 

directly sensed by receptors, such as the membrane boundhistidine kinases that are widely 

distributed across bacteria. For example, the RetS sensor kinase in P. aeruginosa has 

structural homology to other carbohydrate-binding proteins [77] and is considered a master 

regulator of virulence [78]. We have recently demonstrated that mucin glycans act as a 

signal for RetS [75], which triggers the downregulation of virulence traits associated with 

a chronic infection state, including theT6SS [75]. Another possibility is that mucin glycans 

may act through dedicated sugar sensing and utilization pathways by mimicking nutrient 

signals. To identify other receptors involved in sensing mucin glycans across species, we 

believe that in vivo screens with systematic knockouts of receptors in a particular microbe 

as well as in vitro screens to look for binding between purified receptor domains and 
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mucin glycans will yield valuable mechanistic insights. Many microbes also encode other 

sugar-binding proteins, such as adhesins, which could interact with mucin glycans.

Glycans may also signal in indirect ways. For instance, RNA sequencing of P. aeruginosa 
revealed that dozens of putative metabolic genes are differentially expressed in response to 

mucins and mucin glycans [72,75], suggesting that glycans may induce dramatic changes 

in the metabolic states of these microbes. A growing body of work suggests that changes 

in metabolic state are associated with the expression of virulence pathways [79]. A recent 

modeling study identified dozens of genes involved in both virulence-factor production and 

primary metabolism in P. aeruginosa [80], and fluctuations in central metabolic pathways 

such as the citric acid cycle can lead to changes in the activity of antimicrobial systems 

such as the T6SS [81–83]. Many of the annotated metabolic genes identified in the above 

RNA-seq experiments have not been characterized, but a deeper understanding of how 

mucin glycans alter the metabolic state of pathogens may yield novel insights into how these 

signals indirectly affect virulence-associated behaviors across microbial species.

Interestingly, the virulence-attenuating effects of mucin glycans are also evident with the 

aforementioned HMOs, a separate class of human-produced glycans that are the third most 

abundant solid in human breastmilk [84]. Although traditionally viewed as food sources 

for commensals, recent work suggests that HMOs also play important roles in protection 

against pathogens, which could in turn promote microbial coexistence. For example, the 

HMOs 2-fucosyllactose and 6’-sialyllactose block the adhesion of Gram-negative E. coli 
and Gram-positive Salmonella fyris to epithelial cell surfaces [85], a necessary step prior to 

invasion. It has also been reported that nonsialylated HMOs inhibit the growth of pathogenic 

Streptococcus species [86]. Although the exact mechanism of this bacteriostatic activity is 

unclear, transposon mutagenesis identified a putative glycosyltransferase that may play a 

role in the response to HMOs [86]. Further, incubation of C. albicans with HMOs delays the 

yeast-to-hyphae transition of this fungal pathogen [87], which is reminiscent of the virulence 

suppression effects of mucin [57].

Virulence suppression by HMOs can also be indirect. For example, various host commensals 

such as Bifidobacterium species can utilize HMOs as sole carbon sources [88]. Interestingly, 

it has been reported that incubation of pathogenic E. coli O157:H7 and Salmonella 
typhimurium with spent media taken from cultures of Bifidobacterium species in which 

HMOs were supplied as a carbon source led to the downregulation of various virulence 

genes [89]. This observation suggests that metabolic by-products of HMOs generated by 

host commensals may serve as virulence-suppressing signals, although the actual signals in 

spent media have not yet been identified at the molecular level.

Overall, a clearer picture is emerging in which mucins and their associated glycans serve 

as virulence-attenuating signals for various opportunistic pathogens. However, the effects 

of mucin on other residents of the mucus environment—such as the trillions of commensal 

microbes that reside in mucus, as well as host immune cells—have not been well-studied. 

Commensal microbes are generally regarded as ‘host-compatible’, but the process by which 

mucus is populated by commensals is not fully understood. Whether mucins accomplish this 

selection by serving as food sources, establishing spatial structure and/or by acting as signals 
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that directly impact commensal gene expression and physiology will be a fascinating area of 

future research. Similarly, it is currently unclear if and how mucin glycans alter the behavior 

of host immune cells. Intriguingly, immune cells encode various sugar-binding receptors, 

such as Siglecs [90,91], which raises the possibility that these host cells sense and respond 

to mucin glycans [92]. Ultimately, further investigation of how mucins and their associated 

glycans affect both commensals and host cells will provide further insights into how mucus 

manages the microbiota.

Compromised mucus gives rise to microbial dysbiosis

While healthy mucus houses a stable microbiota, various mucosal diseases including 

ulcerative colitis and cystic fibrosis are associated with microbial dysbiosis. In the 

gastrointestinal tract, degradation of mucus has been linked to the pathogenesis of 

inflammatory conditions [93,94]. Mucus which has undergone glycosidic and proteolytic 

degradation by enteric bacteria is less viscous [95] and more permeable to toxins and 

microbes [96] which can induce damage and inflammatory responses. This, in turn, may 

lead to the widespread killing of host commensals, which will decrease microbial diversity. 

Furthermore, mucin oligosaccharides in inflammatory bowel disease exhibit drastically 

shorter chain lengths, decreased sulfation, and increased sialylation [97]. Such modifications 

may weaken the ability of mucus to maintain microbial coexistence through the mechanisms 

discussed above, as glycans potentially play key roles in the nutrient presentation, structural 

arrangement, and virulence suppression functions of mucus.

At the other end of the spectrum, abnormally thick and viscous mucus is more susceptible 

to microbial infection than healthy mucus. CF is a genetic disorder in which the structure 

and function of the CF transmembrane conductance regulator protein are disrupted, leading 

to abnormally thick lung epithelial mucus [14]. In addition to the higher mucin content of 

CF mucus, inflammatory cell necrosis produces large quantities of extracellular polymers 

like DNA and F-actin [14,98,99], which likely alter mucus structure. This diseased mucus is 

more susceptible to colonization by various opportunistic pathogens such as P. aeruginosa, 

which can form dense bacterial communities in this niche that are resistant to both clearance 

by the immune system and to antibiotic treatment [100]. Changes to the mucus environment 

in CF may therefore influence biofilm-forming behavior, a key virulence determinant for 

many pathogens [101–103].

Importantly, colonization by P. aeruginosa is one of the largest sources of morbidity and 

mortality in CF patients [104], highlighting the clinical importance of clarifying the links 

between mucins and the microbiota of the lung. Thanks to several decades-spanning studies 

[105–107], we now know that both microbial diversity and lung function are highest in 

younger (<10 years of age) CF patients [108]. Strikingly, the increased prevalence over 

time of opportunistic pathogens including P. aeruginosa and Burkholderia correlates with 

decreased trends in both lung function and microbial diversity in the lung microbiota 

[108]. However, we still do not fully understand why the diseased CF lung allows certain 

pathogens to dominate, for example due to a malfunction in providing food for microbes, 

a change in the spatial structure of mucus or of the microbial community, a loss of virulence-

attenuating signals, or a combination of these factors. Further research is warranted to better 
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characterize the critical distinctions between healthy and diseased mucus environments, 

and to understand how these differences trigger changes in microbial communities and 

ultimately in host health.

Final perspectives and conclusions

Our understanding of mucus has dramatically evolved over the years. However, the current 

textbook description of mucus as a simple protective barrier is woefully incomplete. In 

this Perspective, we have highlighted three major roles that mucus plays in regulating 

the microbiota. First, heavily glycosylated mucins serve as food sources for diverse host 

commensals. Second, spatial structure provided by mucin gel networks helps microbes 

carve out specific niches. Third, mucins directly serve as virulence-attenuating signals to 

transition potential pathogens into a host-compatible state. Together, these three factors 

likely help select for and accommodate a diverse, yet specialized microbial community 

in our mucus environments, which is critical to human health. However, many questions 

remain. Is the ability to utilize mucin glycans widespread among bacteria, or exclusive to 

mucus-dwelling commensals? Are mucin gel networks able to impede the movement of 

microbial signaling molecules such as autoinducers? What are the actual signals in mucus 

environments that directly suppress the expression of virulence genes, and what are the 

receptors that sense them? Do mucin glycans alter microbial and/or host metabolism? How 

do mucins signal host cells, such as immune cells? What are the key differences between 

healthy and diseased mucus environments, such as the CF lung? We envision that answers to 

these critical questions and others will enable the development of therapeutics for diseases 

of the mucus environment, and that deeper understanding of the mechanisms that drive 

microbial coexistence in mucus environments will empower us to design novel treatments to 

promote mucosal and microbial health.
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Fig. 1. 
Overview schematic of microbial communities in healthy and diseased mucus. (A) Healthy 

mucus selects for and maintains a diverse, yet specific, microbial community. (B) Diseases 

with compromised mucus barriers are often associated with microbial dysbiosis.
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Fig. 2. 
Mucin glycoproteins are the primary structural component of mucus gels. Mucin monomers 

are densely grafted with diverse and complex glycans. Shown are representative glycan 

structures isolated from MUC5AC, as identified by mass spectrometry.
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Fig. 3. 
Proposed mechanisms of influence of mucins on microbial communities. A. Mucin glycans 

are a source of diverse and complex nutrients, which can metabolically shape the microbiota. 

Glycans may select for beneficial microbes which produce specific glycosidases, as well as 

facilitate cooperation across species which produce complementary degradative enzymes. B. 

Mucin networks may spatially organize bacterial communities in several ways, including by 

directly binding microbes, by altering group behaviors such as aggregation, or by impacting 

the transport of nutrients, host immune factors, and/or signaling molecules which may 

shape the assembly of microbial communities. C. Mucin glycans act through regulatory 

signaling pathways to attenuate virulent behavior. In the presence of mucins, potentially 

pathogenic microbes may sense and respond to mucin glycans, which enables their transition 

a host-compatible state within a healthy community. Without mucin regulation, aggressive 

microbes may overtake the community, forming a dysbiotic microbiota.
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