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Abstract
Introduction and Objective: The weight gained during 
pregnancy could determine the immediate and future 
health of the mother-child dyad. Excessive gestational 
weight gain (EGWG) due to abnormal adipose tissue (AT) ac-
cumulation is strongly associated with adverse perinatal 
outcomes as gestational diabetes, macrosomia, obesity, and 
hypertension further in life. Dysregulation of adipokine, AT 
dysfunction, and an imbalance in the prooxidant-antioxi-
dant systems are critical features in altered AT accumulation. 
This study was aimed to investigate the association between 
adipokines and oxidative stress markers in pregnant women 
and the influence of the GWG on this association. Methods: 
Maternal blood samples were obtained in the third trimester 

of pregnancy (n = 74) and serum adipokines (adiponectin, 
leptin, and resistin), oxidative damage markers: 8-oxo-2′-
deoxyguanosine (8-oxodG), lipohydroperoxides (LOOH), 
malondialdehyde (MDA), and carbonylated proteins (CP), 
and glucose a metabolic marker were measured. Results: 
Women with EGWG had low adiponectin levels than women 
with adequate weight gain (AWG) or insufficient weight gain 
(IWG). Multiple linear regression models revealed a positive 
association between adiponectin and 8-oxodG in women 
with AWG (B = 1.09, 95% CI: 164–222, p = 0.027) and IWG  
(B = 0.860, 95% CI: 0.199–1.52, p = 0.013) but not in women 
with EGWG. In women with EGWG, leptin was positively as-
sociated with LOOH (p = 0.018), MDA (p = 0.005), and CP  
(p = 0.010) oxidative markers. Conclusion: Our findings sug-
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gest that concurrent mechanisms regulate adipokine pro-
duction and oxidative stress in pregnant women and that 
this regulation is influenced by GWG, probably due to an ex-
cessive AT accumulation. © 2021 The Author(s).

Published by S. Karger AG, Basel

Introduction

Pregnancy involves deep anatomical, physiological, 
and biochemical adaptations that are important to pro-
vide proper fetal nutrition [1–3]. These maternal changes 
begin after conception and affect different organs, the im-
mune system, and diverse metabolic pathways [4]. Gesta-
tional weight gain (GWG) is a critical process to support 
adequate fetal growth and development and is defined as 
the amount of weight gained during pregnancy, which is 
composed by the fetus, placenta, uterus, amniotic fluid, 
and the increase in the maternal breast tissue, blood vol-
ume, and adipose tissue (AT) [5–7]. GWG varies greatly 
depending on factors such as prepregnancy weight and 
the body mass index (BMI) [8, 9].

An excessive GWG (EGWG) increases the risk of ma-
ternal and neonatal adverse outcomes such as preeclamp-
sia, gestational diabetes, preterm labor, and fetal macro-
somia [10–13]. In addition to increasing the immediate 
risk of gestational complications, it has been demonstrat-
ed that EGWG is associated with postpartum weight re-
tention, with short- and long-term metabolic conse-
quences for the mother [5–7]. The EGWG also generates 
an adverse intrauterine environment that affects fetal 
growth and is associated with increased rates of obesity 
and other cardiometabolic diseases in the offspring [7, 13, 
14], playing a key role in the metabolic programming of 
chronic diseases [15, 16]. EGWG may be a sign of higher 
AT accretion during pregnancy [6, 7, 13–16]. An exces-
sive fat mass gain appears to be playing a key role in the 
metabolic programming of chronic diseases [15, 16].

Excessive AT accumulation is characterized by dysreg-
ulation of adipokine release, including leptin, adiponec-
tin, and resistin; particularly, excess of visceral AT (VAT) 
appears to play a more significant pathogenic role in the 
development of chronic metabolic diseases in adults [17–
20]. On the other hand, excessive AT generates an imbal-
ance between the prooxidative – and antioxidative sys-
tems that usually results in a reactive oxygen species 
(ROS) increase [18, 21, 22]. While low ROS levels are es-
sential to maintain diverse physiological functions, exces-
sive ROS production alters different cellular components 
such as proteins, lipids, and DNA, generating oxidized 

biomolecules that function as biomarkers of oxidative 
damage. Elevation of malondialdehyde (MDA), carbon-
ylated proteins (CP), and oxidized base 8-oxo-2′-
deoxyguanosine (8-oxodG) as indicators of lipid peroxi-
dation, protein, and DNA oxidation, respectively carries 
deleterious effects on cells [18, 21–25].

Both adipokine dysregulation and oxidative stress 
damage are focal points in inflammation and metabolic 
dysfunction and have been related to pregnancy compli-
cations and fetal programming, turning them into poten-
tial biomarkers of adverse perinatal outcomes. In this 
context, we have previously demonstrated a close rela-
tionship between these metabolic markers with the pre-
gestational maternal weight status and maternal age [26].

Considering the above, we hypothesized that GWG 
might lead to alterations in adipokine levels and oxidative 
damage. Therefore, this research was aimed to evaluate 
the association between serum adipokines and oxidative 
stress markers in women in the third trimester of preg-
nancy and the influence of the GWG status on this asso-
ciation.

Methods

Research Design and Study Population
This cross-sectional study was performed at the Instituto Na-

cional de Perinatologia in Mexico City and is a secondary analysis 
from the OBESO (epigenetic and biochemical origin of obesity) 
perinatal cohort. The project was approved by the Institutional 
Review Board (protocol number: 3300-11402-01-575-17). Partici-
pation was voluntary, and all women who agreed to participate 
signed the informed consent form. The study was conducted ethi-
cally in accordance with the World Medical Association Declara-
tion of Helsinki.

For this analysis, we studied pregnant women in the third tri-
mester of pregnancy, recruited between January 2018 and January 
2019. Gestational age was calculated according to the fetal ultra-
sound performed in the first trimester of pregnancy. The sample 
was selected by convenience, according to the pregestational BMI 
(p-BMI [kg/m2]) (p-BMI = 18.5–24.9 as normal weight, p-BMI 
≥25 as overweight, and p-BMI ≥30 as obesity), following the WHO 
guidelines [27]. All women meet the following inclusion criteria: 
adult women and singleton pregnancy; exclusion criteria included: 
multiple pregnancy, comorbidities (diabetes mellitus, renal or he-
patic diseases, congenital malformations, autoimmune diseases, or 
uncontrolled thyroid disease), and taking any medication that may 
affect endocrine metabolism (insulin, metformin, and/or cortico-
steroids).

Anthropometric and Biochemical Parameters
Pregestational weight (kg) was self-reported, and height (cm) 

was measured with a stadiometer (SECA 220, Hamburg, Germa-
ny) by trained personnel. Pregestational weight and height were 
used to calculate p-BMI. GWG was calculated in the last clinical 
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visit at the third trimester and women were categorized according 
to IOM 2009 guidelines [28] as adequate weight gain (AWG), in-
sufficient weight gain (IWG), and excessive weight gain (EWG) for 
their specific gestational age.

Samples
Fasting maternal venous blood samples were drawn in Vacu-

tainer tubes (Becton-Dickinson, Franklin Lakes, NJ, USA) and 
centrifuged at 4°C for 15 min at 1,000 g. Serum samples were stored 
at −70°C until the assays were performed.

Biochemical Analysis
Fasting serum glucose concentrations were measured by enzy-

matic colorimetric methods using an automated analyzer (ISE 
Echo Lory 2000) and commercial kits (DiaSys Diagnostic Systems 
GmbH, Germany).

Adipokines
ELISA commercial kits to measure serum adiponectin 

(DY1065), leptin (DY398), and resistin (DY1359) (R&D Systems 
Inc., Minneapolis, MN, USA) were used according to the manu-
facturer’s instructions and read at 450 nm in a Synergy HT plate 
reader (BioTek, Winooski, VT, USA).

Oxidative Stress Markers
Serum 8-oxodG was measured to evaluate DNA oxidative 

damage using a commercial ELISA kit (4380-096-K) (TREVIGEN, 
Gaithersburg, MD, USA). Oxidative lipid damage was assessed by 
quantifying lipohydroperoxides (LOOH) [29] and MDA [30], as 

previously reported. Protein oxidative damage was evaluated by 
measuring the carbonyl group content [31].

Statistical Analysis
Descriptive statistics were used for data distribution and fre-

quencies, and one-way ANOVA with the minimum significant 
difference post hoc test was used to analyze differences by GWG 
categories (AWG, IWG, or EWG). Data were expressed as mean ± 
SEM, and p values <0.05 were considered statistically significant. 
Spearman correlations were performed to study the correlation 
between adipokines and oxidative damage markers. Multiple lin-
ear regression models were done to investigate associations be-
tween adipokines and oxidative damage markers. Models were 
stratified by GWG categories. Statistics were performed using 
SPSS software (version 22, SPSS Statistics/IBM Corp., Armonk, 
NY, USA).

Results

Seventy-four women in the third trimester of pregnan-
cy were studied. The mean age was 30.3 ± 0.96 years old, 
and the mean gestational age was 35.2 ± 0.37 weeks of 
gestation. Before pregnancy, 71.1% (n = 47) of women 
were overweight or had obesity. According to GWG, 
37.8% (n = 28) had IWG and 35.2% (n = 26) had EWG. 
Maternal anthropometric and metabolic parameters, ad-

Variable GWG status

insufficient 
(n = 28)

adequate 
(n = 20)

excessive 
(n = 26)

Age, years 30.2±1.61 31.1±1.73 29.8±1.69
p-BMI, kg/m2 27.3±1.22 27.6±1.26 28.8±1.18
p-BMI status, n (%)

Normal 12 (42.9) 9 (45.0) 6 (23.1)
Overweight or obese 16 (57.1) 11 (55.0) 20 (76.9)

GWG, kg 5.38±0.64 9.21±0.73a 14.8±0.68b, c

GA at sampling, weeks 35.0±0.62 34.6±0.77 35.6±0.56
Fasting glucose, mg/dL 82.0±2.36 84.6±3.72 83.2±2.62
Adiponectin, μg/mL 14.8±2.04 15.0±2.56 7.69±1.21b, c

Leptin, ng/mL 23.2±3.29 36.0±7.22 39.4±8.78
Resistin, ng/mL 20.2±1.76 21.1±2.83 19.9±2.15
LOOH, pmol I3/mg dry weight 28.4±1.97 25.1±1.63 28.8±2.53
MDA, pmol MDA/mg dry weight 156±14.9 136±15.9 156±14.6
CP, nmol CP/mg protein 12.3±0.78 12.3±0.93 12.3±0.84
8-oxodG, ng/mL 195±4.52 200±5.28 186±4.50

Values represent mean±SEM. One-way ANOVA with the minimum significant difference 
post hoc test. a p < 0.05 adequate versus insufficient. b p < 0.05 excessive versus adequate. 
c  p < 0.05 excessive versus insufficient. p-BMI, pregestational body mass index; GA, 
gestational age; LOOH, lipohydroperoxides; MDA, malondialdehyde; CP, carbonylated 
proteins; 8-oxodG, 8-oxo-2′-deoxyguanosine.

Table 1. Maternal characteristics, 
metabolic parameters, adipokine, and 
oxidative damage markers concentration 
according to the gestational weight gain 
(GWG) status



Adipokines, Oxidative Stress Markers, 
and Gestational Weight Gain Association

607Obes Facts 2021;14:604–612
DOI: 10.1159/000518639

ipokine levels, and oxidative damage markers according 
to GWG are summarized in Table 1. No differences were 
observed in maternal characteristics when stratified by 
GWG. Women with EWG had significantly lower con-
centrations of adiponectin than women with AWG (p = 
0.016) and IWG (p = 0.010), showing a trend toward 
higher leptin levels (p = 0.080) than IWG. Also, women 
with EWG showed a trend of lower levels of 8-oxodG (p 
= 0.059) than AWG women. There were no differences in 

resistin, LOOH, MDA, and CP concentrations between 
EWG and AWG or IWG.

Spearman correlation analysis between adipokines 
and oxidative damage markers revealed a positive signif-
icant correlation between adiponectin and 8-oxodG con-
centration (r = 0.401; p = 0.001) and inverse significant 
correlations with LOOH (r = −0.262; p = 0.027) and CP 
(r = −0.237; p = 0.046). Resistin was inversely correlated 
with LOOH (r = −0.303; p = 0.009) and MDA (r = −0.256; 

B 95% CI p value R2/(R2 adjusted)

AWG
Constant 32.3 21.5–43.1 <0.0001

0.147 (−0.13)
Adiponectin −0.169 −0.496 to 0.157 0.288
Leptin −0.028 −0.147 to 0.092 0.631
Resistin −0.171 −0.461 to 0.119 0.229

IWG
Constant 42.5 31.5–53.5 <0.0001

0.274 (0.179)
Adiponectin −0.293 −0.646 to 0.059 0.099
Leptin −0.167 −0.393 to 0.058 0.139
Resistin −0.270 −0.674 to 0.134 0.180

EWG
Constant 33.0 20.3–45.7 <0.0001

0.438 (0.349)
Adiponectin −0.220 −1.04 to 0.602 0.471
Leptin 0.145 0.036–0.254 0.012
Resistin −0.423 −0.841 to −0.006 0.047

Models included 74 pregnant women; adequate weight gain (AWG) (n = 20), insufficient 
weight gain (IWG) (n = 28), and excessive weight gain (EWG) (n = 26). LOOH, lipohydroperox- 
ides.

B 95% CI p value R2/(R2 adjusted)

AWG
Constant 102 2.48–202 0.045

0.233 (0.090)
Adiponectin 1.85 −1.16 to 4.86 0.211
Leptin 0.836 −0.264 to 1.94 0.127
Resistin −1.15 −3.83 to 1.52 0.375

IWG
Constant 257 176–339 <0.0001

0.302 (0.211)
Adiponectin −1.10 −3.73 to 1.53 0.398
Leptin −2.15 −3.83 to −0.466 0.015
Resistin −1.60 −4.61 to 1.41 0.283

EWG
Constant 164 94.0–235 <0.0001

0.435 (0.350)
Adiponectin 0.996 −3.65 to 5.64 0.659
Leptin 0.956 0.345–1.57 0.004
Resistin −2.42 −4.80 to 0.044 0.046

Models included 74 pregnant women; adequate weight gain (AWG) (n = 20), insufficient 
weight gain (IWG) (n = 28), and excessive weight gain (EWG) (n = 26). MDA, malondialdehyde.

Table 2. Effect of adipokines on LOOH 
levels in pregnant women according to 
gestational weight gain

Table 3. Effect of adipokines on MDA 
levels in pregnant women according to 
gestational weight gain
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p = 0.028), as well as 8-oxodG with LOOH (r = −0.343; p 
= 0.003).

Multiple linear regression models were performed to 
evaluate the association of adipokines and oxidative dam-
age markers, according to GWG. In women with EWG, a 
significant positive association was observed between 
leptin and LOOH (B = 0.145; 95% CI = 0.036–0.254; p = 
0.012) (Table 2), MDA (B = 0.956; 95% CI = 0.345–1.57; 

p = 0.004) (Table 3) and CP (B = 0.053; 95% CI = 0.016–
0.089; p = 0.016) (Table 4), and a negative association was 
observed between resistin and LOOH (B = −0.423; 95% 
CI = −0.841 to −0.006; p = 0.047) (Table 2) and MDA (B 
= −2.42; 95% CI = −4.80 to 0.044; p = 0.046) (Table 3).

Women with IWG presented a negative association 
between leptin and MDA (B = −2.15; 95% CI = −3.83 to 
−0.466; p = 0.015) (Table 3). A positive association be-

B 95% CI p value R2/(R2 adjusted)

AWG
Constant 12.4 6.32–18.4 0.001

0.166 (0.010)
Adiponectin −0.006 −0.189 to 0.176 0.942
Leptin 0.039 −0.028 to 0.106 0.234
Resistin −0.067 −0.229 to 0.095 0.393

IWG
Constant 16.4 11.6–21.1 <0.0001

0.172 (0.064)
Adiponectin −0.071 −0.223 to 0.081 0.346
Leptin −0.076 −0.173 to 0.022 0.121
Resistin −0.063 −0.238 to 0.111 0.238

EWG
Constant 11.8 7.55–16.1 <0.0001

0.367 (0.267)
Adiponectin −0.041 −0.318 to 0.236 0.761
Leptin 0.053 0.016–0.089 0.016
Resistin −0.049 −0.189 to 0.092 0.475

Models included 74 pregnant women; adequate weight gain (AWG) (n = 20), insufficient 
weight gain (IWG) (n = 28), and excessive weight gain (EWG) (n = 26). CP, carbonylated 
proteins.

B 95% CI p value R2/(R2 adjusted)

AWG
Constant 193 164–222 <0.0001

0.365 (0.246)
Adiponectin 1.09 0.222–1.95 0.027
Leptin 0.015 −0.301 to 0.330 0.922
Resistin −0.485 −1.25 to 0.281 0.198

IWG
Constant 164 141–187 <0.0001

0.404 (0.318)
Adiponectin 0.860 0.199–1.52 0.013
Leptin −0.097 −0.544 to 0.350 0.657
Resistin 0.867 0.066–1.67 0.035

EWG
Constant 190 168–211 <0.0001

0.235 (0.121)
Adiponectin 1.04 −0.408 to 2.49 0.149
Leptin −0.142 −0.33 to 0.049 0.137
Resistin −0.121 −0.862 to 0.620 0.737

Models included 74 pregnant women; adequate weight gain (AWG) (n = 20), insufficient 
weight gain (IWG) (n = 28), and excessive weight gain (EWG) women (n = 26). 8-oxodG, 
8-oxo-2′-deoxyguanosine.

Table 4. Effect of adipokines on CP levels 
in pregnant women according to 
gestational weight gain

Table 5. Effect of adipokines on 8-oxodG 
levels in pregnant women according to 
gestational weight gain
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tween adiponectin and 8-oxodG was observed in women 
with AWG (B = 1.09, 95% CI: 0.222–1.95, p = 0.027) and 
IWG (B = 0.860, 95% CI: 0.199–1.52, p = 0.013) but not 
in women with EWG. In women with IWG, a positive as-
sociation was also observed between resistin and 8-oxodG 
(B = 0.867, 95% CI: 0.066–1.67, p = 0.035) (Table 5).

Discussion

In this study, we are providing novel evidence that ad-
iponectin and 8-oxodG concentrations in women with 
AWG and IWG are positively correlated, while in women 
with EWG, this association is not observed. Adiponectin 
is secreted by adipocytes and it is involved in multiple 
functions as insulin sensitizing, stimulation of lipid me-
tabolism, and glucose uptake, displaying anti-inflamma-
tory properties, and correlating inversely with body 
weight and fat mass [19, 32–34]. During pregnancy, adi-
ponectin concentration drops due to an increase in fat 
mass, and it has been negatively correlated with birth 
weight, suggesting that adiponectin may be involved in 
placental nutrient transport [35, 36].

Although no differences were found in 8-oxodG levels 
among the groups, this marker showed a trend to be low-
er in EWG than AWG women. 8-oxodG has been classi-
cally studied as the most common base modification pro-
duced in DNA by oxidative damage, as a separate mole-
cule, 8-oxodG exhibits protective functions [37]. 8-oxodG 
inactivates Rac1 and Rac2 proteins, inhibiting Rac-linked 
functions such as ROS production, controlling oxidative 
stress damage [38]. Besides the antioxidant activity, 
8-oxodG displays anti-inflammatory properties, reduc-
ing the transcription of pro-inflammatory cytokines as 
TNF-, IL-1β, IL-6, and IFN-γ [37, 38]. In an obese mice 
model, the administration of 8-oxodG induces elevation 
of serum adiponectin, improves hyperglycemia and lipid 
profile, and diminishes the concentration of the pro-in-
flammatory cytokines TNF-α and IL-6, ameliorating the 
hallmarks of metabolic syndrome, including insulin re-
sistance [39]. Thus, the positive association between 
8-oxodG and adiponectin in women with AWG and IWG 
could indicate an adequate inflammatory oxidative stress 
balance, which is disrupted in pregnant women with 
EWG. This is in accord with our findings that adiponec-
tin concentrations are higher in AWG and IWG women 
than women with EWG, correlating negatively with 
LOOH and MDA concentrations. In light of these obser-
vations, our data suggest that EWG, as an indicator of 
excessive fat mass accretion, appears to be involved in 

downregulation of adiponectin and could be related to a 
decreased ability to regulate oxidative damage, promot-
ing the development of insulin resistance, gestational dia-
betes, preeclampsia, and placental dysfunction [40–42].

Leptin is secreted by AT and placenta and participates 
in regulating food intake, energy homeostasis, insulin se-
cretion, as well as transport of nutrients to the fetus, cor-
relating with p-BMI and adiposity [32, 43, 44]. In our 
study, women with EWG showed a tendency to higher 
leptin levels than the AWG group (p = 0.087), which is 
probably related to abnormal accumulation of body fat. 
Accordingly, several studies have reported that high 
leptin levels in the 2nd and 3rd trimester of pregnancy 
correlate with EWG [35, 45–47]. In contrast, Patro-
Małysza et al. [48] did not find differences in leptin con-
centration after delivery between AWG and EWG wom-
en.

Physiologically, pregnant women experience an in-
crease in AT, mainly VAT [49]. During a persistent posi-
tive energy balance, VAT is increased due to adipocyte 
hypertrophy, leading to adipocyte dysfunction [50], and 
altered adipokine profiles, where adiponectin decreases 
and leptin concentration increases [51]. As far as we 
know, our study shows for the first time a positive asso-
ciation between leptin concentration and LOOH, MDA, 
and CP markers in pregnant women with EWG. Studies 
not associated with GWG or pregnancy have showed that 
high leptin levels induce ROS production, increasing lip-
id peroxidation, and protein carbonylation [40, 52, 53]. 
Interestingly, in our study, women with IWG showed a 
negative association between leptin and MDA concentra-
tions, possibly related to VAT hypertrophy or less accu-
mulation of this tissue.

Another interesting finding was the association be-
tween resistin and 8-oxodG in women with IWG that was 
not observed in AWG and EWG groups; as far as we 
know, no studies are reporting this association. Resistin 
is expressed in several tissues besides AT such as placenta 
and fetal membranes [54, 55]. The effect of GWG on re-
sistin levels remains unknown; in our study, we did not 
find differences in resistin levels between the groups but 
we are demonstrating an inverse association with LOOH 
and MDA concentrations.

It has been demonstrated that oxidative stress may be 
related to resistin decrease; 3T3-L1 cells exposed to low 
levels of H2O2 for a long time showed impaired resistin ex-
pression [56]. Very few studies have reported associations 
between resistin and oxidative damage markers with dis-
crepant results. In N2a cells used as an Alzheimer model 
disease, resistin exerts a protective effect against neurotox-
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icity of amyloid-β peptides, through the regulation of ROS 
levels and mitochondrial function [57]; however, other 
study showed a negative correlation between serum resis-
tin and oxidative damage in normal weight individuals 
[58]. On the other hand, resistin may lead to the overpro-
duction of ROS, generating oxidative stress by mitochon-
drial damage [59]. The protective effect of several adipo-
kines against oxidative damage occurs through the interac-
tion with their receptor in the cell membrane, triggering 
the transduction of signals involved in antioxidant defense. 
In the case of resistin, its receptor or receptors involved in 
antioxidant function have not been fully identified, and 
further research is required to understand if resistin is in-
volved in oxidative damage control during pregnancy.

Pregnancy carries oxidative stress with increasing cir-
culating ROS due to maternal physiological changes, 
which is counteracted by the synthesis of antioxidants 
[60]. Oxidative stress is caused by an imbalance between 
prooxidants secretion and antioxidant capacity and is a 
crucial factor in the pathophysiology of various pregnan-
cy complications (i.e., preeclampsia and gestational dia-
betes mellitus) [61]. In this work, we studied if GWG 
modifies the three levels of oxidative damage to biomol-
ecules: lipids, proteins, and DNA. Our results did not 
show any differences in oxidative damage markers 
(LOOH, MDA, and CP) between the study groups and as 
far as we know there are no studies to compare our find-
ings. Since pregestational obesity is known to be a factor 
of oxidative stress [26], ongoing work in our lab is focused 
on elucidating whether pregnancy complicated with obe-
sity and EGWG could represent an increased risk of oxi-
dative damage.

This study has some limitations that should be ad-
dressed. Given the inability to weigh women before preg-
nancy, we used self-reported p-BMI, which may intro-
duce bias in the classification of GWG. The sample size is 
relatively small and women were highly selected; there-
fore, results may not apply to all pregnant women. Vari-
ability may be an issue even though it was decreased by 
selecting study groups based on the p-BMI status.

Conclusion

Our findings suggest that concurrent mechanisms reg-
ulate adipokine production and oxidative stress in preg-
nant women and that this regulation is influenced by the 
GWG status, probably due to an excessive fat mass accu-
mulation. As recommended by the Institute of Medicine 
[28], future work should be focused on the mechanisms 

that underlie the effects of GWG on the mother-baby 
dyad, which may result in adverse metabolic consequenc-
es later in life.
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